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Abstract.  Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of 
donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute 
to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been 
conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has 
remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental 
ability of somatic cell nuclear transfer embryos in cattle.
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The somatic cell nuclear transfer (SCNT) technology is expected to 
be useful for farm animal breeding and research, the production 

of transgenic animals for biomedical purposes, and the conservation 
of endangered species. Cattle are probably the most widely used 
species for SCNT experiments [1, 2]. Successful production of 
clones of elite bulls [3, 4], cows with high milk performance [5] and 
an endangered breed of cattle [6] has been reported. Furthermore, 
transgenic cattle such as calves lacking the prion protein [7] and cows 
overexpressing casein proteins in their milk [8] have been produced 
by SCNT. However, the efficiency of bovine cloning remains low, 
despite the numerous studies that have been conducted. Nuclear 
transfer (NT) is a complex multistep procedure including oocyte 
maturation, cell cycle synchronization of donor cells, enucleation, 
cell fusion, oocyte activation, and embryo culture. Therefore, many 
factors are believed to contribute to the success of embryo development 
following SCNT. In this review, we discuss some of the factors that 
affect the developmental ability of bovine SCNT embryos based on 
our studies as well as other previous reports.

Oocyte Source and Quality

Oocytes are usually collected from slaughterhouse-derived ovaries 
or live cows by ovum pick-up (OPU) and used for bovine SCNT after 

in vitro maturation. We examined the developmental ability of NT 
embryos derived from the cumulus cells of a Japanese black cow using 
slaughterhouse-derived and OPU-derived in vitro matured oocytes. 
As shown in Table 1, no significant differences in the cleavage and 
blastocyst formation rates were observed between oocyte sources 
(OPU and slaughterhouse). Japanese black cows (same breed as donor 
cells) and Holstein cows were used as the OPU donors, but the breed 
of oocyte donors did not affect the in vitro developmental ability of 
SCNT embryos. Sugimura et al. also reported no difference in the 
blastocyst formation rates of SCNT embryos between oocytes from 
a slaughterhouse and OPU, but follicle-stimulating hormone (FSH) 
pretreatment of OPU donor cows improved oxygen consumption and 
OCT4 and IFN-τ expression of SCNT embryos to levels similar to 
fertilized embryos [9], suggesting that FSH pretreatment of OPU 
donor cows has a positive effect on oocyte quality. Furthermore, in 
vivo-matured oocytes can be collected by OPU from hormone-treated 
cows [10, 11]. In vivo-matured oocytes are more developmentally 
competent after in vitro fertilization (IVF) than in vitro-matured 
oocytes [10–12]. We examined the development of in vivo- and in 
vitro-matured oocytes after SCNT [13]. In vivo-matured oocytes 
collected by OPU from heifers treated with FSH, prostaglandin-F2α 
and gonadotropin hormone-releasing hormone, and in vitro-matured 
oocytes collected from slaughterhouse-derived ovaries were used 
as recipient cytoplasts. In accordance with the bovine IVF results 
[10–12], the blastocyst formation rate of in vivo-matured oocytes 
after SCNT was significantly higher than that of in vitro-matured 
oocytes. The pregnancy rate did not differ between in vivo- and 
in vitro-matured oocytes. However, a high abortion rate (75% of 
pregnancies) was observed in SCNT fetuses from in vitro-matured 
oocytes, whereas no subsequent abortions were observed from 
in vivo-matured oocytes. These results suggest that inappropriate 
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oocyte maturation of recipient cytoplasts is one of the factors causing 
embryonic or fetal loss after NT in cattle.

