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BACKGROUND: As degradation of formalin-fixed paraffin-embedded (FFPE) samples limits the ability to profile mRNA expression,
we explored factors predicting the success of mRNA expression profiling of FFPE material and investigated an approach to overcome
the limitation.
METHODS: Bladder (n¼ 140, stored 3–8 years) and cervix (n¼ 160, stored 8–23 years) carcinoma FFPE samples were hybridised to
Affymetrix Exon 1.0ST arrays. Percentage detection above background (%DABG) measured technical success. Biological signal was
assessed by distinguishing cervix squamous cell carcinoma (SCC) and adenocarcinoma (AC) using a gene signature. As miR-205 had
been identified as a marker of SCC, precursor mir-205 was measured by Exon array and mature miR-205 by qRT–PCR. Genome-
wide microRNA (miRNA) expression (Affymetrix miRNA v2.0 arrays) was compared in eight newer FFPE samples with biological
signal and eight older samples without.
RESULTS: RNA quality controls (QCs) (e.g., RNA integrity (RIN) number) failed to predict profiling success, but sample age correlated
with %DABG in bladder (R¼ � 0.30, Po0.01) and cervix (R¼ � 0.69, Po0.01). Biological signal was lost in older samples and
neither a signature nor precursor mir-205 separated samples by histology. miR-205 qRT–PCR discriminated SCC from AC, validated
by miRNA profiling (26-fold higher in SCC; P¼ 1.10� 10� 5). Genome-wide miRNA (R¼ 0.95) and small nucleolar RNA (R¼ 0.97)
expression correlated well in the eight newer vs older FFPE samples and better than mRNA expression (R¼ 0.72).
CONCLUSION: Sample age is the best predictor of successful mRNA profiling of FFPE material, and miRNA profiling overcomes the
limitation of age and copes well with older samples.
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Worldwide, there are an estimated one billion archived tissue
samples, most of which are formalin-fixed and paraffin-embedded
(FFPE) (Blow, 2007). Many of these samples are associated with
long-term clinical follow-up data. This, coupled with the sequen-
cing of the human genome and the subsequent abundance of
molecular biology techniques to support both research and,
increasingly, diagnosis, highlights the need to develop approaches
for exploiting FFPE archives.

Although tissue and protein are well preserved in FFPE blocks,
nucleic acids are degraded and chemically modified (Lee et al,
2005). These deleterious processes, which affect DNA and RNA,
occur not only during sample embedding and processing (von
Ahlfen et al, 2007), but also during long-term storage (Cronin et al,
2004). The RNA quality of FFPE samples stored for prolonged
periods is known to reduce (Cronin et al, 2004), but there is little
research on this phenomenon. Given that data quality is an
important consideration for bioinformatics analyses, the impact of

RNA degradation and chemical modification can be significant,
ultimately overwhelming biological variation with noise. Little is
known about the factors that determine RNA quality from FFPE
tissues. Variables including tissue size, fixation time and storage
temperature can negatively affect both RNA quality and the
success of PCR assays in controlled laboratory conditions (von
Ahlfen et al, 2007), but less is known about the processes that
occur during prolonged storage. Studies have shown that older
FFPE samples have higher CT values (i.e., lower signal) than those
stored for o5 years (Cronin et al, 2004; von Ahlfen et al, 2007).
These data suggest that RNA degradation is not a single event, but
continues beyond processing and throughout storage. In line with
this, most RNA expression studies use FFPE samples o10 years
old (von Ahlfen et al, 2007; Abdueva et al, 2010; Abramovitz
et al, 2011), with very few, mostly recent, studies considering
older samples (Cronin et al, 2004; Hall et al, 2011; Kennedy et al,
2011). This 10-year limit excludes the majority of FFPE material
from analysis. In oncology, this is particularly pertinent for
rare cancers, historical studies where shifts in aetiology may
be relevant (Chaturvedi et al, 2011) and unique sample cohorts
(West et al, 1997).

Recently, we showed that Exon array profiling and a specialised
pipeline that exploits the redundant nature of the arrays can be
used to derive a gene signature from FFPE without the requirement
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for matched fresh-frozen samples (Hall et al, 2011). We consider
this to be the cutting edge of FFPE sample expression profiling
(Linton et al, 2009) and, unlike earlier techniques, we captured
biological information from 100% of samples aged 10–16 years, a
higher success rate than other studies (Penland et al, 2007; Linton
et al, 2008). We reasoned that Exon array profiling coped with the
RNA damage in FFPE samples.

