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Abstract: Based on studies describing an increased prevalence of addictive behaviours in several rare
sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been
hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms
associated with neuropsychiatric conditions are an area of active investigation, success is limited
so far, and further investigations are required. Thus, even though compelling evidence connects
the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind
this interaction remains largely unknown. At the molecular level, multiple mechanisms have been
proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian
clock consists of a transcriptional/translational feedback system, with several regulatory loops, that
are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows
profound changes in the addictive brain, with significant alterations in histone modification, DNA
methylation, and small regulatory RNAs. The combination of these two observations raises the
possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction,
though very little evidence has been reported to date. This review provides an elaborate overview of
the circadian system and its involvement in addiction, and we hypothesise a possible connection
at the epigenetic level that could further link them. Therefore, we think this review may further
improve our understanding of the etiology or/and pathology of psychiatric disorders related to
drug addiction.

Keywords: epigenetics; clock gene; drug addiction; DNA methylation; histone modification; neu-
rodevelopment; histone deacetylase; substance use disorders; gene expression

1. The Basics of Epigenetics

Epigenetics refers to the study of reversible, heritable changes in gene expression that
do not involve changes in the DNA sequence [1]. Epigenetic mechanisms include histone
modifications, DNA methylation and induction of non-coding RNAs [2,3]. Traditionally,
euchromatin containing active DNA, which is open and amenable to transcription, is
distinguished from heterochromatin in which DNA is condensed with a compact DNA–
protein structure that cannot be transcribed. Histone modifications constitute a major part
of epigenetic regulation, with the N-terminal tails of histones containing many residues
prone to be modified. These modifications are considered to be highly dynamic, as many
enzymes are required to create these epigenetic marks or to remove them. Each regulatory
step can lead to different consequences for gene expression [4,5], with histone acetylation
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mainly resulting in increased transcription, whereas histone methylation can be associated
with either transcriptional repression or activation. Moreover, not all these remodelling
actions are independent, as a given modification may influence others and thus vary
according to the gene considered [5–7].

Histone acetylation is an epigenetic modification characterised by the addition of
an acetyl group on a lysine residue in histone proteins, by histone acetyltransferases
(HAT). It leads to a more relaxed and less condensed chromatin state. Therefore, it is
explicitly associated with increasing the propensity for gene transcription. Increments
in histone acetylation generally favour learning and memory. Histone acetylation also
promptly responds to neuronal activity in terms of neuronal depolarisation and synaptic
plasticity [8,9]. Histone deacetylation is the reverse reaction to acetylation, where an acetyl
group is removed. It is catalysed by histone deacetylases (HDACs), which play an essential
role in gene regulation, in part because the DNA becomes more tightly wrapped leading
to reduced access to transcription factors and limited efficiency of RNA polymerase II
elongation. This leads to decreased gene expression levels, known as gene silencing [10].

Histone methylation is a process by which one, two, or three methyl groups are
transferred to lysine and arginine residues of histones by histone methyltransferases
(HMTs). The effects of histone methylation differ from one residue to another, as it was
found to be associated with actively transcribed genes (H3K4me3), but also with repressed
genes (H3K9me3 and H3K27me3) [7,11]. Histone methylation is a very dynamic process,
occurring on various basic residues, and can either increase or decrease transcription of
genes depending on the degree of methylation and the location of the methylated residue,
and thus can provide different functional and phenotypic outcomes. It has also been
associated with stimulating or inhibiting neural pathways related to the formation of long-
term memories and learning, ageing, and neurodegenerative diseases [12,13]. In parallel,
several classes of histone demethylases (HDM) reverse the action of the HMTs [6]. HDMs
serve as important targets for several systems involved in addiction [14,15] and circadian
rhythms [16].

DNA methylation is a relatively solid epigenetic process characterised by the covalent
addition of a methyl group to the DNA base cytosine to form 5-methylcytosine (5-mC). The
reaction is catalysed by DNA methyltransferases (DNMTs) and occurs predominantly at
CpG dinucleotides, but can also occur in a non-CpG site. In mammals, three DNMTs play
a pivotal role, DNMT1, DNMT3a and 3b that are respectively involved in maintenance and
de novo DNA methylation. Note that these enzymes have overlapping and different target
genes and functions [17,18]. Similarly, Tet proteins also display tissue-specific biological
functions and recognise common and specific 5mC target sequences [19–21]. DNMT1
being considered as a maintenance enzyme, while DNMT3a and -b are considered as de
novo DNMTs. DNA methylation occurring in a promoter region usually causes gene
repression. The first step in DNA demethylation occurs by the removal of 5-mC via the
sequential modification of cytosine bases by several enzymes and progressive oxidation.
DNA demethylation consists first of the addition of a hydroxyl group to 5-mC to form
hydroxymethylcytosine (5-hmC). The reaction is mediated by the ten-eleven translocation
(TET) family (TET1, TET2, and TET3), enzymes that are abundantly present in the brain.
These proteins bind to CpG rich regions to prevent unwanted DNMT activity. They
catalyse the oxidation of 5-mC to 5-hmC and successive other oxidative products, such as
5-formylcytosine and 5-carboxylcytosine through hydroxylase activity [22]. Interestingly,
5hmC levels were found to display the highest levels in neurons [7,23–26].

While 5-methylcytosine generated by Dnmts has been considered as a fifth nucleotide in
mammalian genomes [27], the discovery of its oxidative products (5-hydroxymethylcytosine,
5-formylcytosine and 5-carboxylcytosine) [22,24] has shown that this covalent DNA methy-
lation modification was not as stable as initially thought. Indeed, this process is reversible
through mechanisms involving ten-eleven translocation (Tets) methylcytosine dioxygenases
and the base excision repair pathway [3,28]. Nevertheless, the role and function of these
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oxidative products as “potential additional nucleotides” together with that of their binding
proteins in transcription and chromatin remodelling requires further investigation.

Together with histone modifications and DNA methylation, microRNAs (miRs) can
be considered to play an epigenetic regulatory role. MiRs are a class of small, highly
conserved endogenous non-coding pieces of RNA (ncRNA) of 21–25 nucleotides in length.
They function in the post-transcriptional regulation of gene expression, by interacting
with various mRNAs through complementary base-pairing to influence the translation or
stability of their target mRNAs [29,30]. The regulations between miRNAs and target genes
are highly time and tissue specific. Moreover, recently, miRNAs have been considered as
epigenetic modulators, forming a miRNA-epigenetic feedback loop that extensively impact
on gene expression proliferation [31–33].

2. The Circadian Timing System

The circadian clock is an endogenous, self-sustaining pacemaker, found in most
living organisms. It operates with a periodicity of ~24 h, to maintain daily rhythms for
many metabolic processes, physiological functions, and behaviours, i.e., sleep–wake cycles,
neuronal and cognitive functions, glucose metabolism, body temperature, and hormone
secretion [34–37], in the absence of environmental inputs [38–40]. Those rhythms can be
adjusted by factors called zeitgebers, with light being the dominant zeitgeber, but also
including cues such as temperature, diet, exercise, and gravity. This adjustment is crucial
for keeping the ~24 h rhythm synchronised with the exact 24 h day/night rhythm of the
earth, and anticipating recurrent daily and seasonal changes in the environment [41,42].
In mammals, the suprachiasmatic nucleus (SCN), a small brain region in the anterior
hypothalamus, operates as a focal regulator of circadian rhythms throughout the rest of the
brain and body [43,44]. Phase resetting of the clock neurons in the SCN is accomplished via
the light-induced release of glutamate from retinal projections that reach the hypothalamus
via the retino-hypothalamic tract [45]. The circadian timing system provides both temporal
synchrony for a range of cellular processes, as well as a molecular regulatory process that
modulates gene expression at virtually all possible levels and has clear and immediate
effects on behaviour [46,47]. Many so-called clock-controlled genes (CCGs) have been
shown to be expressed in a daily rhythm, i.e., approximately 10% of transcripts in the
genome show daily oscillations in a tissue-specific manner [48,49]. Yet, only a small set
of genes are part of the molecular clock mechanism itself and usually are referred to
as the core or classic clock genes (CGs). These include Clock (CLK), Brain and Muscle
ARNT-like 1 (BMAL1), Period (PER), Cryptochrome (CRY), reverse strand of ERBA (REV-
ERBα), retinoic acid related-orphan receptor alpha (RORα), and a few others [41,50]. Most
of these CGs encode proteins that act as transcription factors to initiate the rhythmic
expression of their target genes, with some of them forming heterodimer complexes [51,52],
incorporating a transcriptional-translational autoregulatory complex such as CLK-BMAL1,
and PER-CRY [41].