In SCNT, donor cells are electrically fused with enucleated 
recipient oocytes containing a large amount of foreign cytoplasm. 
Cloned calves with mixed mitochondrial DNA from the donor cell 
and the recipient oocyte (heteroplasmy) have been reported [14–17], 
although the influence of heteroplasmy on the development of SCNT 
embryos is unclear. Cloned calves can be produced using both oocytes 
and somatic cells derived from the same cow to avoid cytoplasmic 
contribution from foreign oocytes (autologous SCNT [18]). Cloned 
calves produced in this manner do not exhibit heteroplasmy. Yang 
et al. showed that autologous SCNT embryos resulted in higher 
developmental rates in vitro and in vivo compared with heterologous 
SCNT embryos (donor cell not related to recipient cytoplasm) [18]. 
In contrast, reports by other laboratories [19–21] have indicated no 
such positive effect of autologous SCNT. This discrepancy may be 
because of the influence of individual oocyte donors. The oocyte 
donor influences the production of blastocysts in bovine IVF [22] and 
SCNT [23]. We examined the developmental ability of autologous 
SCNT embryos using cumulus cells and oocytes collected from six 
cows by OPU [24]. The developmental rates of autologous SCNT 
embryos to the blastocyst stage varied widely among individual 
cows (range, 19–64%) [24]. We produced four cloned calves by 
autologous SCNT. However, two of the calves were stillborn, and 
the remaining two died 13 days and 150 days after birth and had 
anomalies at the postmortem examination. These results suggest that 
it is difficult to improve the birth rate of healthy cloned calves only 
using both oocytes and somatic cells derived from the same cow.

Cell Cycle Combination

The cell cycle of the donor cells is an important factor affecting the 
development of SCNT embryos, because cell cycle co-ordination of 
donor cells and recipient oocytes is essential to maintain ploidy and 
prevent DNA damage [25]. Nonactivated metaphase II (MII) oocytes 
have been primarily used as recipient cytoplasts for bovine SCNT 
[26]. Accordingly, G0- or G1-phase cells of the cell cycle have been 
used in almost all successful reports [27], although M-phase cells 
can also be reprogrammed in MII oocytes [28]. The efficiency of 
blastocyst and full-term development was compared between SCNT 
embryos derived from fibroblast cells at the G0 and G1 phases in 
several studies [29–32]. No significant difference was observed in in 
vitro development between G0- and G1-phase cell SCNT embryos. 
However, the in vivo developmental ability of SCNT embryos 
tended to be higher for G1-phase cells than that for G0-phase cells 

[29–32]. One study suggested that homogeneous expression among 
all blastomeres of SCNT embryos derived from G1-phase cells at 
embryonic gene activation contributes to a higher success rate [33]. 
The development of SCNT embryos using pre-activated oocytes has 
been examined in several studies [28, 34–37]. Oocytes activated 6 h 
before NT stopped developing at the 8-cell stage after NT, regardless 
of the cell cycle of the donor cells [28]. However, oocytes within a 
few hours after activation appear to have a capacity to reprogram 
the somatic cell nucleus, and this capacity may be largely dependent 
on the cell cycle stage of the donor cells. Successful production of 
cloned calves was reported with SCNT embryos using S/G2-phase 
cells and oocytes activated 2.5 h before NT [35]. In contrast, no 
cloned calves were obtained with oocytes activated 2 h before NT 
when we used G0- and G1-phase cells [38].

Cell Type and In Vitro Culture of Donor Cells

Cloned cattle have been produced from various somatic cell types. 
However, it is still unclear which cell type is the most appropriate 
for bovine SCNT [27, 39]. Moreover, the differentiation status of 
somatic cells may have no relationship with cloning efficiency [40]. 
Bovine SCNT embryos can develop to the blastocyst stage at a rate 
similar to that of embryos produced by IVF (approximately 30–50%) 
[41], although the electric conditions for fusion of enucleated oocytes 
differs among donor cell types [42]. However, high embryonic and 
fetal losses occur after embryo transfer regardless of donor cell type. 
Because the efficiency of bovine cloning is low, it may be difficult 
to show significant differences among donor cell types [43].

In bovine SCNT, donor cells are usually cultured in vitro before 
being used for NT [44–46]. Not only the nuclei of short-term cultured 
cells but also the nuclei of long-term cultured cells (cultured for 3 
months) [47] or those close to the end of their life span [48] have 
the ability to generate live healthy calves after NT. We compared the 
developmental ability of SCNT embryos using bovine cumulus cells 
under four different culture conditions (non-culture, maturation culture 
for 20 h, cycling culture and serum-starved culture) to examine the 
effect of in vitro culture of donor cells on cloning efficiency [49]. 
The blastocyst formation rate and blastocyst cell number of SCNT 
embryos derived from cultured cumulus cells (cycling culture and 
serum-starved culture) were significantly higher than those of SCNT 
embryos derived from fresh (non-cultured) cells [49]. Cell cycle 
analysis using flow cytometer showed that the relative percentage 
of fresh cells in the G0/G1 phase of the cell cycle (89.7 ± 0.4%) 
was similar to that of serum-starved cells (90.6 ± 0.6%) but lower 
than that of cycling cells (76.0 ± 1.8%) [49], indicating that the 