Here, we show that while recent methods cope with RNA
degradation in FFPE samples, they are less tolerant of the
subsequent mRNA deterioration associated with longer-term
storage. To compensate for the long-term deterioration of mRNA
signals, we investigated microRNA (miRNA) profiling in older
FFPE samples. MicroRNAs are small non-coding sequences of
RNA, B20–23 nucleotides long, which are involved in the
regulation of countless genes. Similar to gene expression, miRNA
expression appears to be tightly controlled and provides highly
specific biomarkers for cancer (Lu et al, 2005; Lebanony et al,
2009). MicroRNAs appear to have enhanced stability in both
plasma (Mitchell et al, 2008) and FFPE samples (Li et al, 2007; Hui
et al, 2010). Importantly, we show that miRNAs are not subjected
to the same deterioration seen in other RNA types, have robust
expression regardless of sample age and can stratify patient
samples with negligible mRNA signal.

MATERIALS AND METHODS

Patients and tissue

Samples of histologically proven transitional cell carcinoma of the
bladder (stage T2, T3 or T4a) or high-grade non-muscle invasive
carcinoma (T1 grade 3) from patients participating in the BCON
(bladder carbogen nicotinamide) phase III trial (Hoskin et al,
2010) were selected for Exon array hybridisation (n¼ 141). Pre-
treatment FFPE biopsies were obtained between November 2000
and April 2006 from 11 UK hospitals; sample processing
was carried out according to local standard operating procedures.
All tumours contained X10% tumour material. Use of the
material was approved by the local ethics committee (LREC 09/
H1013/24).

Samples of histologically proven carcinoma of the cervix (FIGO
stage Ib–IVa) from patients treated with radiotherapy alone with
curative intent were selected for Exon array hybridisation
(n¼ 160). Pre-treatment FFPE biopsies were obtained between
1987 and 2002 from the Christie Hospital. The samples were
collected and processed at a single hospital site, using the same
standard operating procedure over the period they were obtained,
that is, the same methods of fixation and embedding used today,
although changes in the quality and composition of reagents
cannot be excluded. Tumour biopsies were obtained under general
anaesthetic and immersed in 4% neutral-buffered formalin. The
FFPE blocks were stored at room temperature in a standard block
storage unit. Unfortunately in the clinical setting other features
associated with fixation were not recorded (e.g., duration of
fixation, tumour volume, etc.); however, all samples were
processed routinely and therefore are representative of the types
of cohort available for FFPE research. All tumours contained
X30% tumour material. Local ethical approval was obtained for
using the human material (LREC: 08/H1011/63).

RNA extraction and quality control (QC)

RNA was extracted and DNase treated using RecoverAll Total
Nucleic Acid Isolation Kit (Ambion, Austin, TX, USA), as per
manufacturer’s instructions. We have previously shown that
this kit was sufficiently optimised for sarcoma FFPE samples
without the need for additional modification (Linton et al, 2009).
RNA integrity and RNA quantification were measured using a

Bioanalyser (Agilent Technologies Ltd, Santa Clara, CA, USA). Ratios
of 260/230 and 260/280 were assessed using a Nanodrop 1000
Spectrophotometer (Thermo Scientific, Wilmington, DE, USA).
Nanodrop-quantified cDNA yield was also recorded. Minimum
requirements for hybridisation to Exon arrays were an input of
100 ng total RNA that amplifies to give a yield of X3.8mg of cDNA.
In two cervix carcinoma cases (V153 and V247), 50 ng of RNA was
used as input, owing to a low RNA yield. As such, 100% of cases had
usable amounts of RNA. Samples that were dilute (o50 ngml� 1)
were concentrated under vacuum (Eppendorf concentrator 5301;
Eppendorf, Hamburg, Germany). The standard RNA quality
parameters: RIN (a measure of the proportion of intact ribosomal
RNA (rRNA)), 260/230 ratio and 260/280 ratio were recorded, but
not used to screen samples. Full RNA QC data were available for 89%
(125/141) of bladder and 87% (139/160) of cervix cancer samples
hybridised to Exon arrays. The remaining samples had one or more
parameters where data were not recorded.

Exon array hybridisation

One hundred nanograms of RNA was amplified using NuGen WT-
Ovation FFPE v2 kit (NuGen Technologies, San Carlos, CA, USA).
The WT-Ovation Exon Module V1.0 was used to generate ST-
cDNA, and 3.8–4 mg was hybridised to Human Exon 1.0 ST arrays
(Affymetrix, Santa Clara, CA, USA). Further details and raw
data (CEL files) are available at http://bioinformatics.picr.man.
ac.uk/vice (or GSE39067).

