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Count data are increasingly ubiquitous in genetic association studies, where it is possible

to observe excess zero counts as compared to what is expected based on standard

assumptions. For instance, in rheumatology, data are usually collected in multiple joints

within a person or multiple sub-regions of a joint, and it is not uncommon that the

phenotypes contain enormous number of zeroes due to the presence of excessive zero

counts in majority of patients. Most existing statistical methods assume that the count

phenotypes follow one of these four distributions with appropriate dispersion-handling

mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated

Negative Binomial (ZINB). However, little is known about their implications in genetic

association studies. Also, there is a relative paucity of literature on their usefulness

with respect to model misspecification and variable selection. In this article, we

have investigated the performance of several state-of-the-art approaches for handling

zero-inflated count data along with a novel penalized regression approach with an

adaptive LASSO penalty, by simulating data under a variety of disease models and

linkage disequilibrium patterns. By taking into account data-adaptive weights in the

estimation procedure, the proposed method provides greater flexibility in multi-SNP

modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested

within an EM (expectation-maximization) algorithm is implemented for estimating the

model parameters and conducting variable selection simultaneously. Results show that

the proposed method has optimal performance in the presence of multicollinearity, as

measured by both prediction accuracy and empirical power, which is especially apparent

as the sample size increases. Moreover, the Type I error rates become more or less

uncontrollable for the competing methods when a model is misspecified, a phenomenon

routinely encountered in practice.

Keywords: Zero-inflated Poisson, zero-inflated negative binomial, penalized regression, Poisson, negative

binomial, genetic association studies, LASSO, adaptive LASSO
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INTRODUCTION

In genetic association studies, phenotypes are often measured in
counts. For such count data, the standard methods for modeling
the genotype–phenotype relationship include the Poisson and
Negative Binomial regression models. The standard Poisson
model assumes that the conditional variance of the phenotype
is equal to the conditional mean. The Negative Binomial model
generalizes the Poisson model by providing greater flexibility
in explaining the relationship between the conditional variance
and the conditional mean as compared to the Poisson model.
However, in practice, it is not uncommon to observe excess
zero counts as compared to what is expected based on either
the Poisson or Negative Binomial model. As an example, in
arthritis research, data are often collected in multiple joints
within a person [i.e., number of hand joints with Radiographic
Osteoarthritis (ROA)] or multiple sub-regions of a joint (i.e.,
number of sub-regions with cartilage loss in a knee; Zhang et al.,
2010). As such, some of the phenotypes of interest in arthritis
research are calculated based on a summary of individual integer-
valued count measures (Teare et al., 2013), and therefore, it is
highly plausible that they contain enormous number of zeroes
due to the preponderance of zero counts in majority of patients.
Some examples of such count phenotypes include the maximum
number of pain sites (Holliday et al., 2010), total number of pain
sites (Nicholl et al., 2011), and modified Larsen score (Teare
et al., 2013), among others. In such situations, these two standard
approaches [viz. the Poisson regression (PR) and the Negative
Binomial (NB) regression] fail to take into account the added
variability associated with the extraneous zero observations.

To account for the extra variability associated with the
overabundant zero observations in count outcomes, various zero-
inflated count models have been proposed in the literature, which
include the Zero-inflated Poisson (ZIP) model (Lambert, 1992)
and the Zero-inflated Negative Binomial (ZINB) model (Greene,
1994). These zero-inflated count models assume a latent mixture
model consisting of two components: (i) a count component,
which can be modeled as a Poisson or NB distribution and
(ii) a degenerate zero component having a point mass at zero.
Over the years, these two methods have become popular tools
in statistical applications for analyzing count data. However,
little is known about the utility of these approaches with respect
to model misspecification. Most practitioners tend to use these
tools without validating the data-generating mechanism. For
instance, the most common statistical modeling technique used
in analyzing zero-inflated count data is the ZIP regression.
However, it has been established that the ZIP parameter estimates
can be severely biased if the non-zero counts are over-dispersed
in relation to the Poisson distribution (Greene, 1994). Therefore,
blindly using a ZIP model in those situations can be misleading
and inappropriate.

In addition to the above, there is also a relative paucity
of literature on their implications in genetic association
studies underlying zero-inflated count traits. In recent years,
many Genome-wide association (GWA) studies have identified
multiple genetic loci as being associated with rheumatoid arthritis
(RA; Viatte et al., 2013a,b; Okada et al., 2014). However, the

identified genetic effects tend to be moderate (OR ≤ 1.5) and
explain only a small fraction (∼16%) of the overall susceptibility
(heritable and environmental; Viatte et al., 2013a,b). This is
due to the inherent limitations of the single-marker analysis
methods (simple univariate zero-inflated regression that analyzes
one SNP at a time) commonly used in these GWA studies.
These single-marker analyses may contribute weak but real
effects on disease risks that are likely to be missed after
taking the multiplicity adjustment into account (McCarthy
et al., 2008). Moreover, single-marker analyses are doomed
to low power for characterizing complex epistasis and gene-
environment interactions (Hoggart et al., 2008; Li et al., 2011).
Therefore, for unraveling the genetic architecture of complex
diseases, it is necessary to accommodate multiple genetic variants
and environmental covariates in a joint model, which is more
powerful than traditional single-variant approaches. For such
joint modeling, traditional statistical approaches such as the ZIP
or ZINB might yield non-identifiable models (that is, having
parameters that cannot be estimated) due to the presence of
multiple highly linked variants. Moreover, with multiple genetic
and environmental factors, there are many effects to estimate,
most of which are likely to be zero or at least negligible, leading
to high-dimensional sparse models, which lead to challenges in
estimation, prediction, and interpretation.