3. Epigenetics, Circadian Timing and Addiction

An electronic search was performed with online published papers, using the following
keywords: Drugs of abuse, neuroepigenetics, DNA methylation, Dnmt, Tet, MBD, nutrition,
diet, circadian rhythms, addiction, compulsive behavior/disorder, core-clock genes, ap-
petite and satiety, natural reinforcers, reward, chromatin remodeling, and histone code. This
search was performed within the PubMed (https://pubmed.ncbi.nlm.nih.gov/ (accessed
on 1 November 2020)), Cochrane Library (https://france.cochrane.org/cochrane-library
(accessed on 1 February 2021)) and Web of Science online databases. Articles were selected
based on citation index, journal impact factors (https://www.bioxbio.com/ (accessed on 1
March 2021)), quality of technical methods, and personal appreciation. Other databases
have been consulted for gene and protein sequences at https://www.ncbi.nlm.nih.gov/
(accessed on 1 January 2021), as well as the microRNA database https://www.mirbase.org/
(accessed on 1 April 2021) or genome-wide analyses associated with published papers.

https://pubmed.ncbi.nlm.nih.gov/
https://france.cochrane.org/cochrane-library
https://www.bioxbio.com/
https://www.ncbi.nlm.nih.gov/
https://www.mirbase.org/
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4. Epigenetics in Circadian System

Beyond the classic core clock genes, the regulation of circadian transcription is modu-
lated by many other genetic and epigenetic factors. Thus, the core clock feedback loop is
insufficient to explain all the observations, especially those relating to human behavioural
traits and disorders [53,54]. Moreover, epigenetic mechanisms are crucial mediators of
environmental factors that modulate rhythmic gene expression. These vast changes in the
epigenetic state alter dynamically over the day-night cycle [41]. Circadian transcription
and rhythmic chromatin modifications together regulate oscillations in gene expression.
Rhythmic histone acetylation (H3K9, H3K14) was demonstrated on the promoter regions
of CCGs [53–55], connecting histone acetyltransferase (HAT) p300 [56] and the intrinsic
CLOCK HAT activity [55,57]. The latter was counteracted by the NAD(+)-dependent
deacetylase sirtuin 1 (SIRT1) [58,59] that adjusts the circadian acetylation of histones and
non-histones [60].

Histone acetylation/deacetylation is the epigenetic mechanism that CLK uses to regu-
late circadian rhythms. The HAT p300 together with the Clock/Bmal1 complex regulates
histone H3 acetylation at the Cry and Per promoters to influence their expression [56].
Furthermore, CLK itself possesses HAT activity by which acetylated BMAL1 recruits CRY1
to the CLK-BMAL1 complex and represses transcription [55,57]. Rhythms in acetylation
of histone H3 in the mPer1, mPer2, and Cry1 promoters were recorded peaking during
the transcriptionally active phase [56,61]. Histone deacetylases (HDACs), like HATs, are
important regulators of circadian rhythms and addiction-related phenomena [6], memory
formation, as well as metabolism [57,62]. The HDAC3 subtype, which was found to be
recruited by the nuclear receptor corepressor 1 (Ncor1), is involved in repressing Bmal1
expression, thus affecting circadian rhythms. HDAC3 recruitment fluctuates, in conjunction
with Reverb-alpha and Ncor, forming a HDAC3/Reverb-alpha/Ncor complex. The tran-
scription of many genes oscillates in concert with either the fluctuation of HDAC3-related
histone modification or with the complex-related signalling pathways [63,64]. On the other
hand, HDAC inhibitors increase H3 acetylation and affect Per2 expression [62]. SIRT1, an
NAD+-dependent histone deacetylase, interacts directly with clock genes by binding to
CLK-BMAL1, promoting deacetylation and degradation of the PER2 protein in mice [58].
It is also a metabolic sensor, requiring NAD+ binding for its enzymatic activity, therefore
linking the metabolic state to the circadian system. Besides, SIRT1 has been implicated in
brain functions like ageing, neurodegeneration [65,66], synaptic plasticity, and memory
formation [67,68].

Methylation and demethylation of histones also modify circadian-regulated gene
expression [54,69,70]. Rhythmic histone methylation at H3K4, H3K9, H3K27, and H3K36 is
catalysed at these spots by several HMTs and HDMs [53,70,71]. SUV39 methyltransferase, a
critical regulator of rhythmic H3K9 di-methylation (H3K9me2), recruits CLOCK:BMAL1 to
the E-boxes of CCG promoters [54,69,70,72]. Presumably, through the association of Suv39h
with PER2, rhythmic discretional heterochromatin is controlled by H3K9me2 HP1 binding
at DBP, PER1, and PER2 during the repressive phase [54,70]. EZH2 methyltransferase
contributes to histone methylation, di- and tri-methylation of H3K27 (H3K27me2 and
H3K27me3), and circadian gene expression of mPer1 and mPer2 [71]. The lysine-specific
demethylase (LSD1), JumonjiC, and ARID domain-containing histone lysine demethylase
1a (Jarid1a) are major binding partners of CLOCK-BMAL1, thus enhancing transcription by
CLOCK-BMAL1 [16]. LSD1 catalyses the removal of methyl groups from H3K4 and H3K9,
associated with CLOCK and BMAL1. It has therefore been reported as a key component
of the circadian machinery and regulator of CCG expression [73]. JARID1A has been
implicated in circadian control by interacting directly with CLOCK:BMAL1 and regulating
circadian gene expression. JARID1A also displayed demethylase-independent function
not affecting the H3K4me3, but acting on and inhibiting HDAC1 recruitment. In contrast,
overexpression of JARID1b and JARID1c can potentially reverse H3K4 methylation, but
further studies are needed here [16]; also included in the mammalian circadian clock
mechanism is histone demethylase JMJD5, which demethylates H3K36 and recruits several
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modifications, both activating or repressing ones, eventually inducing changes in the
heterochromatin on a circadian timescale [74].

Furthermore, DNA methylation is a well-studied tissue-specific epigenetic modifica-
tion considered to be important in gene regulation, generally by repressing gene transcrip-
tion through recruitment of corepressor complexes (e.g., HDACs and HDMs) involving
several DNA methyl-binding domain proteins (MBDs) [75–77]. Generally, it is considered
as a rather stable epigenetic mark but it can also change with a 24 h cyclic pattern in
genome-wide studies [78,79]. There is increasing evidence for crosstalk between dynamic
DNA methylation and circadian rhythms, particularly in the central SCN clock [78–80], as
for instance, shown by the light-induced changes in DNA methylation at specific promot-
ers that correspond to circadian gene expression [79]. In human studies, this relationship
between both systems has been evidenced by the 24 h variation in homocysteine levels
and the global DNA methylation level [81–83]. Homocysteine levels have been linked
to DNA methylation in many studies [84]. In parallel to that, an elevated homocysteine
concentration correlates with drug addiction [85,86]. Moreover, sleep deprivation, and
thus an altered circadian clock, can change the DNA methylation and hydroxymethylation
of many CpG sites in genes involved in synaptic plasticity, signalling or neurotransmission,
and others (for example, Arc, Egr1, and Neuroligin-1) [87,88]. An epigenome-wide study
in mice demonstrated that an altered day-length changed gene expression profiles and
patterns of DNA methylation in the SCN, suggesting that DNA methylation regulates the
circadian clock in the SCN [79]. Another study in humans, using global statistics, showed
that 24 h rhythmicity of DNA methylation correlated with rhythmic gene expression in
the prefrontal cortex (PFC) [78,79]. In shift-workers, methylation changes are found in the
Clock gene, being hypomethylated, while the Cry2 gene was hypermethylated [88]. DNMT
levels are expressed rhythmically in the mouse brain and liver, with some evidence of
rhythmic DNA methylation occurring in Line-1 repeat elements [89,90]. Interestingly, the
canonical E-box motif contains a central CpG moiety that is susceptible to become methy-
lated, suggesting competition with BMAL1/CLOCK binding sites [91,92]. However, this
has not been directly tested for BMAL1/CLOCK, so it has still to be determined whether
this differential CpG methylation of E-boxes indeed regulates BMAL1/CLOCK genomic
binding.

Finally, miRs, a genome-wide layer of circadian clock regulation [93], were found to
impact the regulation of circadian rhythms, affecting gene expression and thus circadian
output [94,95]. Dicer is the major enzyme in miR biogenesis. MiR-24, miR-29a [96], and
miR-30a [97] have been reported to regulate circadian rhythms, specifically by targeting
PER1 and PER2 and thereby determining the period of the cycle. Shorter circadian cycles
due to faster translation of PER1 and PER2 proteins were found in Dicer-deficient cells and
mice [98]. Rhythmic miR-132 and miR-212 are expressed in the central circadian clock and
as they share the same seed region, they can target the same mRNAs. MiR-132/212 was
found to exhibit a light regime-specific role in the circadian clock machinery, suggesting that
they act as background-dependent circadian rhythm modulators [99]. MiR-212 and -132
also belong to an intronic polycistronic cluster activated by CREB and modulate dendritic
plasticity by controlling MeCP2 expression [30,100]. MiR-134 and miR-132 are engaged
in circadian regulation by targeting genes involved in chromatin remodelling (Mecp2,
Jarid1a and Sirt1) that are implicated in Per and clock gene expression in the SCN [68,101].
Furthermore, both miR-124 and miR-181a expression are under circadian regulation and
modulate circadian output by targeting Per3 as well as Cry1 [102]. Let7 modifies the
circadian rhythm by regulating prothoracicotropic (PTTH), which is a direct target of
CLOCK [103]. MiR-9 is involved in modulating circadian rhythms by targeting the Clock
and Sirt1 genes [104]. However, note that even if a microRNA and its complementary
targets are present in the same cell, their possible interactions are still determined by their
cellular localisation, underlining cellular or tissue specific interactions [31].