Exon array data analysis

Microarray data were normalised using RMA (Irizarry et al, 2003).
R/BioConductor package annmap and annmap database (Yates
et al, 2008) were used to filter non-exonic and multitargeting
probesets. Array performance was measured as the percentage of
probesets flagged as ‘present’ with a conservative cutoff (%detec-
tion above background (%DABG) Po0.01) and only those
probesets ‘present’ in at least three samples were analysed. Gene
level summaries were calculated by taking the median signal of
filtered probesets that mapped to unique gene symbols. Affymetrix
Exon 1.0ST array hybridisation reproducibility was assessed using
standard Affymetrix Exon array QC measures (Supplementary
Text and Supplementary Figures 1–3). Samples with more than two
QC measures ±10% of the cohort mean were considered outliers.
Principle component analysis was also used to assess sample
variation within cohorts. Supplementary Figures 1–3 show that no
samples failed this QC check and so none were excluded from the
analysis. An adenocarcinoma/squamous cell carcinoma (AC/SCC)
ratio was derived by using a previously published signature
comprising 2673 probesets (Hall et al, 2011). The median
expression values of 2395 SCC probesets were divided by that of
278 AC probesets. Scores 41 were classified as SCC and scores o1
as AC. The same ratio was calculated for 100 sets of 2673 randomly
sampled probesets for comparison.

TaqMan miRNA qRT–PCR

Ten nanograms of RNA was reverse transcribed using the TaqMan
MicroRNA Reverse Transcription (RT) Kit (Applied Biosystems,
Carlsbad, CA, USA) and pooled Taqman RT primers for hsa-miR-
205 (000509), hsa-miR-26b (000407) and hsa-miR-16 (000391).
Complementary DNA was amplified using the TaqMan PreAmp
Master Mix, as per the manufacturer’s protocol, for 14 cycles
(Applied Biosystems). Five microlitres of amplified cDNA was
subjected to quantitative PCR using the same TaqMan primers and
probes used in the RT stage. Standard Gene Expression Mastermix
(Applied Biosystems) and thermocycling conditions were utilised,
data were collected using an AB7900 and values exported from
SDS2.1 for analysis in Excel. Relative quantification was performed
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using the 2�DCT method (Livak and Schmittgen, 2001), including
normalisation of the target expression data (hsa-miR-205) to the
mean of housekeeping miRNA expression (hsa-miR-26b and
hsa-miR-16) (Peltier and Latham, 2008).

MicroRNA array hybridisation

One hundred nanograms of total RNA was tailed and ligated
to FlashTag-Bitoin-HSR as per the manufacturer’s protocol
(Affymetrix). The ligated RNA was then hybridised to Affymetrix
miRNA v2.0 arrays for 16 h at 48 1C. Further details and raw data
(CEL files) are available at http://bioinformatics.picr.man.ac.uk/
vice or GSE39067. Raw data were analysed using the Affymetrix
‘miRNA QC tool’ (v1.1.1.0), using standard parameters including
quantile normalisation. The Affymetrix miRNA v2.0 array contains
probesets for multiple species, and different small-non-coding
RNA molecules such as stem loops (pre-miRNA precursors), and
small nucleolar RNA (snoRNA) and small Cajal body-specific RNA
(scaRNAs). Probesets were filtered to retain only those annotated
for Homo sapiens and miRNA (mature, processed). SnoRNA
(including CDBox and HAcaBox) were also considered, but
independently to mature miRNAs. Pre-miRNA data from the
miRNA v2.0 array were not considered owing to consistently low
expression in FFPE and cell line RNA (Supplementary Figure 4A
and B). Therefore, pre-miRNA data for miR205 were derived from
the Exon array. Differential expression analysis of filtered
probesets was performed using LIMMA (Smyth, 2004).

Cell lines and western data

Cervix cell lines were grown in DMEMþ 10% foetal calf serum.
Western blotting was performed using the following antibodies:
p63 mouse monoclonal (BC4A4) (Abcam, Cambridge, UK) and
alpha-tubulin mouse monoclonal (020M4753) (Sigma-Aldrich,
Dorset, UK). Protein expression rather than pathological assign-
ment was used to broadly classify lines as SCC (p63þ ) and AC
(p63� ).

p63 immunohistochemistry

Sections (4 mm) were dewaxed, rehydrated and the antigen
retrieved by microwaving in Low pH Antigen Unmasking Solution
(Vector Laboratories Inc., Peterborough, UK). After quenching
endogenous peroxidase, nonspecific binding was blocked using
10% casein (Vector Laboratories Inc.). The primary antibody,
mouse monoclonal (BC4A4) (Abcam), was applied at 10 mg ml� 1,
and the sections incubated at 4 1C in a humidified chamber
overnight. The same concentration of mouse IgG2a control reagent
(Dako Ltd, Ely, UK) was used as negative control. The antigen was
detected with mouse EnVision Plus reagent (Dako Ltd) and
visualised with 3,30-diaminobenzidine (Dako Ltd). Sections were
counterstained with haematoxylin, dehydrated and mounted.
Batch-to-batch variation was assessed by running sections showing
high and low p63 expression with each batch. Tumours exhibiting
X5% positive nuclei were classed as p63 positive (Cho et al, 2003).
Immunohistochemistry methods followed REMARK guidelines
(McShane et al, 2005).