Penalized regression methods provide a useful alternative
for performing multi-SNP modeling. In penalized regression
framework, a large number of possibly correlated variables
and their interactions can be analyzed utilizing a single
model (Szymczak et al., 2009). In statistical literature, variable
selection has long been an active research area. Over the years,
various penalized regression methods have been proposed for
variable selection, which include the bridge regression (Frank
and Friedman, 1993), Least Absolute Shrinkage And Selection
Operator (LASSO; Tibshirani, 1996), Smoothly Clipped Absolute
Deviation (SCAD; Fan and Li, 2001), Elastic Net (Zou and
Hastie, 2005), Adaptive LASSO (Zou, 2006), and Minimax
Concave Penalty (MCP; Zhang, 2010), among others. Generally,
these methods are able to handle high-dimensional data in a
computationally efficient manner by providing parsimonious
model by simultaneous effect estimation and variable selection.
However, most of these penalty functions are developed in the
context of linear regression, survival models, and generalized
linear models (GLMs), and it is not straightforward to adapt
them to zero-inflated count phenotypes. This is due to the
fact that variable selection is much more challenging for zero-
inflated count models compared to linear, generalized linear, or
survival models, as there are two separate model components
contributing to the count outcomes.

Very recently, several authors have proposed penalized
regression approaches for variable selection in zero-inflated
count models. Among them, Buu et al. (2011) proposed
an one-step SCAD estimator for the ZIP regression. Zeng
et al. (2014) proposed an adaptive LASSO estimator for the
ZINB regression models. However, both these procedures rely
on Taylor approximation algorithm, which is known to be
numerically instable if the Hessian matrix cannot be obtained
accurately (Zeng et al., 2014). As an alternative, the well-known
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expectation-maximization (EM) algorithm provides a more
natural and appropriate choice for estimating the parameters
in zero-inflated count models. To this end, Tang et al. (2014)
recently implemented an EM algorithm coupled with the
adaptive LASSO estimator for the ZIP regression. Wang et al.
(2014) developed EM algorithms for various penalized methods
(viz. LASSO, MCP, and SCAD) for the ZIP regression. Wang
et al. (2015) further extended their methods (viz. LASSO,
MCP, and SCAD) to the ZINB regression. Some of these
authors also established the so-called “oracle” property of
their proposed estimators (i.e., they perform as well as if the
“true” underlying model was given in advance). In this paper,
along the same lines, we consider a more flexible penalized
regression method for fitting the ZINB. More specifically, we
propose an EM algorithm coupled with an adaptive LASSO
estimator for the ZINB regression. While, Wang et al. (2015)
considered a single shrinkage parameter for all the variables,
we consider an improved version where different amount of
shrinkage are allowed for different parameters. The idea is
similar to Zou (2006), and with this formulation, the “oracle”
property, consisting of both consistency in variable selection
and estimation of non-zero coefficients, can be established,
following arguments in either Tang et al. (2014) or Buu et al.
(2011) (a proof is included in the Supplementary File). As noted
by Zou (2006) in Remark 2 of his original adaptive LASSO
paper: “As the sample size grows, the weights for zero-coefficient
predictors get inflated (to infinity), whereas the weights for
non-zero coefficient predictors converge to a finite constant.
Thus we can simultaneously unbiasedly (asymptotically) estimate
large coefficient and small threshold estimates.” As it will be
clear from the simulation studies, the proposed method is
more powerful than the existing methods with well-controlled
Type I error, under a variety of disease models and linkage
disequilibrium (LD) patterns. Moreover, the proposed method
significantly outperforms the existing methods in terms of
prediction accuracy.

The rest of the paper is organized as follows. In Section
Methods, we introduce and discuss the proposed adaptive
LASSO estimator for the ZINB regression. In Section
Simulations, we describe our simulation experiments. In
Section Results, we present the results of the simulation study
comparing the proposed method with the existing methods. In
Section Discussion, we provide guidelines to researchers and
practitioners alike for using zero-inflated count models arising in
genetic association studies including some concluding remarks
as well as directions for future research.

METHODS

Suppose that a population-based association study consists of n
unrelated individuals, phenotyped for a quantitative count trait
and genotyped for a number of genetic variants in one ormultiple
candidate genes or genomic regions. We assume that there are k
genetic variants. We denote the genotypes of variant j by AjAj,
Ajaj, or ajaj, where aj is the minor allele with the observed
frequency pj, j= 1, ..., k. For an additive model, xij = 0, 1, or 2 for
AjAj,Ajaj, or ajaj, and for a dominant model, xij = 0 or 1 forAjAj

or Ajaj or ajaj, respectively. We also assume thatm relevant non-
genetic variables are measured for each individual, which will be
included as covariates in the model. The observed values of the
response variable are denoted by y = (y1, y2, ..., yn)

′. The GLM
(McCullagh and Nelder, 1989) relates the linear predictor to the
mean of the response variable via a link function as

g(E(yi|Xi)) = β0+

m
∑

j= 1

xcijβ
c
j +

k
∑

j= 1

x
g
ijβ

g
j =1 Xiβ, i = 1, ..., n, (1)

where g is a link function, β0 is the intercept, xcij and x
g
ij

represent observed values of the covariates and genetic variables
respectively, the coefficients βc

j and β
g
j respectively denote

non-genetic and genetic effects, Xi contains all variables
and β is the vector of all coefficients and the intercept. For
simplicity, we denote Xi = (1, xi1, xi2, ..., xip)

′, i = 1, ..., n and

β =
(

β0, β1, . . . , βp

)′
where p = m + k is the total number of

variables.
The likelihood function of a GLM can be expressed as

p(y|Xβ, φ) =

n
∏

i= 1

p(yi|Xiβ, φ), (2)

where the distribution p(yi|Xiβ, φ) can take various forms,
including Normal, Gamma, Binomial, Negative Binomial (for
a known dispersion parameter), and Poisson distributions and
φ is a dispersion parameter. The standard algorithm for fitting
GLMs is the iterative weighted least squares (IWLS). Given the

current estimates of the parameters
(

β̂, φ̂

)

, the IWLS algorithm

constructs the pseudo-response zi and the pseudo-weight wi for
each data point yi as

zi = η̂i − L′(yi|η̂i)/L
′′(yi|η̂i),wi = −L′′(yi|η̂i), (3)

and approximates the likelihood p(yi|Xiβ, φ) by the weighted
normal likelihood as

p(yi|Xiβ, φ) ≈ N(zi|Xiβ,w−1
i φ), (4)

where η̂i = Xiβ̂, L
(

yi|η̂i
)

= log p
(

yi|Xiβ̂, φ̂

)

, L′
(

yi|η̂i
)

=

dL
(

yi|ηi
)

/dηi and L′′(yi|ηi) = d2L
(

yi|ηi
)

/dη2
i
. The parameters

(β, φ) are then updated by solving the weighted normal linear
regression Equation (4) using the weighted least squares.