Finally, long non-coding RNAs (lncRNAs), too, have been shown to regulate circadian
rhythms. Melatonin is an important hormone that times many seasonal rhythms. In the
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rat pineal gland, which is the source for the daily rhythm of melatonin in the circulation, a
rhythmic expression has been described for lncRNAs [105,106].

5. Addiction and Epigenetics

According to the diagnostic and statistical manual of mental disorders (5th ed.)
(DSM-5), the criteria of addiction are characterised by the presence of two or more of
the following manifestations: recurrent continued use despite being aware of effect, tol-
erance, withdrawal syndrome, excessive use, persistent desire and others [107]. Drugs of
abuse stimulate the brain reward circuitry, which concerns dopaminergic neurons originat-
ing in the ventral tegmental area (VTA) of the midbrain that project to the limbic system, in
particular the nucleus accumbens (NAc), dorsal striatum, amygdala, hippocampus, and
regions of the prefrontal cortex [108]. Psychostimulant drugs act by directly prolonging the
effects of these dopaminergic signals. Thus, dopaminergic neurons located in several brain
regions are activated by blocking the reuptake of dopamine (DA) into nerve terminals,
thereby increasing DA levels in the synaptic cleft. The increased DA levels result in an
augmented stimulation of various DA receptors located in brain circuits that subsume
reward, mostly the D1- and D2-receptors [109]. One hypothesis states that the drugs induce
long-lasting changes in the brain through a process known as homeostatic desensitisation.
These alterations in gene regulation contribute to addictive behaviours. For instance, drugs
alter the reward circuitry such that it causes increased motivation salience to drug cues,
effectively making drug-related environmental stimuli more difficult to disregard and thus
leading to intense drug craving and relapse [110]. Similar pathological alterations in other
parts of this circuitry further impair behavioural control. Changes in the transcriptional
potential of genes are established through the actions of transcription factors (FosB, NF-κB,
CREB, MEF2), as well as chromatin remodelling (histone modification, DNA methylation)
and noncoding RNAs, in particular miRs, which thereby contribute importantly to many
of the observed neuroadaptations [6,111,112].

In response to drugs of abuse, the mesocorticolimbic dopaminergic activity in the VTA
causes long-lasting plasticity in the glutamatergic neurons in the NAc and the PFC [108].
Chronic psychostimulant use affects the initial reliance on accumbens dopamine for drug
reinforcement to reliance on the prefrontal and amygdala dopamine to trigger a relapse.
For example, drugs act directly on NAc neurons that express opioid receptors, yet they
promote dopamine release indirectly in the NAc by inhibiting gamma amino butyric acid
(GABA)-ergic interneurons in the VTA [6,108]. Other inputs to the GABAergic NAc neurons
include glutamatergic afferents from the PFC that have been proposed to be very significant
in addiction development [108]. Note that drug exposure induces the expression of many
markers, one of which is a well-established long-lasting expression of ∆FosB [113–115],
occurring only in the D1 dopamine receptor-expressing medium-sized interneurons (D1-
type medium spiny neurons (MSNs)) [109]. The accumulation of ∆FosB being mainly
due to its extraordinary long-life and stability [113,116]. The expression of ∆FosB is
associated with increased locomotor sensitivity to cocaine and increased conditioned
place preference (CPP) [117,118] and is considered as one marker for repeated exposure to
drugs of abuse. ∆FosB is found to be important for the structural and synaptic plasticity
after drug exposure [117,119,120] and controls the activity of several other transcriptional
and epigenetic regulatory proteins, like the proteins that are important for glutamatergic
synaptic function [121–123]. Transition to addiction involves neuroplasticity in many limbic
regions and is thought to develop through cascades of dysfunction, that beginning with
dopamine signalling in the VTA, which subsequently affects target regions including the
NAc, dorsal striatum, orbitofrontal cortex, PFC, and amygdala and ultimately facilitates
the transition from use to abuse and/or dependence [124].

Dopamine plays an essential role in the motivational aspect of reward [125–127]. How-
ever, the unitary account of addiction involving dopamine has been challenged by several
studies [128]. Indeed, drugs of abuse also sensitise noradrenergic and serotonergic neurons
via non-dopaminergic mechanisms [129–133] and rewarding drugs such as opiates or
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psychostimulants induce different behavioural and neurobiological responses [134]. There
are no efficient or approved pharmacological treatments for psychostimulant use disorders
(PSUD) [135], although promising agents and approaches have been described for treating
various addictions [136,137]. Among them are orexins/hypocretins involved in arousal,
stress, anxiety, feeding, appetite and satiety, reward and addictive behaviours [138,139].
Their antagonists modulate reward and drug-associated mesolimbic dopamine signalling
and they have been shown to be efficient in experimental animal models using self-
administration paradigms to evaluate the reinforcement and the motivation for drugs
of abuse [140,141]. Other targets like the metabotropic glutamate receptors [142–145]
and agents like opioid peptides or antibiotics have also been reported as potential treat-
ments against drugs of abuse [146–148]. Hopefully, ongoing clinical trials will lead to the
necessary treatments required for these important health issues.

Increasing evidence implicates these various mechanisms of gene regulation in the
long-lasting changes that drugs of abuse induce in the brain, and offer novel inroads for
addiction therapy. This transcriptional and epigenetic model of chronic drug action also
provides a plausible mechanism for how environmental influences during development
can increase or decrease the risk for addiction later in life [149–151]. Drugs alter the
transcriptional potential of genes, from the mobilisation or repression of the transcriptional
machinery to epigenetics. The drug-induced changes in epigenetic regulation induce highly
stable changes in the brain that may mediate the addicted phenotype [6,111,149,152].

Multiple drugs of abuse prompt changes in histone acetylation in the brain [7]. More
interestingly, histone acetylation correlates with an increase in the expression of genes
induced by drugs of abuse [8,9]. A genome-wide mapping after cocaine exposure at
gene promoters showed increased levels of H3 and H4 acetylation in the NAc [153–155].
Cocaine increases H4 acetylation on the fosb promoter in the striatum [156]. Alcohol
withdrawal increases HDAC activity and decreases histone acetylation in the mouse
amygdala. Exposure to ∆9-THC, the psychoactive substance in cannabis, also increases
HDAC3 activity [157–160]. Other studies show that HDAC inhibitors potentiate CPP
and locomotor responses to psychostimulants [153,154,161]. Further, prolonged inhibition
induces changes in the opposite direction [162,163]. Overexpression of HDAC4 or HDAC5
decreases behavioural responses to cocaine, whereas deletion of HDAC5 hypersensitises
mice to the effects of drugs [154,161]. SIRT1 plays an important role in addiction and
substance abuse [155,164] by binding several histone and nonhistone proteins [165,166],
including nuclear factor-κB (NF-κB), several forkhead box (FoxO) proteins, and HATs (e.g.,
p300/CBP-associated factor). SIRT1is implicated in diverse aspects of drug tolerance and
dependence [164,167–169]. SIRT1 overexpression increases behavioural sensitisation in
the NAc, and its silencing reduces CPP. These epigenetic processes are used in cocaine
model studies [167,170]. Furthermore, SIRT1 and SIRT2 induction is mediated via the
drug-induced transcription factor ∆FosB. This induction leads to increased H3 acetylation
and increased ∆FosB binding at their gene promoters. Therefore, sirtuins are downstream
targets of ∆FosB, which is a mediator of the molecular mechanisms induced by drugs of
abuse [155,156,164,171,172].

On the other hand, histone methylation is directly regulated by drugs of abuse, suggest-
ing an important role in regulating drug-induced behaviours for this epigenetic mechanism
as well. Indeed, the specific histone methylation marks, H3K9me2 and H3K27me2, display
regulation at numerous gene promoters after chronic cocaine treatment [155,173,174]. Re-
duced levels of H3K9me2 in the NAc are facilitated by the cocaine-induced downregulation
of two HMTs, G9a and G9a-like protein (GLP), which catalyse H3K9me2 formation. This
dramatically represses its inducibility by subsequent drug exposure. Remarkably, this
cocaine-induced suppression of G9a was found to be mediated by ∆FosB by binding and re-
pressing its promoter. This led to a consistent accumulation of ∆FosB after chronic cocaine
uptake, suggesting a functional feedback loop between G9a and ∆FosB. Moreover, G9a and
∆FosB share many target genes [2,6,53,69,155,174], including the Cdk5 and NFκB subunit
genes [152,174–177]. Thus, cocaine increases the level of Cdk5 expression by inducing the
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binding of ∆FosB to the Cdk5 gene. This is followed by the recruitment of several proteins
and specific chromatin remodelling factors. Ultimately, all these binding cascades reduce
the repressive histone methylation of the Cdk5 gene promoter by the cocaine-induced sup-
pression of G9a [6,154,174,176]. Interestingly, Cdk5 was found to affect the circadian system
indirectly through regulating other proteins that are involved in the clock mechanism
(Per2) [178]. In contrast, with chronic amphetamine, ∆FosB was found to bind to its pro-
moter and recruit several HDACs (HDAC1, SIRT1), inducing increased repressive histone
methylation at this promoter perhaps related to G9a binding [171,174]. Therefore, these
drug-induced histone modifications of specific drug-regulated genes, recruit many addi-
tional proteins and ultimately show different regulations signifying either transcriptional
activation or repression complexes. HDMs also enhance drug-associated behaviours. The
lysine demethylase 6B (KDM6B) is upregulated in the mPFC during cocaine withdrawal
and is known to regulate drug-associated reward memory. KDM6B inhibition disrupts
both, reconsolidation of cocaine-conditioned memory and reinstatement, suggesting dual
effects of KDM6B in cocaine drug-seeking behaviour [179]. In alcohol dependence, the
upregulation of KDM6B is associated with epigenetic regulation of signalling pathways by
a decrease in the H3K27me3 level, consistent with its known demethylase function [180].
In parallel, KDM5c connects H3K4me3 to drug-elicited behaviours. Its knockdown oc-
curring after consolidation increases global H3K4me3, but inhibits amphetamine-induced
CPP [181–183].