Statistics

R values indicate Pearson product moment correlation coefficient.
Asterisks indicate P-value thresholds *Po0.05, **Po0.01,
***Po0.001. Box-whisker parameters: horizontal bar indicates
median expression, the box indicates interquartile range; whiskers
represent the range. LIMMA (Smyth, 2004) was used to calculate
differential expression values for miRNA profiling data. P-values
are Benjamini and Hochberg false-discovery rate (FDR) corrected
(Benjamini and Hochberg, 1995).

RESULTS

RNA quality affects the technical success of Exon array
profiling

Optimisation of RNA extraction from FFPE is an important
consideration and should take into account length of fixation and
duration of sample storage (Ribeiro-Silva et al, 2007; Chung and
Hewitt, 2010). To ensure that the RNA extraction protocol was
optimised for our older cervix samples, we performed a pilot
experiment on four samples stored 2–14 years (cohort median age:
13.9 years). Good yields (3–19 mg per 60 mm tissue) were obtained
using the standard RecoverAll protocol and %DABG scores similar
to cell line RNA (data not shown). Following the pilot experiments,
remaining samples were hybridised. Complete RNA QC data were
available for 125 bladder and 139 cervix samples. Figure 1A shows
that neither RNA yield nor RIN correlated with %DABG, which
measures array performance (Linton et al, 2008; Trabzuni et al,
2011). The average RIN of both the bladder and cervix samples was
B2.3 (Figure 1B), showing considerable rRNA degradation
compared with cell line RNA (Figure 1C). The data show that
rRNA integrity is a poor predictor of successful archival FFPE
array profiling. The standard spectrophotometric determinants of
RNA purity (260/230 and 260/280 ratio) also failed to correlate
with %DABG (Figure 1A). Complementary DNA yield following
NuGEN amplification correlated weakly with %DABG in both
the bladder (R¼ 0.19) and cervix (R¼ 0.39) cohorts (Po0.05 for
both). Of note, yield might be a better predictor than suggested
by these data, as samples yielding o3.8mg cDNA cannot be
hybridised to arrays. However, cDNA yield accounts for only a
small amount of sample variation.

FFPE sample age is the predominant feature associated
with poor array performance

The range of %DABG values was lower in the bladder (median
24.0% (range 12.6–34.0%)) than the cervix (median 19.2%, (range
4.4–40.9%)) samples. It is possible that tissue type contributes to
the difference, but the bladder samples were younger (median age
6 years (6–8)) than the cervix cohort (median age 13 years (8–23)).
Therefore, we examined whether FFPE block age at RNA extraction
contributed to array performance. There was a statistically
significant trend for %DABG to decrease with sample age in both
the bladder (R¼ � 0.30, Po0.01; Figure 1D) and cervix
(R¼ � 0.69, Po0.01; Figure 1E) series. This clearly demonstrates
in two independent cohorts that the older an FFPE sample the
poorer the array performance. The effect size was almost negligible
in the younger bladder cancer cohort, but coupled with the cervix
data it suggests that over time the %DABG might similarly decay.
Neither RNA yield nor RIN correlated with the age of FFPE block
(Supplementary Figures 5 and 6).

Biological signal is lost in older samples

%DABG measures technical success, but does not reflect
‘biological signal’ success. To address this, we investigated whether
a gene signature discriminated AC and SCC in older FFPE samples.
To remove any tissue of origin concerns we focused on the cervix
samples, which had the broadest age range. The cervix samples
were divided into two series based on historical enrolment into two
different studies. Cervix series 1 (CS1) comprised 112 FFPE
samples with a median age of 12 years (range 8–18), and cervix
series 2 (CS2) contained 48 FFPE samples with a median age of 18
years (range 16–23) (Table 1). We have previously published a
gene signature that is capable of separating cervix into AC and SCC
histology, based on the expression of 1062 SCC and 155 AC genes
(Hall et al, 2011). This signature was derived on 28 cervix FFPE
samples, but most importantly shown to independently validate in
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a fresh-frozen, lung cancer cohort. Expressing the signature as a
ratio (dividing the expression of the 1062 SCC genes by the
expression of 155 AC genes) results in a positive ratio indicating a
higher contribution from SCC genes. Figure 2A and B shows clear
discrimination of SCC and AC samples in the original cervix
training data and lung cancer validation cohort (Hall et al, 2011).