Table 1. Development of nuclear transfer (NT) embryos derived from cumulus cells of a Japanese black cow using ovum pick-up (OPU)-
derived and slaughterhouse-derived oocytes

Recipient oocytes No. of NT  
embryos

No. of cleaved 
embryos (%)

No. of blastocysts 
(%)

No. of embryos 
transferred

No. of calves 
 (%)

No. surviving 
 > 60 daysSource Breed

Slaughterhouse Unknown 89 70 (78.7) 32 (36.0) 20 5 (25) 3 (15)
OPU Total 112 101 (90.1) 33 (29.5) 10 5 (50) 1 (20)

Japanese black 70 64 (91.4) 19 (27.1) 7 2 (28) 0 (0)
Holstein 42 37 (88.1) 14 (33.3) 3 3 (100) 1 (33)
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difference in in vitro development between fresh and cultured cells 
did not result from the cell cycle of the donor cells. The same results 
have also been obtained for goat [50] and rabbit SCNT [51]. These 
results suggest that culture of donor cells increases the efficiency of 
SCNT embryo production in vitro. However, the subsequent viability 
of blastocyst-stage embryos produced using fresh cells may not be 
different from that using cultured cells. No difference was observed 
in the in vivo developmental ability of SCNT embryos between fresh 
and cultured cells, and live calves were obtained from cumulus cells 
under all culture conditions (Fig. 1) [49].

Timing of Fusion and Activation

In SCNT, the lack of sperm-induced fertilization necessitates 
artificial activation to trigger further development. Direct exposure 
of chromosomes to nonactivated MII cytoplasm is effective for 
somatic cell nuclear reprogramming [28, 52], and nonactivated MII 
oocytes have been used in almost all successful bovine SCNT reports 
[26, 27]. The timing of activation of MII oocytes can be classified 
into two protocols as follows: (1) activation performed immediately 
after fusion (simultaneous fusion and activation method, FA) and (2) 
activation performed several hours after fusion (delayed activation 
method, DA). Successful production of cloned offspring using SCNT 
has been reported for both the FA [45, 47] and DA [44, 46] methods. 
Donor chromosomes are exposed to factors present in MII cytoplasm 
for only a short time in the FA method and for a longer time in the 
DA method. The DA method improves the in vitro development of 
bovine [6, 53] and mouse [54, 55] NT embryos derived from somatic 
cells at the G0/G1 stage compared with that of the FA method. We 
compared the developmental ability of bovine fibroblast cell NT 

embryos produced using different fusion and chemical activation 
timings to develop an efficient fusion and activation protocol for 
producing SCNT embryos [56]. As shown in Table 2, the in vitro 
development of SCNT embryos was affected by the timing of fusion 
and chemical activation, and the development of SCNT embryos to the 
blastocyst stage in the F21A24 group (fusion at 21 h and activation 
24 h postmaturation) of the DA method was significantly higher than 
that in the other groups. However, the development of SCNT embryos 
activated 6 h after fusion (F21A27 and F24A30 groups) in the DA 
method was significantly lower than that in the FA method. In reports 
by Aston et al. [57] and Choi et al. [58], excessive exposure to MII 
cytoplasm resulted in abnormal chromatin morphology, but SCNT 
embryos activated less than 2.5 h after fusion resulted in improved 
nuclear morphology and increased development to the compacted 
morula/blastocyst stage. These reports and our results suggest that the 
exposure duration of somatic cell nuclei to oocyte cytoplasm before 
activation affects the in vitro development of SCNT embryos and that 
excessive exposure to MII cytoplasm results in a poor developmental 
rate to the blastocyst stage. However, no influence of the duration of 
exposure to oocyte cytoplasm on the in vivo developmental ability has 
been observed. When we examined the in vivo developmental ability 
of cumulus cell NT embryos and postnatal survivability of cloned 
calves produced by the DA (F21A24) and FA (F24A24) methods, 
the pregnancy and calving rates did not differ significantly between 
the two methods [59]. In addition, high rates of postnatal mortality 
were observed in both the methods [59]. Sung et al. obtained similar 
results using two types of donor cells (cumulus and fibroblast cells) 
[60]. In a report by Aston et al., the time interval between fusion 
and activation when using the DA method did not affect the in vivo 
development of SCNT embryos [57].