Multiple studies have associated DNA methylation and addiction, yet only a limited
number of genes concerned are known, such as methylated CpG-binding protein 2 (MeCP2),
cyclin-dependent kinase-like 5 (Cdkl5), and protein phosphatase type-1 (PP1) [183,184].
MeCP2 is a prominent MBD reader of DNA methylation, the mutation of which is associ-
ated with Rett syndrome, a neurodevelopmental disorder classified as belonging to the
autism spectrum disorder in the DSM-IV [107,185]. Mecp2 is well characterised for binding
5-mC, as well as 5-hmC [7,186]. Its activity is regulated through both phosphorylation and
expression mechanisms by cocaine and anti-depressive agents that are necessary to reinter-
pret DNA methylation acquired during early development [130,187]. MeCP2 expression is
necessary to convey the effects of the psychostimulants, in particular those of cocaine [188].
It is best known for its role in repressing transcription by recruiting a member of the class I
HDACs and several other transcriptional repressor complexes, but it can also associate with
DNMT1, with histone methyltransferases, or with histone acetyltransferases [7,189–191].
The level of MeCP2 protein present at a given time is of vital importance and can be
modified by several compounds, including drugs of abuse [188]. Note that Cdkl5 was the
first direct MeCP2 target gene shown to be repressed by DNA methylation in response
to cocaine through an in vivo direct interaction with Mecp2 in the adult brain [184]. In-
terestingly Cdkl5 was also reported to belong to the same molecular pathway of MeCP2
and responsible for the early-onset seizure variant of Rett syndrome [192]. Aside from
Mecp2, involved in learning and memory processes [193], protein phosphatase type-1
(PP1) initially reported as a memory suppressor gene [194], was found to be regulated
by covalent DNA methylation involved in memory formation during fear conditioning
experiments [195]. Thereafter, it was shown to be repressed by cocaine through a MecP2
binding-mediated mechanism in cocaine-induced behavioural sensitisation [186], and in
passive or voluntary drug administration [196,197]. Therefore the role of Mecp2, Cdkl5, and
PP1 genes highlight alterations of cognitive function by cocaine. This is consistent with
the hypothesis that addiction can be considered as a form of memory in which normal
learning and memory processes are hijacked by exposure to drugs of abuse with robust
and long-lasting addiction-related memories [198]. Cocaine-induced Cdkl5 gene hyperme-
thylation correlates with the increased DNMT3A and DNMT3B expression induced by
cocaine [7,130,186,196]. On the other hand, TET1 was downregulated following cocaine ad-
ministration [199]. Consistent with cocaine-induced DNA methylation changes, Dnmt and
Tet genes are modulated by cocaine in various conditions in brain structures [196,200–202],
and in a time-dependent manner (submitted article [203]). Despite, in genome-wide studies,
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very few modifications in global brain DNA methylation upon cocaine exposure were
detected [199,204–208]. The expression of MeCP2 in the dopaminergic projection areas
was increased with cocaine [130,188]. Knockdown of MeCP2 decreases drug intake and
reduces drug-behavioural responses like CPP [2,130,188,190,209]. Acute or chronic co-
caine treatment increases the fosB mRNA expression, which co-occurs with a decreased
methylation at the fosB promoter in the NAc. This is consistent with the stable increase
in ∆FosB protein expression with cocaine exposure. Even more interesting is the role of
fosb in affecting the circadian system indirectly through controlling the activity of sev-
eral regulatory proteins [9,186,210–212]. DNMT3a was explicitly associated with CpG
methylation and addiction [202]. Acute or chronic cocaine increased the expression of
Dnmt3a in the NAc, causing DNA hypermethylation and increased MeCP2 binding at
the PP1Cβ promoter, decreasing the psychostimulant reward [186,196,197,201]. On the
opposite, reduction of Dnmt3a activity using either knockout mice or an inhibitor injected
directly into the adult NAc, increased the behavioural responses to cocaine [201]. Besides,
TET enzyme expression, involved in the demethylation process, was decreased in the NAc
following cocaine treatment. This was associated with an increase in 5-hmC expression
at a specific gene locus [26,199]. Although the long-lasting suppressive consequences of
CpG methylation on gene expression are well known, particularly for genes expressed in
a cell or tissue-specific manner, it is still unclear to which extent the alterations in DNA
methylation are rhythmic. Furthermore, global changes in DNA methylation have been
described in an addiction model [208], however, methylation at the CCG gene promoters is
still under examination in this model.

Several studies have provided evidence for the involvement of miRs in addiction
behaviour, as they were found to influence the expression of many proteins engaged in
addiction [30,213]. Those miRs are targets for genes involved in synaptic plasticity and
drug addiction [214,215]. MiR-134 is brain-specific, regulated by SIRT1, and involved in
the regulation of CREB and BDNF levels. Both these proteins are importantly involved
in many neuronal functions and are regulated by cocaine as well. Additionally, several
lncRNAs exhibit expression changes in the NAc induced by heroin, suggesting a novel
target for regulating addiction-related behaviour and gene alterations [216]. Cocaine
induces the expression of the CREB-dependent miR-212 in the striatum, which decreases
the rewarding effects of cocaine by interacting homeostatically with MeCP2 to regulate
BDNF expression and thus cocaine intake [6,30,188]. miR-212 and miR-132, actually, belong
to a polycistronic cluster, and it was proposed that Mecp2 mediates cocaine and food effects
by modulating the processing of this polycistronic pri-miR-212/132 cluster into pre- and
mature forms [202], in agreement with studies having reported that Mecp2 regulates RNA
splicing [217] and suppresses nuclear pri-miR processing by regulating the DGCR8/Drosha
complex [218]. Similarly, miR-124 and miR-181a, being regulated in the brain by chronic
cocaine treatment, operate through the CREB-BDNF complex [219,220]. They also play a
role in the expression of the dopamine transporter [221]. In addition to cocaine, miR-190
is downregulated by opioid receptor activation [222]. The let7-d family is upregulated
by chronic morphine exposure. MiR-9 is upregulated with chronic alcohol treatment and
targets the dopamine D2 receptor [223], providing further examples of the effect of drugs
of abuse on miRs expression.

6. Clock Genes and Addiction

The 24 h light–dark cycle, which characterises the Earth’s daily rhythms, harmonises
many behavioural and physiological rhythms, including the sleep-wake cycle and crucial
cognitive/neuronal functions, some of which are involved in neuropsychiatric disorders.
This daily periodicity is disturbed by drugs of abuse, which provoke disturbances in
sleep, mood patterns, and other behaviours [35,41,224]. For example, drugs of abuse not
only disrupt sleep architecture but also its timing by acting as an environmental cue that
phase-shifts circadian rhythms [35,225]. Moreover, biological and behavioural rhythms
may respond with different phase shifts to drug use, which may result in mood disorders
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and lifestyle disruptions, explaining the co-morbidity with drug consumption [226–229].
For example, alcohol acts on cholinergic and adenosine neurons, which are mediators of
the sleep system. The alcohol-induced sleep disturbances may also result in a reset of the
circadian clock phase. Although acute alcohol intake can aid in sleeping as a somnolent, in
people with alcohol use disorder (AUD), alcohol intake results in interrupted sleep routines
and altered eating and activity patterns. These adverse effects are much more potent and
may endure during withdrawal and thereby cause relapse [35,230,231].

In addition, disruption of sleep and circadian rhythmicity is a common symptom of
many psychiatric disorders, including drug dependence [35,232,233]. In parallel, individ-
uals with a compromised circadian clock, or with circadian-based mood disorders, like
depression, are more prone to drug dependence [234–236]. The substantial interaction
between the circadian timing system and other molecular systems suggests that the risk
for substance use disorders (SUDs) might be affected by genetic disturbances of the molec-
ular clock mechanism [35,232]. Indeed, clock disruptions result in detrimental effects of
behavioural responses to drugs of abuse and an increased propensity to self-administer
them [237–239].