The ratio in the AC samples was higher in the lung than cervix,
possibly owing to differences in gene expression between the
cancer types. Figure 2C shows the age range of the two cervix
cohorts and Figure 2D the obvious biological signal in CS1
specimens with only a minority of SCC samples having ratios close
to or below background. As with most classifiers, there are some
histological misclassifications, but most of the younger samples
were correctly classified as SCC. In contrast, the older SCC samples
show a clear reduction in performance with most of the SCC
samples having ratios close to or below background (Figure 2E).
None of the FFPE samples had a ratio above 1.2, even though
B90% of cervix cancers are SCC. Taken together, these data
demonstrate that the older FFPE samples have lost biological
signal. We also saw a weak trend for decreasing housekeeper
expression with sample age in our data; however, there was
considerable sample variation (Supplementary Figures 7 and 8).
Interestingly, there was no significant difference in housekeeping
gene expression or distribution associated with %DABG filtering
or between the older and newer samples.

mRNA transcript expression is progressively lost during
long-term FFPE storage

Biological signal progressively decreased during storage as shown
by the correlation between SCC/AC ratio and sample age (R¼ 0.76,
Figure 3A). Furthermore, the strong correlation between SCC/AC
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Figure 1 RNA quality affects the technical success of Affymetrix Exon arrays. (A) Table displaying the correlation coefficients (R) between RNA
quantification and QCs against %DABG; RIN number, 260/230 ratio, 260/280 ratio and concentration. Complementary DNA yield following NuGen
amplification was also considered as a surrogate for RNA quality. Emboldened values show significant P-values: *Po0.05, **Po0.01. (B) Table displaying
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FFPE block (in years) for the bladder cancer cohort. The plotted line represents a line of best fit. (E) x–y scatterplot showing %DABG against age of FFPE
block (in years) for the cervix cancer cohort. The plotted line represents a line of best fit.

Table 1 FFPE cohort information

Cohort
Tumour

type

Number
of

patients

Median age
of sample

(years)
Median
%DABG

Bladder — Bladder
cancer

141 6 (3–8) 24.0 (12.6–34.5)

Cervix Cervix
series 1
(CS1)

Cervix
cancer

112 12 (8–18) 22.6 (8.3–40.9)

Cervix
series 2
(CS2)

Cervix
cancer

48 18 (16–23) 13.9 (4.4–27.6)

Combined
series

Cervix
cancer

160 13 (8–23) 19.2 (4.4–40.9)

Abbreviation: %DABG¼ percentage detection above background. Numbers in
brackets represent the range.
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ratio and %DABG (Figure 3B) demonstrates that this is a general
feature of the data: FFPE sample storage is associated with a
progressive drop in RNA quality, resulting in a general decline in
the ‘biological’ signal to noise ratio. This is further demonstrated
by the decrease in probeset signal for TP63, which encodes the
tumour suppressor p63, a protein expressed predominantly in cells
and tumours of squamous cell origin. Expression of the p63 protein,
measured by immunohistochemistry, is currently considered to be
the best single biomarker of cervical SCC (McCluggage, 2007). Like
the SCC/AC ratio, Exon array-measured TP63 transcript abundance
decreased with cervix sample age (R¼ � 0.63, Figure 3C). As a
positive control for RNA quality, and to confirm the relationship
between p63 protein and transcript expression, p63 levels were

measured in 16 cervix cancer cell lines by western blot (Figure 3D).
The median gene expression level for TP63 was higher in p63-
positive vs p63-negative cell lines (Figure 3E). While the background
level of TP63 signal was relatively constant (green boxes) across cell
lines and tumour cohorts, there is a decrease in the TP63 signal for
SCC that is proportionate to RNA quality (hatched boxes). In the
older cervix series this eliminated the difference between AC and
SCC. These results are further supported by immunohistochemistry
data for 152 samples, where median TP63 expression in the older
samples was closer to background (p63 negative) levels (Figure 3F).
As these data represent the median values for multiple probesets
targeting the length of the gene, it is probable that the RNA degrades
along the entire length of the TP63 transcript.
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of 11 years (10–16) (B) Applied to the independent non-small-cell lung cancer (NSCLC) cohort (Hall et al, 2011). The samples in this cohort were fresh-
frozen. (C) Partitioning of the samples into two independent cohorts on the basis of historical partitioning. Cervix series 1 (squares) indicate the younger
cervix series one (median age 12 years (8–18)) and CS2 (stars) indicate cervix series two (median age 18 years (16–23)). (D) AC/SCC signature applied to
the CS1 cohort (of similar age to the original training samples). (E) AC/SCC signature applied to CS2, an older independent cohort of cervix cancer samples.
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Mature miRNA expression can overcome mRNA
degradation and accurately classify cervix tumours