The GLM includes the Poisson regression (PR), for which the
corresponding probability mass function is given by

f (y;µ) =
µye−µ

y!
, (5)

where E
(

y
)

= Var
(

y
)

= µ and g(µ) = log (µ). An alternative
to the PR is the NB regression, which is a flexible generalization
of the PR, and is known to better handle the overdispersion
present in a count data. The probability mass function for the
two-parameter NB distribution is given by

f (y; θ, µ) =
Ŵ(θ + y)

y!Ŵ(θ)

(

µ

µ + θ

)y (

θ

µ + θ

)θ

, (6)
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Where E(y) = µ, Var(y) = µ + µ2

θ
, and g(µ) = log(µ).

Note that, we do not have a dispersion parameter for the PR; that
is, φ is fixed at 1. On the other hand, the dispersion parameter
for the NB regression is given by φ = θ . The parameter θ

can be estimated from the data; however, the EM algorithm can
be slow to converge. For simplicity, we assume θ = 1 in this
article.

Zero-Inflated Poisson (ZIP) Model
Following Lambert (1992), a ZIP model for the count phenotype
can be written as follows

yi = 0 with probabilityπi

yi ∼ Poisson(µi) with probablity (1− πi)

}

i = 1, ..., n (7)

TABLE 1 | Simulation Designs for Varying Marginal Variances.

No. of No. of Marginal Sum of Marginal MAF

SNPs Causal SNPs Variance Variances %

50 5 0.01 0.05 5

50 5 0.02 0.10 5

50 5 0.03 0.15 5

50 5 0.04 0.20 5

50 5 0.05 0.25 5

50 5 0.06 0.30 5

The probability mass function of yi can be written as follows

P(yi = 0) = πi + (1− πi)e
−µi ,

P(yi = j) = (1− πi)
e−µiµ

j
i

j!
, j = 1, 2, ... (8)

It can be observed that Equation (8) reduces to the general PR
when πi = 0. Also, when πi > 0, P

(

yi = 0
)

> e−µi , which
indicates zero-inflation.

Zero-Inflated Negative Binomial (ZINB)
Model
Similarly, following Greene (1994), a ZINB model for the count
phenotype can be written as follows

yi = 0 with probablityπi

yi ∼ NB(µi, θ) with probablity (1− πi)

}

i = 1, ..., n (9)

The probability mass function of yi can be written as follows

P(yi = 0) = πi + (1− πi)

(

θ

θ + µi

)θ

,

P(yi = j) = (1− πi)
Ŵ(θ + yi)

yi!Ŵ(θ)

(

µi

θ + µi

)y(
θ

θ + µi

)θ

,

j = 1, 2... (10)

Again, it can be observed that Equation (10) reduces to the
general NB regression when πi = 0. Also, when πi > 0,

FIGURE 1 | Average Type I Error Rates (Red Bar) and Average Power (Blue Bar) from 1000 Replications for Independents SNPs (ρ = 0). Five methods are

displayed from left to right: Poisson Regression (PR), Zero-inflated Poisson (ZIP) regression, Negative Binomial (NB) regression, Zero-inflated Negative Binomial (ZINB)

regression, and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances (h = 0.05, 0.10, 0.15)

(in columns) are presented.
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FIGURE 2 | Average Type I Error Rates (Red Bar) and Average Power (Blue Bar) from 1000 Replications for Independents SNPs (ρ = 0). Five methods are

displayed from left to right: Poisson Regression (PR), Zero-inflated Poisson (ZIP) regression, Negative Binomial (NB) regression, Zero-inflated Negative Binomial (ZINB)

regression, and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances (h = 0.20, 0.25, 0.30)

(in columns) are presented.

FIGURE 3 | Average Type I Error Rates (Red Bar) and Average Power (Blue Bar) from 1000 Replications for SNPs in Moderate LD (ρ = 0.5). Five methods

are displayed from left to right: Poisson Regression (PR), Zero-inflated Poisson (ZIP) regression, Negative Binomial (NB) regression, Zero-inflated Negative Binomial

(ZINB) regression, and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances (h = 0.05, 0.10,

0.15) (in columns) are presented.
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p(yi = 0) >

(

θ
θ + µi

)θ

, which indicates zero-inflation. For both

thesemodels, the parameters πi andµi can bemodeled (Lambert,
1992; Greene, 1994) by a logistic regression model (for the zero
component) and a log-linear model (for the count component)
respectively as follows

log
(

πi
1−πi

)

= Xiγ,

log(µi) = Xiβ,

}

(11)

where Xi contains all variables corresponding to the ith
observation, i = 1, ..., n and β and γ are the vectors of all genetic
and non-genetic coefficients and the intercept corresponding to
the count and zero components respectively. In practice, we
may have a different set of predictors corresponding to each of
these two components, for which Equation (11) can be adapted
accordingly. The ZINBmodel is more appropriate to incorporate
extra over dispersion not accounted for through zero-inflation
by the ZIP model (Greene, 1994). Therefore, in this article, we
primarily focus on the ZINB regression and investigate the effect
of model misspecification when the underlying data-generating
mechanism is indeed ZINB. For variable selection, we propose
the EM adaptive LASSO method for the ZINB regression, which
we describe next.

The Adaptive LASSO Model
One major challenge in analyzing genetic data with zero-
inflated count phenotypes is the problem of variable selection,

as most of the existing methods such as the subset selection or
step-wise procedures are computationally tedious for analyzing
such datasets, especially when the number of variables is large
and/or there exists collinearity. In addition, variable selection for
mixture models is much more complicated than that for non-
mixture models. To meet these challenges, we propose the EM
Adaptive LASSO (AL) estimator by modifying the EM algorithm
developed by Wang et al. (2015) for their LASSO estimator,
which is implemented in the R (R Core Team, 2015) package
mpath (Wang, 2015). With this approach, we are able to conduct
simultaneous model selection and stable effect estimation in
the presence of multicollinearity, which reduces the burden
of multiple testing. The log-likelihood function for the ZINB
regression model (assuming θ = 1) is given by

L(β, γ ) =
∑

yi = 0

log

[

πi + (1− π)

(

1

1+ µi

)]

+
∑

yi>0

log

[

(1− πi)

(

µi

1+ µi

)y (

1

1+ µi

)]

, (12)

where µi = exp(Xiβ), and πi =
exp(Xiγ )

1+ exp(Xiγ )
, i = 1, ..., n.