Clock genes are involved in both the behavioural response and the enticement mo-
tivation for drugs, thereby playing a major role in the regulation of drug reward and
reinforcement. Disrupted clock protein function may cause an increase in cocaine liability
and decreased CLOCK function increases vulnerability for cocaine use and its rewarding ef-
fects as assessed in the CPP paradigm [233,240]. Similarly, pioneering studies in Drosophila
showed that the Clock gene modulates acute ethanol sensitivity. Moreover, flies lacking
functional clock, cycle, and period genes failed to behaviourally sensitise to cocaine, despite
repeated exposure [241,242]. Remarkably, Clock, which is highly expressed in striatal
regions of the mammalian brain, has been associated with the development of emotional
memory, sleep, and food entrainment [243–245]. In addition to Clock, Bmal1 has been
reported to be involved in modulating drug reward, with one of the transcriptional targets
of the BMAL1 protein being the monoamine oxidase A (Mao-a) gene, which encodes a
DA metabolising enzyme [239,246]. Additionally, Bmal1 plays a vigorous role in circadian
clock-controlled xenobiotic metabolism, meaning that drug detoxification is clearly affected
by the time of the day [247]. Moreover, the Mao-a gene is also a transcriptional target
of PER2 proteins [246]. Per2 positively regulates Mao-a expression. Consequently, mice
with a Per2 mutation (Per2Brdm1) showed a decrease in Mao-a expression in the NAc and
VTA, resulting in increased midbrain DA levels and subsequently an increase in cocaine
sensitivity [239,246]. These results indicate that the transcriptional activation of Mao-a may
depend on a functional Per2 gene.

The PER repressors of the circadian clock are known to be linked to addictive be-
haviours as well. Initially, mPer1 and mPer2 mutants showed no difference in sensitivity
to acute cocaine administration. However, after repeated injections, a loss of the cocaine
behavioural response and thus a complete lack of cocaine reward became manifest in Per1
mutant mice, whereas Per2 mutants emerged to be hypersensitive with a strong cocaine-
induced CPP [239,248]. In addition, methamphetamine treatment changed the striatal
expression of the Per genes in a way similar to the alterations in the rhythms of locomotor
activity [234,249]. mPer1 controls morphine dependence through its effects on extracellular
signal-regulated kinase (ERK) signalling. Targeted disruption of mPer1 by a DNA-based
enzyme (DNAzyme), prevents the increased ERK expression that normally is induced with
morphine treatment. Moreover, mutant mice support a role for Per2 expression, although
not Per1, in mediating the modulatory time-of-day effects on the response to ethanol [248].
mPer2 was found to influence alcohol consumption [234,240,250] and mice with a mu-
tation in the PAS domain of Per2 voluntarily consumed more ethanol and displayed an
advanced onset of nocturnal drinking. These findings indicate a relationship between
alcohol intake and the Per2 gene, which might be functionally relevant also for addiction in
humans [251,252]. The above data clearly show the participation of the core clock system in
the modulation of drug-related behaviours and drug-induced plasticity in animal models.
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Another line of evidence emphasising a close relationship between the circadian
system and the addiction-driven molecular network can be found in the dopaminergic
system [35,232]. Within the mesolimbic nuclei, nearly all aspects of dopaminergic activity
including neuronal firing patterns, neurotransmitter synthesis, release, degradation, and
post-synaptic actions display diurnal variation through Clock and Bmal1 transcriptional
targets. This diurnal variation may underlie the variations observed in the behavioural
responses to drugs [233,246,253–255]. In particular, this concerns the part of the dopaminer-
gic system that involves the DA neurons in the VTA projecting to target regions including
NAc and PFC [35,232]. Within the VTA, the expression of DA receptors was found to
be rhythmic, as well as that of tyrosine hydroxylase (TH) and MAO-A, two enzymes
responsible for the synthesis and degradation of DA, respectively [233,246,253–256]. At the
presynaptic DA release site of VTA neurons projecting onto the postsynaptic GABAergic
medium spinal neurons (MSNs) in the NAc, a variety of mechanisms are under circadian
transcriptional control by direct binding of CLOCK to DA-related genes. Pre-synaptically,
CLOCK negatively regulates the transcription of TH to affect DA synthesis. CLOCK
also positively regulates the activity of the neuropeptide cholecystokinin (CCK), which
negatively influences DA output and MAO-A activity. CLOCK and Bmal1 differentially
regulate DA transmission, as Bmal1 specifically regulates the expression of Drd3. In par-
allel, functional studies support the role of Clock in the VTA and Bmal1 in the striatum
as respectively negative and positive regulators or drug reward. These regulatory genes
may be considered CCGs, as they contain canonical E-box sites on their promoters that
are bound by CLOCK and Bmal1 [246,255,257]. Therefore, the circadian timing system
directly intermingles with the VTA–NAc projection that is involved in reward-related
behaviour [35,232].

Furthermore, an altered glutamatergic system was found to contribute to the drug-
seeking phenotype, and drug-induced plasticity [258]. Extracellular levels of glutamate and
GABA in the striatum both present a daily rhythm that peaks at night [259], but their normal
daytime decrease was prevented by melatonin, suggesting that melatonin modulates those
striatal rhythms in glutamate and GABA transmission [260]. Glutamate is co-released from
dopaminergic VTA projections [261]. Melatonin release from the pineal gland is considered
a major hormonal output of the master circadian clock. Melatonin, a molecule that is
also receiving attention for SUD, is exclusively released at night and re-adjusts sleep and
other rhythmic physiological events [262,263]. In response to pinealectomy, daily Per1
rhythms were abrogated in striatal regions, but not in other regions of the brain [264].
Nevertheless, note that there are no proven straightforward projections from the SCN to
the striatal regions. On the other hand, melatonin receptors were found to be differentially
regulated in the striatum following chronic cocaine treatment, whilst circulating melatonin
levels were found to remain unaffected by this treatment [265]. Thus, the daily rhythm in
melatonin release could be important for synchronising these striatal regions. Adjustments
in melatonin signalling in striatal regions might affect mood, motivation, or other processes
related to addiction (reward processing, behavioural responses), but as yet its position in
mediating drug-induced responses is unclear.

Among the neuropeptides that are regulated by circadian rhythms, neuropeptide Y
(NPY) and orexin share common functions, notably in the regulation of appetite and satiety.
Moreover, both are under the influence of drugs of abuse and natural reinforcers such as
food or sugar. NPY is widely expressed throughout the central nervous system and often
is co-secreted with GABA or glutamate [266] and plays a crucial role in cortical excitability,
stress response, food intake, and circadian rhythms [267]. The orexin gene has a more
restricted expression pattern being only transcribed in the lateral hypothalamus (LH). Orex-
inergic neurons regulate metabolism, feeding, and reward controlling physiological and
hedonic appetite [268]. The orexin receptor-1 gene [202] regulates the reinforcing and reward-
ing properties of cocaine [141], while orexin gene expression is modulated by cocaine [202].
In addition, the orexin promoter was reported to be modulated by drugs of abuse through
DNA methylation, as well as its receptor genes [202,269–272]. Furthermore, note that orex-
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ins and NPY antagonists have been characterised as promising therapeutic targets for ad-
dictive behaviours, drug abuse disorders, or metabolic diseases [138,140,266,267,273,274],
demonstrating a prominent link between rewarding agents, potential therapeutic tools,
and epigenetic mechanisms.

Overall, these data show that circadian networks overlap with various addiction-
related signalling pathways involving genes implicated in physiological and cognitive
functions, some of them being regulated by DNA methylation. It will be of critical impor-
tance to determine the afferent signalling pathways involved, in order to understand how
these changes, modify responses to drugs of abuse and addictive behaviour. Recently, an
even more complicated scenario evolved concerning the interaction between the circadian
system and drugs of abuse, as the latter may not only disrupt circadian rhythms, but
desynchronised circadian cycles may also influence addictive behaviour and serve as a
risk factor for SUD [226,275]. Therefore, such a bidirectional mechanism would create a
down-ward vicious circle.

Several hyper-hedonic behaviours were found in Clock∆19 mice, i.e., amplified loco-
motor responses, abridged depression- and anxiety-like behaviour, increased sensitivity
for self-stimulation, and increased dopaminergic cell activity in the VTA [39]. Other clues
suggest that disturbances of the circadian timing system may result in an increased vul-
nerability to addiction and related behaviours [35]. Clock∆19 mutants showed increased
cocaine-induced CPP as well as elevated ethanol consumption [35,39]. Clock∆19 mice also
display augmented DA synthesis and activity primarily during the light cycle, explaining
the increased daytime sensitivity to the reinforcing efficacy of cocaine observed in these
mice (26).