MicroRNAs were explored for their ability to overcome the
limitations of mRNA profiling. The miRNA miR-205 has
previously been demonstrated as a marker of lung SCC
(Lebanony et al, 2009). Two Exon array probesets target the full-
length hsa-mir-205 (mir-205) precursor. Both probesets correlate
with TP63 expression (Figure 4A) in our previously published
cohort (Hall et al, 2011). We interrogated whether expression of
these probesets correctly classified samples according to histology.
The expression of both mir-205 probesets was similar to TP63
(Figure 4B). While the probeset expression in SCC samples
(hatched boxes) was higher in the cell lines and younger FFPE

samples (Po0.01), there was no statistically significant difference
between SCC and AC in the older samples. MicroRNA probesets on
Exon arrays target precursor miRNAs (pre-miRNA) sequences,
which are longer, in this case 110 nt, than the mature processed
miRNAs (B22 nt). The implication is that pre-miRNAs are subject
to similar degradation effects as mRNAs. To address this, a subset
of samples was randomly selected from the cervix cohort, to
encompass all ages and RNA qualities (Supplementary Table 1).
A qRT–PCR assay was designed to specifically detect the mature
form of miR-205 and performed on the same RNA used to generate
the array data. Both mir-205 probesets, and the median expression
of TP63, failed to discriminate between AC and SCC in the older
FFPE cohort (Figure 4C). However, signal for the mature miR-205
was significantly higher in SCC compared with AC across all RNA

R = –0.76 R = 0.70

B
ok

u
C

as
ki

C
33

a
H

cs
c1

H
cs

2
H

eL
a

H
T

3
M

e1
80

M
S

75
1

S
iH

a
S

K
G

I
S

K
G

II
S

K
G

III
a

S
W

75
6

70
8

80
8

R = –0.63

p63

15

5

10

0

CS2CS1Cell lines

CS2CS1 CS2CS1

p63 IHC
negative 

p63 IHC
positive 

1.6

1.4

1.2

R
at

io
 o

f S
C

C
/A

C
 g

en
e 

ex
pr

es
si

on

M
ed

ia
n 

T
P

63
 e

xp
re

ss
io

n

R
at

io
 o

f S
C

C
/A

C
 g

en
e 

ex
pr

es
si

on

1.0

0.8

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

1.6 CS1 (n =112)
CS1 (n =112)

CS2 (n =48)
CS2 (n =48)

Line of best fit (least squares)
Line of best fit (least squares)

1.4

1.2

1.0

0.8

5 10 15

Age of block (years)

20 25

5 10 15 20

8

7

6

M
ed

ia
n 

T
P

63
 e

xp
re

ss
io

n

5

4

25

5 10 15 20 30 35 4025

Array DABG

Age of block (years)

CS1 (n =112)
CS2 (n =48)
Line of best fit (least squares)

�-Tubulin

M
ed

ia
n 

T
P

63
 e

xo
ni

c
pr

ob
es

et
s 

(lo
g2

)

SCC AC
SCC AC

SCC AC

Figure 3 The age of the FFPE block is associated with loss of biological signal. (A) x–y scatterplot showing the ratio of SCC/AC gene signature (y axis)
against the age of FFPE block in years (x axis). Pearson correlation coefficient (R) is displayed. (B) x–y scatterplot showing the ratio of SCC/AC gene
expression (y axis) against %DABG (x axis). Pearson correlation coefficient (R) is displayed. (C) x–y scatterplot showing median TP63 expression plotted
against the age of the FFPE block. Pearson correlation coefficient (R) is displayed. (D) Western blot of p63 protein expression in 16 cervix cancer cell lines.
(E) Box-whisker plot showing Exon array probeset expression of TP63 in AC and SCC from three cohorts; cervix cell lines (n¼ 16), CS1; intermediate age
FFPE (n¼ 112) and CS2; old FFPE n¼ 48. (F) Box-whisker plot for a subset of FFPE samples where sufficient tissue was available for p63
immunohistochemistry (CS1 n¼ 108, CS2 n¼ 44). y axis shows the median TP63 probeset expression from Exon array data. x axis shows p63
immunohistochemistry status; positive (45% nuclei) or negative (o5% nuclei) for samples within the younger CS1 and older CS2 cohorts.

Preserved microRNA signal from degraded clinical FFPE specimens

JS Hall et al

689

& 2012 Cancer Research UK British Journal of Cancer (2012) 107(4), 684 – 694

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



qualities (Figure 4D). There was no significant age-related decay
in signal between the CS1 and CS2 subsets. The CS1 samples
showed a 7.6-fold difference in expression of miR-205 between
AC and SCC, and the CS2 subset showed a 6.9-fold difference
(Supplementary Figure S9). This confirms that mature miR-205
expression discriminates between AC and SCC in RNA with no
discernable mRNA signal.