For variable selection, we consider a penalized ZINB model
with the adaptive LASSO penalty, which results from the
following regularization problem

FIGURE 4 | Average Type I Error Rates (Red Bar) and Average Power (Blue Bar) from 1000 Replications for SNPs in Moderate LD (ρ = 0.5). Five methods

are displayed from left to right: Poisson Regression (PR), Zero-inflated Poisson (ZIP) regression, Negative Binomial (NB) regression, Zero-inflated Negative Binomial

(ZINB) regression, and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances (h = 0.20, 0.25,

0.30) (in columns) are presented.
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Q(β, γ ) = −2 log L(β, γ )+ λ1

p
∑

j= 1

w1j

∣

∣βj

∣

∣ + λ2

p
∑

j= 1

w2j

∣

∣γj
∣

∣ ,

(13)
where w1 = (w11, ...,w1p)

′ and w2 = (w21, ...,w2p)
′ are known

weight vectors, which are usually taken as the reciprocal of the
unpenalized estimates obtained by maximizing Equation (12),
i.e., w1 = 1

∣

∣

∣
β̂MLE

∣

∣

∣

and w2 = 1
|γ̂MLE|

. Note that, when w1j = 1,

w2j = 1, j = 1,..., p, it reduces to the LASSO estimator (Wang
et al., 2015).

The EM Algorithm
We formulate Equation (13) as a missing data problem and solve
the problem by EM algorithm. To this end, we assume that
there are two distinct processes driving the zeros in the count
phenotype of interest: one is the result of a zero process, and the
other one is a part of a counting process (NB). We consider the
following latent variables: zi = 1 if yi is from the zero state and
zi = 0 if yi is from the count (NB) state, i = 1,..., n. Since, zi’s are
not observable, we treat them as the “missing data”. With these
missing variables, the complete-data log-likelihood function is
given by

PL(β ,γ ) =

n
∑

i= 1

[

ziXiγ − log(1+ exp(Xiγ ))

+ (1− zi)
{

yiXiβ − (yi + 1) log (1+ Xiβ)
}]

(14)

The penalized ZINBmodel with the complete data log-likelihood
is given by

Q∗(β, γ ) = −2 log PL(β, γ )+ λ1

p
∑

j= 1

w1j

∣

∣βj

∣

∣ + λ2

p
∑

j= 1

w2j

∣

∣γj
∣

∣,

(15)
where at the E step of the algorithm, we compute the expectation
of the complete-data log-likelihood by replacing zi’s by their
conditional expectation given the observed data and current
estimates, and in the M step, we estimate the coefficients by
minimizing the expected penalized complete-data log-likelihood
Equation (15). Starting with an initial guess of the coefficients, the
algorithm proceeds as follows:

1) E Step

ẑ
(t)
i =

{
(

1+
[

exp(-Xiγ̂
(t)

1+ exp(Xiβ̂(t)

])−1
if yi = 0

0 if yi > 0

2) M Step: Minimize the following objective function

Q∗(β, γ |β(t), γ (t)) = −2E(PL(β, γ |y, z)|β(t), γ (t)

+ λ1

p
∑

j= 1

w1j

∣

∣βj

∣

∣+λ2

p
∑

j= 1

w2j

∣

∣βj

∣

∣(16)

3) Repeat 1 and 2 until convergence, t = 1, 2....

FIGURE 5 | Average Type I Error Rates (Red Bar) and Average Power (Blue Bar) from 1000 Replications for SNPs in High LD (ρ = 0.9). Five methods are

displayed from left to right: Poisson Regression (PR), Zero-inflated Poisson (ZIP) regression, Negative Binomial (NB) regression, Zero-inflated Negative Binomial (ZINB)

regression, and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances (h = 0.05, 0.10, 0.15)

(in columns) are presented.
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Note that, Equation (16) can be written as a sum of two
components as follows

Q∗(β, γ |β(t), γ (t)) = Q1
∗(β|β(t), γ (t))+ Q2

∗(γ |β(t), γ (t)),

where Q∗
1(β|β

(t), γ (t)) = −2

[

n
∑

i= 1
(1− ẑ

(t)
i )

{

yiXiβ − (yi

+1) log(1+ Xiβ)
}

]

+ λ1

p
∑

j= 1
w1j

∣

∣βj

∣

∣ ,

andQ∗
2(γ |β

(t), γ (t)) = −2

[

n
∑

i= 1
ẑ
(t)
i Xiγ − log(

(

1+exp(Xiγ
))

]

+ λ2

p
∑

j= 1
w2j

∣

∣γj
∣

∣.

The first component Q∗
1(β|β

(t), γ (t)) is a weighted penalized

NB log-likelihood and the second component Q∗
2(γ |(β

(t), γ (t))
is a penalized logistic log-likelihood, both of which belong to
the GLM family (without the penalties). Due to the form of
the objective function, these two components can be minimized
separately, using computationally efficient coordinate descent
algorithms developed for GLM (Friedman et al., 2010). The
details of this algorithm, which utilizes the IWLS algorithm
described above (Friedman et al., 2010), can be found in
Friedman et al. (2010). Recently, Wang et al. (2015) adapted
this procedure for their LASSO estimator in the R package
mpath. Here we further improve the algorithm by allowing
different penalties for each of the variables. The variable-specific

parameters provide a way to pool the information among the
variables. Naturally, for the unimportant variables, we should
put larger penalty parameters on their corresponding coefficients.
Although the general LASSO estimator may not be consistent
(Zou, 2006), with appropriately chosen data-dependent weights
w1j ’s and w2j ’s, we are able to warrant the “oracle property” for
the adaptive LASSO estimator. Therefore, the adaptive LASSO
estimates are much more attractive than the general LASSO
estimates. In high-dimensional scenarios, these weights may
not available, due to the presence of data collinearity. In those
situations, we make use of the reciprocal of the ridge-penalized
estimates (Hoerl and Kennard, 1970) as weights, which are
usually available.