Without a central clock, animals seem to be more sensitive to drugs of abuse (22), as
methamphetamine robustly re-established activity rhythms in SCN-lesioned
animals [225,234,249,276]. Excision of the central SCN clock also results in expression
discrepancies in the reward circuitry of the rodent brain suggesting a function of SCN
in the diurnal regulation in this circuitry [109,232,255,277,278]. Moreover, in humans,
shift work appears to precipitate an increased risk of intense alcohol consumption and re-
lapse [226–228,230]. The expression levels of dopamine transporter and TH were different
in SCN-lesioned animals compared to SCN-intact ones [255]. Furthermore, SCN-lesioned
animals showed no diurnal pattern in locomotor activity, but an enhanced acquisition of
CPP [257].

Furthermore, in Clock∆19 mice, glial glutamate uptake and glutamate transporter
(GLAST) levels are significantly reduced, increasing glutamatergic tone and critically de-
creasing Glast expression in the VTA [258]. Moreover, expression of the vesicular glutamate
transporter 1 (VGlut1) protein in synaptic vesicles prepared from the whole brain revealed
a diurnal rhythm, which was lost in mice lacking Per2, indicating that circadian clock
components also amend glutamatergic vesicular sorting [279]. The same mice also showed
downregulated levels of the glutamate receptor subunit GluR1 and glutamate transporter
Eaat1, resulting in atypically high levels of striatal glutamate associated with an increase in
alcohol intake. Therefore, data from Clock∆19 and Per2 mutant mice implicate an impor-
tant role for these genes in regulating the expression of key genes involved in glutamatergic
signalling in the striatum [251]. Together, the augmented dopaminergic and glutamatergic
systems may underly the molecular mechanisms triggering the increased tendency for
addiction-like behaviours when the circadian timing system is disturbed.

7. Epigenetic Connection between Circadian Rhythms and Addiction

Several histone-modifying enzymes that are regulated by the circadian clock have
been linked to functional abnormalities found in addiction models. For instance, sirtuins
are associated with behavioural adaptations that enhance the rewarding effects of drugs,
as well as with the circadian system by interacting with the clock genes. Many studies
have linked circadian rhythms with the risk of neuropsychiatric disorders, while others
investigated the regulatory role of epigenetic factors in circadian rhythms. Yet only a few
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studies addressed whether epigenetic regulation in the circadian system may be linked
to neuropsychiatric disorders. Prader-Willi syndrome (PWS) is the first neuropsychiatric
genetic disorder with evidence of disrupted circadian epigenomics. PWS results from a
chromosome deletion, considered to be caused by the loss of a lncRNA gene, 116HG. A
study in mice lacking 116HG showed altered expression of several clock genes and energy
use in the brain [280–282]. Another pilot study connecting epigenetics, clock genes, and
psychiatric disorders concerns miR. The precursor of miR-182 was found to carry a single
nucleotide polymorphism (SNP) associated with late insomnia. CLK is a predicted target of
miR-182 and the regulatory relationship was validated. This relationship between this SNP,
the expression of miR-182, and its circadian target warrants further investigation [283].

The enormous genomic reprogramming that occurs in addiction has inspired inves-
tigations on the epigenetic changes occurring in the brain. A promising view is that key
chromatin remodelling from histone modifications to DNA methylation plays a crucial role
in the regulation and stability of drug-mediated neuronal gene programming, leading to
addictive behaviours [2,173,284]. As genetic studies had limited success in finding proof to
link circadian rhythms to addiction this attracted attention to the possibility that circadian
epigenetic factors are involved in addiction. We know by now that the adaptable and
dynamic circadian timing system is regulated by the interaction between environmental
cues and the molecular clock. As described earlier, cues like light, food, temperature, stress,
hormones, and drugs, shape the circadian phenotype by regulating epigenetic factors
including non-coding RNAs [60,72].

Considering that cocaine modulates the expression of some circadian genes, as well
as the Dnmt and Tet genes with opposite effects on global DNA methylation, one can
speculate on the existence of an epigenetic “connection” between drug addiction and the
circadian timing system. Moreover, the levels of MeCP2, induced by cocaine and affecting
the overall structure of brain chromatin, fluctuate with a circadian period, ultimately
resulting in a circadian-dependent regulation of MeCP2 target genes [285]. In the same
vein, PP1 is also considered a post-translational regulator of the mammalian circadian
clock [285,286]. Interestingly in addition to the involvement of PP1 in the response to drugs
of abuse as described above, PP1 also regulates both the stability of the circadian protein
PER2 [287] and post-translational regulation of the circadian clock [286,288]. Thus, PP1
well illustrates a connection between circadian rhythms and drugs of abuse [289]. Other
studies showed that MECP2 binds to the nuclear receptor corepressor (N-CoR) complex in
the brain [189]. N-CoR has a critical role in developmental processes as well as in circadian
rhythms [290]. It binds and activates HDAC3, resulting in altered regulation of clock
genes and circadian behaviour [63]. In addition, the NCOR1-HDAC3 complex regulates
the circadian expression of the core clock gene BMAL1, which mediates the repression
of Reverb-alpha [290]. This involvement in circadian regulation demonstrates that BMAL1
repression is facilitated by the Rev-erbα/NCoR1 complex [291,292]. Furthermore, FosB is
induced in the SCN by light pulses in the (subjective) night. On the other hand, FosB also
appeared to be constitutively expressed at high levels in the SCN throughout the LD cycle.
However, further immunohistochemical analysis suggested that ∆FosB was the protein
product accounting for this constitutive expression [156,211,212]. Thus, ∆FosB is not only
linked directly to several addiction-related behaviours [293–295], but may also play an
indirect role by affecting the circadian system. Moreover, miR-132 represents a direct link
between light and chromatin remodelling: it is induced by photic entrainment cues via the
(MAPK)–CREB signalling pathway [30,296,297]. Incorporation of this pathway suggests
an involvement in the development of addiction behaviour [68,95,101,298]. Although
the aspects described and the common signalling cascades involved in the two systems
underline the existence of a possible connection, still more focused and correlated studies
are required to provide solid evidence (Figure 1).
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In a recent study, we found that cocaine and sucrose differentially regulate genes
involved in DNA methylation and circadian gene expression in certain rat brain structures
(PFC, CPu) (submitted article [203]). A global DNA methylation analysis showed an
increase in 5-mC by cocaine, consistent with repression of critical core-clock genes by
cocaine. The DNA methylation state of some core-clock genes (clock, cry2) was consistent
with an increase in global DNA methylation in response to cocaine (submitted article [203]).
Yet, additional gene-specific DNA methylation experiments are required to ascertain a
definite link between the circadian timing system and its contribution to addiction.

Therefore, while DNA methylation was initially considered as a more simple mecha-
nism than the histone code associated with tremendous post-translation modifications [299],
many issues remain to be addressed in this part of neuro-epigenetics. On one hand genome-
wide studies have identified many DMRs, each one having a number of potentially CpG



Genes 2021, 12, 1263 15 of 27

target sites for methylation or demethylation. However global DNA methylation analyses
have reported no or little changes in response to drugs of abuse [199,204–208], suggesting
that it is rather the distribution and the position of CpG target sites that may contribute to
drug abuse-related phenotypes. On the other hand, the functional role of DNA methylation
in gene expression remains an important and challenging issue to address. While many
genes involved in functions such as circadian rhythms, learning and memory processes,
arousal and appetite or satiety are modulated by drugs of abuse and natural reinforcers,
some of them, to some extent, are also Dnmts and/or Tets targets [194–196,202,203,300,301].
It therefore appears reasonable to hypothesise that some are regulated by DNA methylation,
whereas others can be independent of it, notably through one-carbon metabolism.

As there is still not much known about this interaction, further investigations are
needed, using for instance pharmacological or gene silencing approaches. However, it
is important to keep in mind that all these epigenetic factors, DNA methyltransferases,
histone-modifying enzymes, such as HDACs, HMTs, and histone demethylases, are known
to interact. Their mutual recruitment results in a high complexity of the epigenetic control
of addiction and circadian rhythms.

8. Future Perspective

The accumulating evidence discussed here proposes a promising opportunity for a bet-
ter understanding of the neuronal mechanisms underlying drug addiction, by integrating
the knowledge on the circadian timing system. Unfortunately, many aspects of this interac-
tion are still poorly understood, in particular its regulatory epigenetic aspects. In addition
to the discovery of clock genes and clock-controlled genes associated with the circadian
timing system, there is a need to explore how epigenetics is integrated within the molecular
clock system. Although circadian rhythms are considered a major phenotype to study in
neuropsychiatric disorders and epigenetic changes in addiction are well-known, circadian
epigenomics within the perspective of neuropsychiatric disorders has not received a lot of
attention yet. Nevertheless, describing such networks together with their regulations may
aid in understanding the link between circadian timing and these disorders and thus in
understanding human behaviour.

Given the complexity of the system, most studies in this emerging research field have
been performed in mouse models and only a few in humans. In humans, as is the case in
animals, studies provide non-reliable information when the time of day is not respected
and/or considered. Furthermore, genomic and epigenomic studies should take diurnal
variations into account, i.e., variable gene expressions or epigenetic markers depending on
the time of day. Although animal models provide alternatives that can overcome many
of the constraints found in human brain research, they still have their own limitations:
findings in animal rodents on epigenetic regulation may not translate directly to humans.
In addition, the experimental/technical biases are also to be considered. The optimal use
of the different models may lead to a better comprehensive insight into the regulatory
network and its significance to the human circadian-related disorder, drug addiction.