Global miRNA profiling confirms that miRNAs have
enhanced stability in FFPE samples

To test whether this result generalised to global miRNA profiling,
16 FFPE samples and 2 cell lines were hybridised to Affymetrix
miRNA v2.0 arrays. Clinical samples were randomly selected from
either cohort of cervix samples. Figure 5A shows the probeset

expression of hsa-miR-205 derived from the array data. There is
clear separation of SCC and AC in the cervix samples, recapitulat-
ing the qRT–PCR data (Figure 4D). Taken together, these data
show that miR-205 expression levels support histological dis-
crimination, regardless of sample age or quality, even in FFPE
samples where mRNA expression cannot. Figure 5B shows that the
median probeset expression of all human miRNAs for eight young
cervix samples correlates well with the probeset expression of eight
old cervix samples (R¼ 0.95) with no apparent age-related bias. An
equivalent plot for a random sampling of a similar sized subset of
(n¼ 1000) mRNA (Exon) probesets was skewed towards the higher
signal in younger (CS1) samples (R¼ 0.88) (Figure 5C). This shift
is more pronounced for the 2395 probesets comprising the SCC
component of the AC/SCC signature (R¼ 0.72). Together, these
data suggest the miRNA data are more robust to the effects of
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FFPE processing and storage. We therefore compared miRNA
profiles for SCC vs AC samples, irrespective of sample age
(Figure 5D). While a number of probesets showed differential
expression (Figure 5E), only miR-205 (26-fold higher in SCC
compared with AC) was statistically significant after FDR
adjustment (P¼ 1.103� 10–5). This supports previous reports
in the literature that miR-205 is a suitable biomarker for SCC,

and for the first time we demonstrate its ability to discriminate
cervix cancer histologies. Another small-non-coding class of
RNA molecule represented on the Affymetrix miRNA v2.0 array,
snoRNAs, shows stability across the two sample cohorts (R¼ 0.97,
Po0.0001) (Figure 5F). Figure 5F shows that this correlation
is preserved in probesets detecting the entire range of target
molecule sizes.
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DISCUSSION

Specimen size, time to fixation and fixation duration affect the
quality of RNA from FFPE archival samples (von Ahlfen et al,
2007). There is also a progressive deterioration of RNA quality
associated with long-term storage. The lack of standardisation in
tissue processing and storage in histopathology departments
means that it is not possible to access samples handled uniformly.
Given the vast archives of FFPE tumour material available,
techniques are required that cope with a high degree of sample
variation owing to processing and degradation. Approaches are
also needed that predict whether samples can be successfully
profiled with RNA expression techniques. This study investigated
whether an approach that worked with samples stored for 10–16
years (Hall et al, 2011) could cope with the systematic degradation
of RNA in even older FFPE samples (Cronin et al, 2004). We
envisaged that the short 25mer probes on the Exon arrays would
deal with RNA fragmentation better than qRT–PCR and conse-
quently we performed no pre-selection based on standard RNA
quality metrics, or PCR expression of endogenous controls
(Ribeiro-Silva et al, 2007; Reinholz et al, 2010; Waddell et al, 2010).

Standard RNA QC parameters did not predict microarray
profiling success and there was only a very weak correlation for
decreasing reference gene expression in older samples. The level of
rRNA degradation, as measured by RIN, was not a predictor of
FFPE microarray profiling success. The lack of correlation between
RIN and %DABG agrees with previous studies demonstrating that
1-year-old FFPE expression, as measured by qRT–PCR, is
comparable to that of fresh-frozen material, providing small
amplicons are used (Cronin et al, 2004; von Ahlfen et al, 2007).
This is further supported by a recent study of QC parameters in
unfixed postmortem brain specimens, in which only 2.7% of the
variation in array performance in a 1266 Exon array experiment
could be accounted for by RIN (range 1–8.5) (Trabzuni et al, 2011).
This suggests that the RNA deterioration that contributes to poor
RIN can be overcome by the combined use of RNA amplification,
that is not solely reliant on poly(A)-based priming, and multiple
short reporters, such as the probesets found on Exon arrays.