Selection of Tuning Parameters
For selecting the tuning parameters, followingWang et al. (2015),
we first construct a solution path based on the paired shrinkage
parameters. Then, we choose the final estimates as determined by
the minimum BIC information defined as

BIC = −2 log L+ d log(n),

where d is the number of non-zero parameters in the model
and n is the sample size. It should be noted that the BIC is
asymptotically consistent in terms of model selection (Burnham
and Anderson, 2004; Dziak et al., 2005; Naik et al., 2007; Wang
et al., 2007, 2009), which means that the probability of the

FIGURE 6 | Average Type I Error Rates (Red Bar) and Average Power (Blue Bar) from 1000 Replications for SNPs in High LD (ρ = 0.9). Five methods are

displayed from left to right: Poisson Regression (PR), Zero-inflated Poisson (ZIP) regression, Negative Binomial (NB) regression, Zero-inflated Negative Binomial (ZINB)

regression, and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances (h = 0.20, 0.25, 0.30)

(in columns) are presented.
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selected model being the true model converges to 1 as the sample
size increases.

Practical Implementation
To implement our algorithm, we make use of the R packages pscl
(Zeileis et al., 2008) and mpath. First, we obtain the maximum
likelihood estimates by running the glm.nb function in the
R package pscl for fitting ZINB regression models, and then
we supply the weights (reciprocal of the maximum likelihood
estimates) to the zipath function in the R packagempath through
the argument penalty.factor. In situations when the maximum
likelihood estimates are not available, we make use of the
reciprocal of the ridge-penalized estimates as weights, available
from the R packagempath.

SIMULATIONS

In this section, we conduct extensive simulation experiments to
evaluate the finite sample performance of the proposed method,

and compare the results with several existing methods with
respect to model misspecification and variable selection.

Simulations with Simulated Genotypes
We generate the simulated data as in Wang and Elston (2007).
The genotype data (containing k SNPs) is generated as follows:

1) First, we generate a latent vector Z = (Z1,Z2, ...,Zk)
′ from

a multivariate normal (MVN) distribution with mean 0 and
AR (1) covariance matrix (power decay correlation), i.e.,
Cov(Zi,Zj) = ρ|i−j|, i 6= j.

2) Second, we dichotomize Z into a haplotype, say H1 =

(h11,...,h1k)
′ with h1j = I(Zj < MAF), where the MAF is fixed

at 5%.
3) Similarly, we generate another independent haplotype H2.

Combining the two haplotypes (H1 + H2) we obtain an
individual’s genotype.

Based on the genotype data, we construct our design matrix
X assuming an additive model and generate the phenotype of
interest according to the model in Equation (11), where the

FIGURE 7 | Sensitivity (Red Bar) and Specificity (Blue Bar) from 1000 Replications for Independents SNPs (ρ = 0). Two methods are displayed: LASSO

penalized NB regression (LASSO) and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances

(h = 0.05, 0.10, 0.15) (in columns) are presented.
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phenotype follows a ZINB distribution. For the null case, we
assign β = 0; for the non-null case with varying association
strengths, the effect sizes (for the count model) are determined
so that all causal SNPs contribute the same marginal variance
hj

2 to the linear predictor, where hj
2 is defined as hj

2 = 2 ∗

MAF ∗ (1–MAF) ∗ βj
2. We assume that there are k = 50 SNPs

among which 5 are assumed to be causal (in particular, we
assume the 1st, 11th, 21st, 31st, and 41st SNP to be causal).
To ensure that the overall effect of all variants is reasonably
low, we fix the sum of their marginal variances h =

∑

hj
2

at 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 under the alternative
hypothesis, assuming equal marginal variance for each causal
SNP. The simulation scenarios are also presented in Table 1. For
simplicity, we consider γ = 0 i.e., an intercept-only model is
assumed for the zero component. The zero inflation is assumed
to be 50% across all simulation examples. We consider three
linkage disequilibrium patterns: (i) Independent SNPs (ρ = 0),
(ii) SNPs in moderate LD (ρ = 0.5), and (iii) SNPs in high
LD (ρ = 0.9). For each situation, 1000 replicated datasets are
simulated. For each of these simulation scenarios, we consider

three sample sizes: small (n= 200), moderate (n= 500), and large
(n= 1000).

Simulations with Real Genotypes
As one anonymous reviewer suggested, to mimic real data and to
be as practical as possible, the best way to validate and study the
properties of the proposed method will be to take real sequence
data obtained from many individuals and simulate phenotypes
based on variants in those sequences, making assumptions only
about genetic effects of variants. To this end, we used the
genotypes (i.e., Xi’s) from a real data to generate a zero-inflated
NB outcome, and performed additional simulation studies by
taking advantage of the real genotypes of variants in a large real
dataset.

Kaklamani et al. (2008) investigated the association of genetic
variants of the adiponectin (ADIPOQ) and adiponectin receptor
1 (ADIPOR1) genes with colorectal cancer risk in a large case-
control study. This case-control study included a total of 441
patients with a diagnosis of colorectal cancer and 658 unrelated
controls. All cases and controls were white and of Ashkenazi

FIGURE 8 | Sensitivity (Red Bar) and Specificity (Blue Bar) from 1000 Replications for Independents SNPs (ρ = 0). Two methods are displayed: LASSO

penalized NB regression (LASSO) and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances

(h = 0.20, 0.25, 0.30) (in columns) are presented.
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Jewish ancestry and from New York. Information regarding
gender, current age for controls, and age at colorectal cancer
diagnosis for cases was recorded. Five haplotype-tagging SNPs
were selected to capture variations in the major blocks in each
of genes ADIPOQ and ADIPOR1. The selected SNPs have MAF
above 10% and show low proportions of missing genotypes
(from 0.3 to 3%). The genotypic frequencies of the 10 SNPs
are reported in Table 1 of Yi et al. (2011). For the missing
genotypes, following previous analyses (Yi et al., 2011), we
filled in the variables using the expectation of the observed
values in that marker. As before, the zero inflation is assumed
to be 50% across all examples, with an intercept-only model
for the zero component. We assume that there are 5 causal
effects among the 20 main effects under codominant model. In
particular, we assume the 1st, 5th, 9th, 13th, and 17th genetic
effect to be causal. As before, the sum of marginal variances
(h =

∑

hj
2) is fixed at 5, 10, 15, 20, 25, and 30% under the

alternative hypothesis, assuming equal marginal variance for
each causal SNP. For each situation, 1000 replicated datasets are
simulated.