As circadian genes modulate drug-induced pathologies, potential therapeutic agents
(drug targets) may be established using the findings from genetic and epigenetic studies
of the circadian timing system. Drug targets might be hidden in the list of individual
components of rhythmic expression or epigenetic control of these rhythms, that need
further investigation. In theory, new therapies using drugs to modify the epigenome might
be much easier than correcting mutated genes. Therefore, epigenetic drugs may have
great potential in treating neuropsychiatric disorders. Innovative approaches are hastening
advances in understanding the epigenetic state of the individual at gene promoters and the
whole genome to conquer the caveats. Nevertheless, more genome-wide association studies
have to be applied to discover further molecules, functionally meaningful chromatin codes,
and functional pathways.

Investigations of epigenetic mechanisms have proven profitable in various fields,
including the fields of drug addiction and chronobiology. Taken together, it is clear that
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epigenetic mechanisms are critically involved in both addiction and the regulation of the
circadian clock, which raises the question of whether this may represent a link between drug
addiction affected by a derailed circadian clock. Studying the environmental impact and
gene-environment interactions, using circadian-related phenotypes and biomarkers, opens
multiple avenues that require further exploration and could result in potential therapeutic
intervention. As the circadian cycle is an extremely environment-dependent system, this
is one of the best approaches to link environmental conditions with drug addiction and
epigenetics. A better understanding of epigenetic mechanisms in animal models that
mimic human conditions should help to usher in a new area of drug development against
addiction.

Author Contributions: Conceptualisation, L.S. and A.K.; writing—original draft preparation, L.S.;
writing—review and editing, J.Z., P.A. and A.K.; preparation of illustrations, L.S.; visualisation,
L.S.; supervision, A.K.; funding acquisition, A.K. and P.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Neurotime Erasmus Mundus + program of the European
Com-mission including a doctoral fellowship attributed to Lamis Saad.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dupont, C.; Armant, D.R.; Brenner, C.A. Epigenetics: Definition, mechanisms and clinical perspective. Semin. Reprod. Med. 2009,

27, 351–357. [CrossRef] [PubMed]
2. Nestler, E.J. Epigenetic mechanisms of drug addiction. Neuropharmacology 2014, 76, 259–268. [CrossRef] [PubMed]
3. Anglard, P.; Zwiller, J. Chapter 9-Cocaine and Epigenetics: An Overview. In The Neuroscience of Cocaine; Preedy, V.R., Ed.;

Academic Press: San Diego, CA, USA, 2017; pp. 81–88, ISBN 978-0-12-803750-8.
4. Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [CrossRef]
5. Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [CrossRef]
6. Robison, A.J.; Nestler, E.J. Transcriptional and Epigenetic Mechanisms of Addiction. Nat. Rev. Neurosci. 2012, 12, 623–637.

[CrossRef]
7. Zwiller, J. Addiction et régulations épigénétiques. Med. Sci. 2015, 31, 439–446. [CrossRef]
8. Gräff, J.; Tsai, L.-H. Histone acetylation: Molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 2013, 14, 97–111. [CrossRef]
9. Bastle, R.M.; Neisewander, J.L. Epigenetics and Drug Abuse. In Recent Advances in Drug Addiction Research and Clinical Applications;

InTech: London, UK, 2016.
10. de Ruijter, A.J.M.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B.P. Histone deacetylases (HDACs): Characteriza-

tion of the classical HDAC family. Biochem. J. 2003, 370, 737–749. [CrossRef]
11. Rice, J.C.; Allis, C.D. Histone methylation versus histone acetylation: New insights into epigenetic regulation. Curr. Opin. Cell

Biol. 2001, 13, 263–273. [CrossRef]
12. Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357.

[CrossRef]
13. Bannister, A.J.; Schneider, R.; Kouzarides, T. Histone Methylation: Dynamic or Static? Cell 2002, 109, 801–806. [CrossRef]
14. Cadet, J.L.; McCoy, M.T.; Jayanthi, S. Epigenetics and addiction. Clin. Pharmacol. Ther. 2016, 99, 502–511. [CrossRef] [PubMed]
15. Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders.

Nat. Rev. Drug Discov. 2014, 13, 673–691. [CrossRef]
16. DiTacchio, L.; Le, H.D.; Vollmers, C.; Hatori, M.; Witcher, M.; Secombe, J.; Panda, S. Histone lysine demethylase JARID1a activates

CLOCK-BMAL1 and influences the circadian clock. Science 2011, 333, 1881–1885. [CrossRef] [PubMed]
17. Challen, G.A.; Sun, D.; Mayle, A.; Jeong, M.; Luo, M.; Rodriguez, B.; Mallaney, C.; Celik, H.; Yang, L.; Xia, Z.; et al. Dnmt3a

and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 2014, 15, 350–364. [CrossRef]
[PubMed]

18. Liao, J.; Karnik, R.; Gu, H.; Ziller, M.J.; Clement, K.; Tsankov, A.M.; Akopian, V.; Gifford, C.A.; Donaghey, J.; Galonska, C.;
et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 2015, 47, 469–478.
[CrossRef] [PubMed]

19. Chen, Z.; Riggs, A.D. DNA methylation and demethylation in mammals. J. Biol. Chem. 2011, 286, 18347–18353. [CrossRef]

http://doi.org/10.1055/s-0029-1237423
http://www.ncbi.nlm.nih.gov/pubmed/19711245
http://doi.org/10.1016/j.neuropharm.2013.04.004
http://www.ncbi.nlm.nih.gov/pubmed/23643695
http://doi.org/10.1016/j.cell.2007.02.005
http://doi.org/10.1038/47412
http://doi.org/10.1038/nrn3111
http://doi.org/10.1051/medsci/20153104019
http://doi.org/10.1038/nrn3427
http://doi.org/10.1042/bj20021321
http://doi.org/10.1016/S0955-0674(00)00208-8
http://doi.org/10.1038/nrg3173
http://doi.org/10.1016/S0092-8674(02)00798-5
http://doi.org/10.1002/cpt.345
http://www.ncbi.nlm.nih.gov/pubmed/26841306
http://doi.org/10.1038/nrd4360
http://doi.org/10.1126/science.1206022
http://www.ncbi.nlm.nih.gov/pubmed/21960634
http://doi.org/10.1016/j.stem.2014.06.018
http://www.ncbi.nlm.nih.gov/pubmed/25130491
http://doi.org/10.1038/ng.3258
http://www.ncbi.nlm.nih.gov/pubmed/25822089
http://doi.org/10.1074/jbc.R110.205286


Genes 2021, 12, 1263 17 of 27

20. Rasmussen, K.D.; Helin, K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016, 30, 733–750.
[CrossRef]

21. Tan, L.; Shi, Y.G. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 2012, 139, 1895–1902.
[CrossRef]

22. Guo, J.U.; Su, Y.; Zhong, C.; Ming, G.; Song, H. Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA
demethylation and beyond. Cell Cycle 2011, 10, 2662–2668. [CrossRef]

23. Goll, M.G.; Bestor, T.H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 2005, 74, 481–514. [CrossRef]
24. Guo, J.U.; Su, Y.; Zhong, C.; Ming, G.; Song, H. Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation

in the Adult Brain. Cell 2011, 145, 423–434. [CrossRef]
25. Khare, T.; Pai, S.; Koncevicius, K.; Pal, M.; Kriukiene, E.; Liutkeviciute, Z.; Irimia, M.; Jia, P.; Ptak, C.; Xia, M.; et al. 5-hmC in the

brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat. Struct. Mol. Biol. 2012, 19, 1037–1043.
[CrossRef] [PubMed]

26. Kriaucionis, S.; Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science
2009, 324, 929–930. [CrossRef]

27. Doerfler, W. Patterns of de novo DNA methylation and promoter inhibition: Studies on the adenovirus and the human genomes.
EXS 1993, 64, 262–299. [CrossRef] [PubMed]

28. Wilson, D.M., 3rd; Kim, D.; Berquist, B.R.; Sigurdson, A.J. Variation in base excision repair capacity. Mutat. Res. 2011, 711, 100–112.
[CrossRef] [PubMed]

29. Kenny, P.J. Epigenetics, microRNA, and addiction. Dialogues Clin. Neurosci. 2014, 16, 335–344.
30. Bali, P.; Kenny, P.J. MicroRNAs and drug addiction. Front. Genet. 2013, 4, 1–8. [CrossRef]
31. Surendran, S.; Jideonwo, V.N.; Merchun, C.; Ahn, M.; Murray, J.; Ryan, J.; Dunn, K.W.; Kota, J.; Morral, N. Gene targets of mouse

miR-709: Regulation of distinct pools. Sci. Rep. 2016, 6, 18958. [CrossRef]
32. Yao, Q.; Chen, Y.; Zhou, X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 2019, 51, 11–17. [CrossRef]
33. Mosig, R.A.; Kojima, S. Timing without coding: How do long non-coding RNAs regulate circadian rhythms? Semin. Cell Dev. Biol.

