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Abstract

Summary: Regulatory elements regulate gene transcription, and their location and accessibility is

cell-type specific, particularly for enhancers. Mapping and comparing chromatin accessibility be-

tween different cell types may identify mechanisms involved in cellular development and disease

progression. To streamline and simplify differential analysis of regulatory elements genome-wide

using chromatin accessibility data, such as DNase-seq, ATAC-seq, we developed ALTRE (ALTered

Regulatory Elements), an R package and associated R Shiny web app. ALTRE makes such analysis

accessible to a wide range of users—from novice to practiced computational biologists.

Availability and Implementation:https://github.com/Mathelab/ALTRE

Contact: ewy.mathe@osumc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Assays that measure chromatin accessibility genome-wide, such as

FAIRE-seq (Giresi et al., 2007), DNase-seq (Crawford et al., 2006;

John et al., 2013; Thurman et al., 2012), and ATAC-seq

(Buenrostro et al., 2013), enable global mapping of regulatory elem-

ents (REs), including promoters and enhancers. Organization of

these REs, particularly enhancers, is cell-type specific (Kieffer-Kwon

et al., 2013; Rendeiro et al., 2016; Stergachis et al., 2013) and is a

strong determinant of disease mutational landscapes, including

those of cancer (Polak et al., 2015). Thus, identifying REs that differ

in accessibility between cell types, such as cancerous and non-

cancerous cell lines and tissues, holds promise for pinpointing mech-

anisms involved in disease progression. Furthermore, REs that con-

trol disease-related genes and pathways can be investigated as

putative therapeutic targets, or may even be such targets themselves

(Heinz et al., 2015; Lam et al., 2013).

To the best of our knowledge, no comprehensive and user-

friendly workflow for downstream analysis of chromatin accessibil-

ity data is available. Downstream analysis includes guiding chroma-

tin accessibility alignment and peak data to interpretable results of

REs and pathways of interest. However, there are no standardized

approaches or guidelines. Typically, individual data analyses pipe-

lines must be created from scratch in-house, thereby making repro-

ducible, shareable data-analysis difficult. ALTRE provides a

workflow so users can identify altered REs between two different

cell types or conditions, and includes a Shiny (RStudio shiny: Easy

web applications in R. 2014) web interface for those not as fluent in

the R statistical language.

2 Implementation

2.1 Data preparation and set-up
Typical of high-throughput sequencing data, chromatin accessibility

data are delivered in FASTQ files. Quality control, alignment and

peak calling of the FASTQ file reads, described in detail elsewhere

(Baek et al., 2012; Boyle et al., 2008; Jalili et al., 2016; Rashid et al.,

2011; Zhang et al., 2008), must be performed before using ALTRE.

To start the ALTRE workflow, users need to generate a comma-

separated-values CSV file with 4 columns for each sample to be ana-

lyzed: (1) name of alignment (BAM) files; (2) name of peak (BED)
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files; (3) sample name; (4) replicate number. All files should be

placed in the same folder and the software will detect the location of

the files when reading in the CSV. A minimum of 2 replicates per

sample is required to run the workflow. To get started with ALTRE,

users need to have R (�3.2.0) installed.

2.2 General aspects and design
ALTRE was designed to be user-friendly and to streamline differen-

tial analysis of REs genome-wide. The steps of the workflow ana-

lysis are delineated in Figure 1 and include loading data, defining

consensus peaks (found in multiple replicates), annotating (e.g.

Transcription Start Site (TSS)-distal and TSS-proximal) and option-

ally merging peaks, identifying significantly altered REs based on

quantitative data using DESeq2 (Love et al., 2014), creating tracks

for visualizing categorized REs in a genome browser, comparing

altered REs with those defined based on binary (peak present/ab-

sent) data only, and finally, defining pathways that are enriched in

cell- or condition-type specific or shared REs using GREAT (Gu, Z.

rGREAT: Client for GREAT Analysis. R package version 1.4.2.

2016; McLean et al., 2010).

ALTRE’s embedded Shiny app takes alignment files (BAM for-

mat) and hotspot/peak files (BED format) as input. The workflow

guides users through the steps described above and delineated in

Figure 1. At each step, users can define thresholds, such as number

of replicate samples required to define a peak as consensus, and fold

changes and p-value cutoffs for definition of cell type specific or

shared REs. Users can then quickly retrieve summary statistics and

visualization plots (heatmaps, barplots) to ensure the appropriate-

ness of their parameters. For ease of use, default options are pro-

vided at each step for guidance. Of note, while tools for differential

binding and annotation of sequencing data exist (Bailey et al., 2013;

Chabbert et al., 2016; Ross-Innes et al., 2012; Yu et al., 2015; Zhu,

2013; Zhu et al., 2010; Stark and Brown, ‘DiffBind: differential

binding analysis of ChIP-Seq peak data’ 2011), ALTRE supports

peak merging and annotation, differential analysis and pathway en-

richment analysis in one streamlined tool.

3 Results and discussion

Users can install ALTRE with the function install_github() from the

devtools R package (Wickham H and Chang, W. 2016. devtools:

Tools to Make Developing R Packages Easier). Full installation in-

structions are found at https://github.com/Mathelab/ALTRE. Users

can then run the workflow either in the R console or by launching

the embedded web application by typing ‘runShinyApp()’ in the R

console. A detailed vignette (https://mathelab.github.io/ALTRE/vi

gnette.html) walks users through an example workflow analysis

step-by-step.

A sample dataset is provided on GitHub and can be accessed at

https://mathelab.github.io/ALTREsampledata/. This sample dataset

includes ENCODE data for cancerous and associated non-cancer

lung cell lines, A549 and SAEC, respectively. On a machine with

16 GB memory and a 2.5 GHz Intel Core i7 processor, the workflow

takes �334 s to complete for the example dataset using all

chromosomes.

For real-time analysis of results, the ALTRE Shiny app enables

users to change their parameters and directly visualize the effect of

those changes through summary statistics tables and plots. For ex-

ample, users can readily visualize the number of REs that are

sample-type specific or shared based on their input fold change and

adjusted P-value thresholds through a volcano plot and an associ-

ated statistics table. In addition, processed data can be saved after

key steps in the analysis and all plots can be modified (e.g. colors)

and saved as high resolution images.

With the increasing interest in researching REs to better under-

stand transcriptional regulation and diseases, and improvements in

techniques to assess these regions (Buenrostro et al., 2013), chroma-

tin accessibility assays are being increasingly generated. With this in

mind, ALTRE provides a user-friendly workflow that guides the

analysis and interpretation of these data.
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