Fig. 1. Cloned calves produced by nuclear transfer using cumulus cells under 4 different conditions: (a) cells removed from cumulus-oocyte complexes 
(COCs) after aspiration of ovarian follicles; (b) cells removed from COCs after in vitro maturation; (c) cells cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) for 3 days after some subculture; and (d) cells cultured in DMEM with 0.5% FBS 
for an additional 5 days.
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Histone Deacetylase Inhibitor (HDACi) Treatment

Abnormal epigenetic modifications such as aberrant DNA methyla-
tion and histone modification have been observed in SCNT embryos 
[61–64]. Therefore, preventing epigenetic errors is expected to lead to 
improved animal cloning success rates [65]. Several DNA methylation 
inhibitors and HDACis have been used to improve the developmental 
ability of bovine SCNT embryos [66]. Treatment of donor cells with 
5-aza-2’-deoxycytidine (5-aza-dC), a DNA methylation inhibitor, did 
not improve the in vitro developmental ability of SCNT embryos 
[67–69], whereas treatment with trichostatin A (TSA) or sodium 
butyrate, an HDACi, increased the blastocyst formation rate [67–70]. 
However, improvement of full-term development following HDACi 
treatment of donor cells has not been demonstrated. It was reported 
from two laboratories in 2006 that TSA treatment of mouse SCNT 
embryos after NT improved the success rate of mouse cloning [65, 
71]. In these reports, TSA treatments for 9–20 h led to a significant 
increase not only in the blastocyst formation rate but also in the 
full-term developmental rate [65, 71]. In addition, Kohda et al. showed 
that the gene expression profile of TSA-treated cloned mice came to 
resemble that of mice produced by intracytoplasmic sperm injection 
[72]. These reports suggest that inhibiting histone deacetylation in 
SCNT embryos during a short period of culture after NT promotes 
reprogramming of the donor nucleus in mice. We examined the 
effects of treatment with HDACis, TSA and scriptaid (SCR), on the 
in vitro development of bovine SCNT embryos using three fibroblast 
cell lines (L1, L2 and L3) [73]. As shown in Fig. 2, TSA treatment 
improved blastocyst formation rates of SCNT embryos derived from 
L1 and L3 but had no effect on the rate of embryos derived from 
L2. Furthermore, SCR treatment increased the blastocyst formation 
rates of SCNT embryos derived from L1 and L2, but no significant 
increase was observed in SCNT embryos derived from L3. These 
results suggest that HDACi treatment of bovine SCNT embryos 
improves the blastocyst formation rate; however, optimal treatment 
conditions may differ among donor cell lines. Four laboratories 
have recently reported the in vivo developmental ability of bovine 
SCNT embryos treated with TSA [74–77]. In contrast to the results 
in mice [65, 71], treatment of bovine SCNT embryos with TSA 
alone did not significantly improve the full-term developmental rate 
[74–76]. In contrast, a higher calving rate was observed following a 

combined treatment with a DNA methylation inhibitor [77]. Wang 
et al. reported that a combined treatment of both donor cells and 
SCNT embryos with 5-aza-dC and TSA reduced the methylation 
levels of the NT blastocyst satellite I sequence to levels similar to 
those in IVF embryos and increased the cloning efficiency from 
2.6 to 13.4% [77]. However, it is difficult to correct epigenetic 
abnormalities completely only by treatment with epigenetic modifiers, 
as various abnormalities including large offspring syndrome have 
been observed in cloned calves after combined treatment of both 
donor cells and cloned embryos with 5-aza-dC and TSA as well as 
untreated cloned calves [77].