In both the bladder and cervix cancer FFPE samples, a
statistically significant association was seen between decreasing
array performance (%DABG) and sample age, suggesting that
during prolonged storage the RNA becomes increasingly incom-
patible with current methods. In the cervix cohort, we showed that
samples with low %DABG also had low biological signal and it was
not possible to distinguish between AC and SCC (AC/SCC ratio
or TP63 transcript). As FFPE samples age, both total RNA quality
and signal (%DABG) decreased and biological signal was lost.
This finding supports the recommendation that FFPE samples
should have RNA extracted as soon as possible after fixation,
preferably within 1 year (von Ahlfen et al, 2007). With prospective
translational studies or clinical tests this is sometimes achievable,
but adhering to this recommendation would clearly remove many
potentially valuable retrospective FFPE samples from further
analysis. Our study is the first to show these trends in global
mRNA profiles. Given that we have quantitatively validated Exon
array FFPE data previously (Hall et al, 2011), the loss of biological
signal in samples stored for 16–23 years should recapitulate with
other methods for measuring RNA expression such as qRT–PCR or
Quantigene. Other approaches were not explored owing to limited
material available but loss of expression with age has been
reported previously using qRT–PCR (Cronin et al, 2004). Our
findings, therefore, are likely to generalise to other FFPE profiling
methods given the similarity of approach (e.g., array designs
featuring 30 reporters). While adjustments to data analysis and
normalisation methods, such as normalising to invariant probe-
sets/housekeeping genes (Cronin et al, 2004; Kennedy et al, 2011),
might help correct for age-related effects, it is unreasonable to
expect them to be able to reconstruct information that is missing

in the original data. Formalin-fixed paraffin-embedded cohorts
will inherently contain significant amounts of technical and
biological variation, leading to the need for larger cohorts than
an equivalent study using fresh-frozen material. There are
currently no prospective QC metrics that can universally predict
array performance. In this study, the strongest indicator of array
success was sample age, therefore younger aged cohorts should be
exploited where possible.

There is increasing evidence in the literature that miRNAs show
enhanced stability in both plasma (Mitchell et al, 2008) and FFPE
(Li et al, 2007; Hui et al, 2010). The miR-205 was investigated as a
biomarker of SCC (Lebanony et al, 2009). The precursor transcript
behaved in a similar way to mRNA and also failed to discriminate
between AC and SCC in older samples. However, mature miR-205
was able to distinguish cervical samples by histological subtype. It
was considered that this might be owing to the high expression of
miR-205 (i.e., higher levels of transcript to degrade, compared with
mRNA markers). As expected in the mRNA data, there was a
significant decrease in signal in the older samples compared with
the newer FFPE samples. This decrease was not observed when
comparing the expression of human mature miRNAs (n¼ 1105)
suggesting that the enhanced stability associated with miR-205 is a
general feature of all detected miRNAs. Given the diverse roles of
miRNAs and their enhanced stability independent of expression
level, there is great potential for miRNA profiling to contribute to
the development of clinical biomarkers (Lu et al, 2005; Lebanony
et al, 2009) and the generation of signatures associated with outcome
(Hu et al, 2010; De Preter et al, 2011) especially using FFPE samples.

There are multiple hypotheses concerning why miRNA is more
stable than mRNA in FFPE. First, either the lack of structure, lack
of a specific nucleotide target sequence, their small size or some
other protective modification prevents the degradation that occurs
with larger RNA molecules. Second, the miRNAs are in a protective
environment such as the RNA-induced silencing complex, that by
the virtue of formalin crosslinks are tethered to the miRNA or
alternatively, because they are packaged into vesicles known as
exosomes (Lee et al, 2009). It may also be that miRNAs provide a
better template for amplification or have hybridisation kinetics
that are less affected by the processes occurring in FFPE. It is
interesting therefore that snoRNAs, a different class of small-non-
coding RNA, with their significantly larger size (48–250 nt) and
different subcellular location also demonstrate enhanced stability
in FFPE. SnoRNAs primarily guide chemical modifications of other
RNA molecules (Mattaj et al, 1993). SnoRNAs have been associated
with genetic conditions such as Prader–Willi syndrome (Cassidy
et al, 2012) and dyskeratosis congenita (Mason and Bessler, 2011).
It is becoming clear that snoRNAs also regulate other biological
processes such as alternative splicing (Kishore and Stamm, 2006)
and even function as non-classical miRNAs (Ender et al, 2008).
Understanding the commonalities between snoRNAs and miRNAs
will provide further insight into why some RNA molecules degrade
less than others when formalin-fixed and paraffin-embedded.

Other studies have reported improvements in expression
profiling by using miRNAs in conjunction with FFPE. This is,
however, to the best of our knowledge the first study to show that
archival FFPE RNA, that is severely degraded and empirically
incompatible with mRNA expression methods, can yield mean-
ingful biology when combined with miRNA expression profiling.
Our study therefore provides strong support for the use of miRNA
profiling in archival FFPE samples especially when an investigation
requires the analysis of older, more recalcitrant material.
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