Each generated data is analyzed using six methods, viz.
the Poisson regression (PR), ZIP regression, Negative Binomial
(NB) regression, ZINB regression, the LASSO method of Wang
et al. (2015), and the proposed method (AL). To summarize
the simulation results, we calculate the percentage of times
a regression coefficient, and hence the corresponding variant,
is found to be significant. Thus, this percentage is essentially
power or type I error for that variant depending on whether
the variant is truly associated or not associated. Therefore,
the type I error in this context is the event of declaring a
variant to be significant when it is not truly associated. For
the unpenalized methods, we reject the null hypothesis that
the genetic effect of an individual SNP equals to zero at the
significance level of 5% with the False Discovery Rate (FDR)
adjustment (Benjamini and Yekutieli, 2001). For the proposed
adaptive LASSO (AL) procedure, the non-zero coefficients are
known to have asymptotic normal distributions, which is due
to the established oracle property of the estimator. Therefore,
to test the non-zero estimated coefficients, we reject the null
hypothesis that the genetic effect of an individual SNP equals

FIGURE 9 | Sensitivity (Red Bar) and Specificity (Blue Bar) from 1000 Replications for SNPs in Moderate LD (ρ = 0.5). Two methods are displayed: LASSO

penalized NB regression (LASSO) and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances

(h = 0.05, 0.10, 0.15) (in columns) are presented.
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to zero at the same significance level as before. It is to be noted
that, we are not clear whether we can use the same significance
testing framework for the non-zero coefficients in the LASSO
procedure, as it is unknown whether the estimated non-zero
LASSO coefficients follow an asymptotic normal distribution for
the ZINB regression. Nevertheless, for a complete evaluation,
we also compare the sensitivity and specificity of the proposed
method with that of the LASSO method, where sensitivity and
specificity refer to the proportion of true non-zero coefficients
and true zero coefficients that are detected by each method.

RESULTS

Power and Type I Error (Simulated
Genotypes)
The simulation results are summarized in Figures 1–6. Several
observations are in order. First of all, for small sample sizes,
the type I error rates for the PR and the ZIP models are high
irrespective of the LD spectra of the variants. For moderate to
large sample sizes, the type I error rate stays under control for

the ZIP regression, although it remains uncontrolled for the PR.
Second, the performance of the ZINB regression is surprisingly
not better than the NB regression when the sample size is small.
In fact, when n = 200, the type I error rate is out of control
for the ZINB for all values of ρ, although not necessarily so
for other scenarios. For moderate to large sample sizes, the
ZINB performs better than the NB regression, as expected.
Third, the proposed method is the most conservative among the
methods considered, as it consistently maintains better control
of Type I error rate as compared to other methods across
all scenarios. Also, among the methods having well controlled
type I error rates, the proposed AL procedure generally has
higher power as compared to their non-penalized counterparts.
Fourth, for high LD scenarios (ρ = 0.9), there is a systematic
trend in the empirical powers for the methods considered. In
particular, it follows the order: AL > ZINB > NB. Overall, the
zero-inflated count models perform better than their regular
counterparts in most of the scenarios. Fifth, we also evaluated
sensitivity and specificity of the penalized regression methods
for all the simulation scenarios described above (Figures 7–
12). In all the situations, the proposed method consistently

FIGURE 10 | Sensitivity (Red Bar) and Specificity (Blue Bar) from 1000 Replications for SNPs in Moderate LD (ρ = 0.5). Two methods are displayed: LASSO

penalized NB regression (LASSO) and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances

(h = 0.20, 0.25, 0.30) (in columns) are presented.
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FIGURE 11 | Sensitivity (Red Bar) and Specificity (Blue Bar) from 1000 Replications for SNPs in High LD (ρ = 0.9). Two methods are displayed: LASSO

penalized NB regression (LASSO) and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances

(h = 0.05, 0.10, 0.15) (in columns) are presented.

has better sensitivity as compared to the LASSO estimator,
although both have similar specificity. As expected, the sensitivity
drastically increases with larger sample sizes. Lastly, in our
experience, the non-penalized methods perform slightly better
than the penalized methods in terms of CPU time. However,
the problem of non-identifiability of the parameter estimates
frequently occurs (especially for small sample size) for non-
penalized methods, whereas no such problem arises while using
the penalized methods. In Table 2, we summarize the percentage
of non-convergence of the methods when n = 200. It can be
seen that the non-convergence issues only arise for ZIP, NB,
and ZINB methods for small sample sizes. Therefore, we slightly
overestimate the powers and type I error rates for these methods,
as we compute these quantities only based on those replicates that
converge.

Power and Type I Error (Real Genotypes)
We also investigate the empirical power of the five methods
under consideration in additional simulations based on real
genotype data as described above (Figure 13). It is interesting
to note that the PR has the highest power in all the simulations

with ZIP closely following next although both with slightly
higher Type I error rates. In contrast, all the negative binomial-
based methods have low Type I error rates. Among these NB-
based methods, the proposed method has the highest empirical
power across all situations. Here also we evaluated the penalized
methods in terms of their sensitivity and specificity. It is evident
from Figure 14 that the proposed AL method significantly
outperforms the LASSO procedure with better sensitivity and
similar specificity.

Parameter Estimation
We also compare the performance of the six methods with
respect to parameter estimation. We measure the performance
of each method based on the mean squared error (MSE) of its
parameter estimates in the linear predictor scale. That is, for a
method, suppose β(s) is its estimate of the true β from dataset s,
then its MSE is defined as

MSE =

1000
∑

s= 1

(β(s) − β)′(β(s) − β).
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FIGURE 12 | Sensitivity (Red Bar) and Specificity (Blue Bar) from 1000 Replications for SNPs in High LD (ρ = 0.9). Two methods are displayed: LASSO

penalized NB regression (LASSO) and adaptive LASSO (AL) penalized NB regression. Three sample sizes (n = 200, 500, 1000) (in rows) and three marginal variances

(h = 0.20, 0.25, 0.30) (in columns) are presented.