Fig. 2. Development to the blastocyst stage of somatic cell nuclear 
transfer (SCNT) embryos treated with 5, 50 and 500 nM scriptaid 
(SCR) or 5 nM trichostatin A (TSA). Three fibroblast cell lines 
(L1, L2 and L3) were used as somatic cell donors. aSignificant 
difference compared with the control (P < 0.05, chi-square test). 
Reproduced with permission of the Society for Reproduction 
and Development from Akagi S, et al.: Treatment with a 
histone deacetylase inhibitor after nuclear transfer improves the 
preimplantation development of cloned bovine embryos. J Reprod 
Dev 2011; 57: 120–126.

Table 2. In vitro development of somatic cell nuclear transfer (SCNT) embryos produced using 
different fusion and activation timings

Group
Hours post IVM No. SCNT 

embryos
No. of cleaved 
embryos (%)

No. of 
blastocysts (%)Fusion Activation

F21A21 21 21 89 60 (67)cd 25 (28)c

F21A24 21 24 125 97 (78)bc 79 (63)a

F21A27 21 27 96 52 (54)d 3 (3)e

F24A24 24 24 150 123 (82)b 59 (39)bc

F24A27 24 27 134 122 (91)a 63 (47)b

F24A30 24 30 93 63 (68)cd 13 (14)d

F27A27 27 27 121 99 (82)b 49 (41)bc

a,b,c,d,e Values without common characters in the same column of each group differ significantly 
(P < 0.05, chi-square test).
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Embryo Aggregation

The cell number in blastocysts has been used as an indicator of 
embryo quality [78]. The cell number in SCNT embryos is lower 
than that in in vivo-derived embryos [79, 80]. This poor blastocyst 
quality appears to contribute to the decreased survival rate of SCNT 
embryos after embryo transfer. Embryo aggregation is a method 
that enables an increase in the cell number in embryos [80, 81]. In 
addition, several studies have indicated that embryo aggregation 
affects SCNT embryo gene expression [82–84]. In mice, aggregation 
of SCNT embryos at the 4-cell stage led not only to an increase in 
cell number but also improved Oct 4 expression, and resulted in 
eight times higher full-term development compared with single 
embryos [80]. In cattle, a high pregnancy rate was observed in 
embryos aggregated at 4 days after SCNT (day 4) [85, 86], whereas 
aggregation of 1-cell stage SCNT embryos did not improve in vivo 
development [82, 87]. Aggregation of 1-cell stage SCNT embryos 
resulted in reduced OCT4 expression compared with IVF embryos 
[82], whereas no significant difference in OCT4 expression was 
observed between IVF embryos and aggregates of day 2 embryos 
[88]. Thus, the timing of aggregation may be important for producing 
high-quality SCNT embryos. We examined the effect of the timing 
of aggregation on the development of SCNT embryos [89]. One-cell 
stage embryos after activation, 8-cell stage embryos on day 2 or 16- to 
32-cell stage embryos on day 4 were used for embryo aggregation 
after removing the zona pellucida. Irrespective of the timing of 
aggregation, aggregates of the three SCNT embryos developed to the 
blastocyst stage at a high rate (aggregates of 1-cell stage embryos, 
17/19, 89%; aggregates of day 2 embryos, 23/23, 100%; aggregates 
of day 4 embryos, 22/22, 100%). Furthermore, a significant increase 
in cell number was observed in aggregates of three day 2 and day 
4 embryos (223 ± 30 and 163 ± 18, respectively) compared with 
single SCNT embryos (89 ± 6). A significantly higher pregnancy 
rate was observed after embryo transfer at 60 days of gestation in 
aggregates of three day 2 or day 4 embryos than in single SCNT 
embryos; however, a high incidence of abortion and stillbirth was 
subsequently observed in aggregates (Table 3). These results suggest 
that aggregation of SCNT embryos may improve the pregnancy rate 
after embryo transfer but that it cannot reduce the high incidence of 
fetal loss and stillbirth, which is often observed in bovine SCNT.

Conclusion

NT is a complex multistep procedure, and there are many biological 

and technical factors affecting the development of bovine SCNT 
embryos. Numerous studies have led to significant improvements 
in SCNT protocols [90]; however, the cloning efficiency in terms of 
healthy cloned calves born still remains low. Failure to reprogram the 
donor genome is believed to be the main reason for the low cloning 
efficiency [91]. Further studies to optimize each step of SCNT together 
with a better understanding of the reprogramming mechanism are 
necessary in order to improve the efficiency of bovine cloning.
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