2021. [CrossRef] [PubMed]
34. Challet, E.; Kalsbeek, A. Editorial: Circadian Rhythms and Metabolism. Front. Endocrinol. 2017, 8, 201. [CrossRef] [PubMed]
35. Forde, L.A.; Kalsi, G. Addiction and the role of circadian genes. J. Stud. Alcohol Drugs 2017, 78, 645–653. [CrossRef]
36. Gamble, K.L.; Berry, R.; Frank, S.J.; Young, M.E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 2014, 10,

466–475. [CrossRef]
37. Feng, D.; Lazar, M.A. Clocks, metabolism, and the epigenome. Mol. Cell 2012, 47, 158–167. [CrossRef] [PubMed]
38. Takahashi, J.S.; Hong, H.-K.; Ko, C.H.; McDearmon, E.L. The Genetics of Mammalian Circadian Order and Disorder: Implications

for Physiology and Disease. Nat. Rev. Genet. 2008, 9, 764–775. [CrossRef]
39. Ozburn, A.R.; Larson, E.B.; Self, D.W.; McClung, C.A. Cocaine self-administration behaviors in Clock∆19 mice. Psychopharmacology

2012, 223, 169–177. [CrossRef] [PubMed]
40. Kalsbeek, A.; Yi, C.-X.; Cailotto, C.; la Fleur, S.E.; Fliers, E.; Buijs, R.M. Mammalian clock output mechanisms. Essays Biochem.

2011, 49, 137–151. [CrossRef]
41. Liu, C.; Chung, M. Genetics and epigenetics of circadian rhythms and their potential roles in neuropsychiatric disorders. Neurosci.

Bull. 2015, 31, 141–159. [CrossRef]
42. Kalsbeek, A.; Merrow, M.; Roenneberg, T.; Foster, R.G. Neurobiology of Circadian Timing. Preface. Prog. Brain Res. 2012, 199,

xi–xii.
43. Balsalobre, A. Clock genes in mammalian peripheral tissues. Cell Tissue Res. 2002, 309, 193–199. [CrossRef]
44. Abe, M.; Herzog, E.D.; Yamazaki, S.; Straume, M.; Tei, H.; Sakaki, Y.; Menaker, M.; Block, G.D. Circadian rhythms in isolated

brain regions. J. Neurosci. 2002, 22, 350–356. [CrossRef]
45. Crosio, C.; Cermakian, N.; Allis, C.D.; Sassone-Corsi, P. Light induces chromatin modification in cells of the mammalian circadian

clock. Nat. Neurosci. 2000, 3, 1241–1247. [CrossRef]
46. Chaix, A.; Zarrinpar, A.; Panda, S. The circadian coordination of cell biology. J. Cell Biol. 2016, 215, 15–25. [CrossRef] [PubMed]
47. Dunlap, J.C. Molecular Bases for Circadian Clocks. Cell 1999, 96, 271–290. [CrossRef]
48. Masri, S.; Sassone-Corsi, P. Plasticity and specificity of the circadian epigenome. Nat. Neurosci. 2010, 13, 1324–1329. [CrossRef]
49. Partch, C.L.; Green, C.B.; Takahashi, J.S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014, 24, 90–99.

[CrossRef]
50. Wager-Smith, K.; Kay, S.A. Circadian rhythm genetics: From flies to mice to humans. Nat. Genet. 2000, 26, 23–27. [CrossRef]

[PubMed]
51. Mitsui, S.; Yamaguchi, S.; Matsuo, T.; Ishida, Y.; Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian

oscillatory mechanism. Genes Dev. 2001, 15, 995–1006. [CrossRef]
52. Gachon, F.; Olela, F.F.; Schaad, O.; Descombes, P.; Schibler, U. The circadian PAR-domain basic leucine zipper transcription factors

DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006, 4, 25–36. [CrossRef]
53. Koike, N.; Yoo, S.H.; Huang, H.C.; Kumar, V.; Lee, C.; Kim, T.K.; Takahashi, J.S. Transcriptional architecture and chromatin

landscape of the core circadian clock in mammals. Science 2012, 338, 349–354. [CrossRef]

http://doi.org/10.1101/gad.276568.115
http://doi.org/10.1242/dev.070771
http://doi.org/10.4161/cc.10.16.17093
http://doi.org/10.1146/annurev.biochem.74.010904.153721
http://doi.org/10.1016/j.cell.2011.03.022
http://doi.org/10.1038/nsmb.2372
http://www.ncbi.nlm.nih.gov/pubmed/22961382
http://doi.org/10.1126/science.1169786
http://doi.org/10.1007/978-3-0348-9118-9_12
http://www.ncbi.nlm.nih.gov/pubmed/8418951
http://doi.org/10.1016/j.mrfmmm.2010.12.004
http://www.ncbi.nlm.nih.gov/pubmed/21167187
http://doi.org/10.3389/fgene.2013.00043
http://doi.org/10.1038/srep18958
http://doi.org/10.1016/j.cbpa.2019.01.024
http://doi.org/10.1016/j.semcdb.2021.04.020
http://www.ncbi.nlm.nih.gov/pubmed/34116930
http://doi.org/10.3389/fendo.2017.00201
http://www.ncbi.nlm.nih.gov/pubmed/28861043
http://doi.org/10.15288/jsad.2017.78.645
http://doi.org/10.1038/nrendo.2014.78
http://doi.org/10.1016/j.molcel.2012.06.026
http://www.ncbi.nlm.nih.gov/pubmed/22841001
http://doi.org/10.1038/nrg2430
http://doi.org/10.1007/s00213-012-2704-2
http://www.ncbi.nlm.nih.gov/pubmed/22535308
http://doi.org/10.1042/bse0490137
http://doi.org/10.1007/s12264-014-1495-3
http://doi.org/10.1007/s00441-002-0585-0
http://doi.org/10.1523/JNEUROSCI.22-01-00350.2002
http://doi.org/10.1038/81767
http://doi.org/10.1083/jcb.201603076
http://www.ncbi.nlm.nih.gov/pubmed/27738003
http://doi.org/10.1016/S0092-8674(00)80566-8
http://doi.org/10.1038/nn.2668
http://doi.org/10.1016/j.tcb.2013.07.002
http://doi.org/10.1038/79134
http://www.ncbi.nlm.nih.gov/pubmed/10973243
http://doi.org/10.1101/gad.873501
http://doi.org/10.1016/j.cmet.2006.04.015
http://doi.org/10.1126/science.1226339


Genes 2021, 12, 1263 18 of 27

54. Ripperger, J.A.; Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and
chromatin transitions. Nat. Genet. 2006, 38, 369–374. [CrossRef]

55. Doi, M.; Hirayama, J.; Sassone-Corsi, P. Circadian Regulator CLOCK Is a Histone Acetyltransferase. Cell 2006, 125, 497–508.
[CrossRef] [PubMed]

56. Etchegaray, J.P.; Lee, C.; Wade, P.A.; Reppert, S.M. Rhythmic histone acetylation underlies transcription in the mammalian
circadian clock. Nature 2003, 421, 177–182. [CrossRef]

57. Hirayama, J.; Sahar, S.; Grimaldi, B.; Tamaru, T.; Takamatsu, K.; Nakahata, Y.; Sassone-Corsi, P. CLOCK-mediated acetylation of
BMAL1 controls circadian function. Nature 2007, 450, 1086–1090. [CrossRef]

58. Asher, G.; Gatfield, D.; Stratmann, M.; Reinke, H.; Dibner, C.; Kreppel, F.; Mostoslavsky, R.; Alt, F.W.; Schibler, U. SIRT1 Regulates
Circadian Clock Gene Expression through PER2 Deacetylation. Cell 2008, 134, 317–328. [CrossRef]

59. Nakahata, Y.; Kaluzova, M.; Grimaldi, B.; Sahar, S.; Hirayama, J.; Chen, D.; Guarente, L.P.; Sassone-Corsi, P. The NAD+-
Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control. Cell 2008, 134,
329–340. [CrossRef] [PubMed]

60. Qureshi, I.A.; Mehler, M.F. Epigenetics of sleep and chronobiology. Curr. Neurol. Neurosci. Rep. 2014, 14, 1–16. [CrossRef]
61. Curtis, A.M.; Seo, S.B.; Westgate, E.J.; Rudic, R.D.; Smyth, E.M.; Chakravarti, D.; FitzGerald, G.A.; McNamara, P. Histone

Acetyltransferase-dependent Chromatin Remodeling and the Vascular Clock. J. Biol. Chem. 2004, 279, 7091–7097. [CrossRef]
62. Johansson, A.S.; Brask, J.; Owe-Larsson, B.; Hetta, J.; Lundkvist, G.B.S. Valproic acid phase shifts the rhythmic expression of

PERIOD2::LUCIFERASE. J. Biol. Rhythms 2011, 26, 541–551. [CrossRef] [PubMed]
63. Alenghat, T.; Meyers, K.; Mullican, S.E.; Leitner, K.; Adeniji-Adele, A.; Avila, J.; Bućan, M.; Ahima, R.S.; Kaestner, K.H.; Lazar, M.A.
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