As shown in Tables 3–6, for all values of ρ, the penalized
methods significantly outperform the non-penalized methods
in terms of prediction accuracy. This confirms the advantage
of the penalized regression, for parameter estimation and
thus outcome prediction in the presence of zero-inflated
count phenotypes. Here also we calculate the MSEs by
only considering the replicates that converged. For a
complete evaluation, we also calculate the MSEs for these
three methods by considering both convergent and non-
convergent replicates, and reach the same conclusion. Both
LASSO methods have similar prediction accuracy. Hence,
the analyses show strong support for the use of the proposed
method.

DISCUSSION

In this paper, we have proposed a novel variable selection
method for detecting SNPs associated with zero-inflated count
phenotypes in a negative binomial regression framework. We

have considered a computationally efficient EM algorithm,
which can simultaneously include a large number of genetic
and environmental variables in the model. We have shown
the superior performance of the proposed method through
extensive simulation studies. Despite their wide applications
in other scientific disciplines (Buu et al., 2011; Tang et al.,
2014; Wang et al., 2014, 2015), zero-inflated count models are
less thoroughly studied in genetics. We attempt to bridge this
gap by investigating several state-of-the-art methods in light
of their performance with respect to model misspecification
and variable selection in association studies. As an example,
two most popular approaches for handling zero-inflated count
phenotypes in genetic association studies include the PR and
the ZIP regression. However, it is unclear whether these
methods provide sufficient power to detect a causal SNP
when a model is misspecified. By simulating data under a
variety of disease models, we have shown that using these
methods in the presence of severe over dispersion can be
misleading, as they tend to provide unprecedentedly high
type I errors. In such situations, alternative methods based
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TABLE 2 | Proportion of Non-identifiability of Parameter Estimates for

Varying LD Structure for n = 200.

ρ Marginal Variance PR ZIP NB ZINB LASSO AL

ρ = 0 0.01 0 1.2 1 2.7 0 0

0.02 0 0.6 0.7 1.6 0 0

0.03 0 0.5 1.1 1.8 0 0

0.04 0 0.7 1.7 1.7 0 0

0.05 0 1 1.8 1.5 0 0

0.06 0 1 2.3 2.2 0 0

ρ = 0.5 0.01 0 0.6 1.8 3.4 0 0

0.02 0 0.9 1.9 1.9 0 0

0.03 0 0.6 2.7 1.9 0 0

0.04 0 0.9 1.2 2.8 0 0

0.05 0 1.2 1.8 1.8 0 0

0.06 0 1.5 2.6 2.5 0 0

ρ = 0.9 0.01 0 8.9 2.2 7.8 0 0

0.02 0 10 2.5 8.2 0 0

0.03 0 9 3.1 6.8 0 0

0.04 0 10 3.3 7.5 0 0

0.05 0 9.2 3.7 7.3 0 0

0.06 0 10.2 5.2 9.3 0 0

on the negative binomial regression framework (viz. the NB
regression, the ZINB regression, and the adaptive LASSO
penalized ZINB regression) provide better flexibility in modeling
the over dispersion as compared to their Poisson counterparts.
A similar conclusion was found in a recent article by Xu
et al. (2015) in the context of microbiome data. Our results
provide further insight on the empirical power of these
alternative approaches for a range of variance values, which
can guide researchers in designing studies involving zero-
inflated count phenotypes. It is to be noted that, the current
results are only valid when the underlying true model is ZINB.
In practical situations when little is known about the data
generating process, the choice of a model should be based
on the closest fit between the observed and the predicted
values. Moreover, most practical data analysis in genetic
association studies involve several pre-processing steps including
variable transformations, coding of variables, removal of outliers,
handling of missing data, etc. which should be properly
applied to these methods to ensure accurate results and easy
implementation.

A few limitations of our study should be noted. Although our
method can handle a large number of genetic and environmental
variables, we have not evaluated its performance in the
presence of interactions. Analysis of high-order interactions
is a challenging topic in high-dimensional genetic research
(Yi, 2010) and therefore, evaluation of the proposed method

FIGURE 13 | Average Type I Error Rates (Red Bar) and Average Power (Blue Bar) from 1000 Replications for Colorectal Cancer Simulation Study. Five

methods are displayed from left to right: Poisson Regression (PR), Zero-inflated Poisson (ZIP) regression, Negative Binomial (NB) regression, Zero-inflated Negative

Binomial (ZINB) regression, and adaptive LASSO (AL) penalized NB regression. Six marginal variances (h = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) are presented.
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FIGURE 14 | Sensitivity (Red Bar) and Specificity (Blue Bar) from 1000 Replications for Colorectal Cancer Simulation Study. Two methods are displayed:

LASSO penalized NB regression (LASSO) and adaptive LASSO (AL) penalized NB regression. Six marginal variances (h = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) are

presented.

and other existing approaches in the presence of gene-gene
(GXG) and gene-environment (GXE) interactions needs
further consideration. Also, we have not evaluated our
method for the rare variants (MAF < 1%), which are likely
to play an important role in the “missing heritability”
that cannot be explained by common and uncommon
variants (Zeggini, 2011). Recently, a number of penalized
regression methods have been proposed to handle rare
variants for linear and generalized linear models, most of
which follow various collapsing strategies and implement
various grouped penalized regression methods (Zhou et al.,
2010; Ayers and Cordell, 2013). Computationally efficient
extension of the proposed method to rare variants in
the context of zero-inflated count outcomes needs further
research.

Apart from the limitations described above, in our
simulation studies, we have not estimated the dispersion
parameter as it slows down the EM algorithm considerably.
Since the proposed adaptive LASSO estimator is a two-step

procedure (initially obtaining the weights and then refitting
the model with the estimated weights), the estimation
process for θ becomes more computationally intensive for
the proposed method as compared to others. However, since
in practice, we anticipate to estimate θ for better prediction
accuracy, following the suggestion of one anonymous
reviewer, we replicated our simulation studies to learn
the impact of estimating the dispersion parameter on the
overall conclusion. The detailed results are presented in
the Supplementary File (Supplementary Figures S2–S15,
Supplementary Tables S1–S4). No noticeable difference was
observed.

With the recent technological advances, and the upcoming
sequencing experiments, we have the potential to identify
additional causal variants across the entire genome, which
will give us a better understanding of the genetic basis of
complex diseases, such as rheumatoid arthritis (RA; Viatte
et al., 2013b). With such a big amount of data, it is
quite possible that the number of variants is far exceeding
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TABLE 3 | The Mean Squared Errors (MSEs) of the Parameter Estimates

Based on 1000 Replicates for Independent SNPs.

Sample Marginal PR ZIP NB ZINB LASSO AL

Size Variance

n = 200 0.01 2.84 749.59 12.51 346.94 0.01 0.01

0.02 2.84 842.08 12.51 332.52 0.02 0.03

0.03 2.83 639.1 12.63 299.27 0.04 0.04

0.04 2.82 737.22 13.28 364.73 0.05 0.05

0.05 2.84 479.63 13.85 326.86 0.07 0.07

0.06 2.9 520.9 15.09 352.02 0.08 0.09

n = 500 0.01 0.14 0.2 0.16 0.2 0.01 0.01

0.02 0.14 0.2 0.16 0.2 0.02 0.02

0.03 0.15 0.2 0.16 0.2 0.03 0.03

0.04 0.15 0.2 0.17 0.2 0.04 0.04

0.05 0.15 0.2 0.17 0.2 0.05 0.05

0.06 0.17 0.2 0.19 0.2 0.06 0.05

n = 1000 0.01 0.06 0.07 0.07 0.07 0.01 0.01

0.02 0.06 0.07 0.07 0.07 0.02 0.02

0.03 0.06 0.07 0.07 0.07 0.03 0.02

0.04 0.07 0.07 0.07 0.07 0.03 0.03

0.05 0.07 0.07 0.07 0.07 0.04 0.03

0.06 0.07 0.07 0.07 0.07 0.04 0.02

TABLE 4 | The Mean Squared Errors (MSEs) of the Parameter Estimates

Based on 1000 Replicates for SNPs in Moderate LD.

Sample Marginal PR ZIP NB ZINB LASSO AL

Size Variance

n = 200 0.01 2.92 542.39 12.18 326.83 0.01 0.01

0.02 2.93 291.32 12.56 288.1 0.02 0.03

0.03 2.9 330.95 12.49 186.88 0.04 0.04

0.04 2.93 539.92 13.67 252.26 0.05 0.05

0.05 2.97 337.68 14.2 813.24 0.07 0.07

0.06 2.98 424.8 14.47 265.29 0.08 0.09

n = 500 0.01 0.16 0.23 0.18 0.23 0.01 0.01

0.02 0.16 0.23 0.18 0.23 0.02 0.02

0.03 0.16 0.23 0.18 0.23 0.03 0.03

0.04 0.17 0.23 0.21 0.23 0.05 0.04

0.05 0.18 0.23 0.21 0.23 0.06 0.05

0.06 0.19 0.24 0.28 0.23 0.06 0.06

n = 1000 0.01 0.07 0.07 0.07 0.07 0.01 0.01

0.02 0.07 0.07 0.07 0.07 0.02 0.02

0.03 0.07 0.07 0.07 0.07 0.03 0.03

0.04 0.07 0.07 0.07 0.07 0.03 0.03

0.05 0.08 0.08 0.07 0.07 0.04 0.03

0.06 0.08 0.08 0.08 0.07 0.04 0.02

TABLE 5 | The Mean Squared Errors (MSEs) of the Parameter Estimates

Based on 1000 Replicates for SNPs in High LD.

Sample Marginal PR ZIP NB ZINB LASSO AL

Size Variance

n = 200 0.01 25319.77 44548.96 113.34 31530.87 0.01 0.01

0.02 18119.28 36267.35 206.43 24101.56 0.03 0.03

0.03 26.05 16570.53 43.01 4579.47 0.04 0.04

0.04 38.17 16627.73 44.04 4696.22 0.05 0.06

0.05 38.46 15896.03 46.58 4592.57 0.07 0.07

0.06 436.29 2521216 727.7 5014.9 0.09 0.09

n = 500 0.01 0.31 0.72 0.39 0.7 0.01 0.01

0.02 0.32 0.7 0.4 0.67 0.02 0.02

0.03 0.32 0.69 0.41 0.67 0.04 0.04

0.04 0.33 0.68 0.41 0.67 0.05 0.05

0.05 0.35 0.71 0.43 0.74 0.06 0.06

0.06 0.36 0.68 0.44 0.67 0.07 0.07

n = 1000 0.01 0.13 0.16 0.15 0.16 0.01 0.01

0.02 0.13 0.16 0.15 0.16 0.02 0.02

0.03 0.13 0.16 0.15 0.16 0.03 0.03

0.04 0.14 0.16 0.16 0.16 0.04 0.03

0.05 0.15 0.16 0.16 0.15 0.04 0.04

0.06 0.16 0.16 0.16 0.15 0.05 0.03

TABLE 6 | The Mean Squared Errors (MSEs) of the Parameter Estimates

Based on 1000 Replicates for Colorectal Cancer Data.

Marginal Variance PR ZIP NB ZINB LASSO AL

0.01 0.03 0.03 0.04 0.03 0.01 0.01

0.02 0.04 0.03 0.04 0.04 0.01 0.01

0.03 0.04 0.04 0.04 0.04 0.02 0.01

0.04 0.04 0.04 0.04 0.04 0.02 0.01

0.05 0.04 0.04 0.04 0.04 0.02 0.01

0.06 0.11 0.12 0.11 0.11 0.02 0.01

than the number of subjects. Also, quite often it will be
necessary to examine a large number of genetic variants and
environmental factors in a joint model, for which, traditional
methods such as the ZINB or ZIP can be overwhelmed.
For such situations, the proposed method provides a good
alternative for conducting multi-SNP modeling in the presence
of severe data collinearity induced by multiple highly linked
variants.
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