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ABSTRACT: Paracetamol overdose is the leading cause of drug-
induced hepatotoxicity worldwide. Because of N-acetyl cysteine’s
limited therapeutic efficacy and safety, searching for alternative
therapeutic substitutes is necessary. This study investigated four
citrus juices: Citrus sinensis L. Osbeck var. Pineapple (pineapple
sweet orange), Citrus reticulata Blanco × Citrus sinensis L. Osbeck
(Murcott mandarin), Citrus paradisi Macfadyen var. Ruby Red (red
grapefruit), and Fortunella margarita Swingle (oval kumquat) to
improve the herbal therapy against paracetamol-induced liver
toxicity. UHPLC-QTOF-MS/MS profiling of the investigated
samples resulted in the identification of about 40 metabolites
belonging to different phytochemical classes. Phenolic compounds
were the most abundant, with the total content ranked from 609.18
to 1093.26 μg gallic acid equivalent (GAE)/mL juice. The multivariate data analysis revealed that phloretin 3′,5′-di-C-glucoside,
narirutin, naringin, hesperidin, 2-O-rhamnosyl-swertisin, fortunellin (acacetin-7-O-neohesperidoside), sinensetin, nobiletin, and
tangeretin represented the crucial discriminatory metabolites that segregated the analyzed samples. Nevertheless, the antioxidant
activity of the samples was 1135.91−2913.92 μM Trolox eq/mL juice, 718.95−3749.47 μM Trolox eq/mL juice, and 2304.74−
4390.32 μM Trolox eq/mL juice, as revealed from 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid, ferric-reducing antioxidant
power, and oxygen radical absorbance capacity, respectively. The in vivo paracetamol-induced hepatotoxicity model in rats was
established and assessed by measuring the levels of hepatic enzymes and antioxidant biomarkers. Interestingly, the concomitant
administration of citrus juices with a toxic dose of paracetamol effectively recovered the liver injury, as confirmed by normal sections
of hepatocytes. This action could be due to the interactions between the major identified metabolites (hesperidin, hesperetin,
phloretin 3′,5′-di-C-glucoside, fortunellin, poncirin, nobiletin, apigenin-6,8-digalactoside, 6′,7′-dihydroxybergamottin, naringenin,
and naringin) and cytochrome P450 isoforms (CYP3A4, CYP2E1, and CYP1A2), as revealed from the molecular docking study. The
most promising compounds in the three docking processes were hesperidin, fortunellin, poncirin, and naringin. Finally, a desirable
food−drug interaction was achieved in our research to overcome paracetamol overdose-induced hepatotoxicity.

1. INTRODUCTION
Paracetamol is a highly efficient and extensively used analgesic
and antipyretic worldwide.1 Despite its therapeutic value,
paracetamol-induced hepatotoxicity is one of the most pervasive
types of poisoning globally.2 The perspective of paracetamol as a
safe over-the-counter medication has already become totally
ambiguous, resulting in a significantly high rate of hepatic injury
and even death. That may occur at doses just slightly higher than
the maximum therapeutic dose, which is stated by the Food and
Drug Administration (FDA) of the United States as 4000 mg of
acetaminophen per day.3 According to the Poison Control
Center at Ain Shams University Hospitals (PCC-ASUH), which

is considered Egypt’s primary poison control center, “Para-
cetamol ranks among the top 10 exposure substances that PCC-
ASUH received the most in 2019”.4

The WHO5 urged people on March 17, 2020, with
coronavirus disease 2019 (COVID-19) symptoms to avoid
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Table 1. Metabolites Tentatively Identified in Citrus Juices Using UPLC-MS/MSa
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ibuprofen and instead utilize paracetamol.6 Moreover, para-
cetamol has been considered the first choice analgesic and
antipyretic used for COVID-19 patients considering the WHO
pain management ladder.7 Consequently, these concerns have
intensified during the COVID-19 pandemic because of the
exceptionally excessive purchase and domiciliary use without
considering the safety measures.8

After a paracetamol overdose, cytochrome P450 isoenzymes
bioactivate the excess paracetamol to a hepatotoxic metabolite,
N-acetyl-p-benzoquinoneimine (NAPQI).9 N-acetyl cysteine is
considered the drug of choice as the treatment in cases of
paracetamol overdose.10 However, its utilization is hindered by
disability to stop the NAPQI formation, besides the panic of its
hypersensitivity.11

CYP3A4 is a drug-metabolizing enzyme of the P450
superfamily that is abundantly expressed in the human liver
and plays a significant role in drug metabolism.12,13

Furthermore, previous studies reported that administering a
hepatotoxic dose of paracetamol combined with known
inhibitors of CYP 3A4, 2E1, and 1A2, for instance, isoniazid,
caffeine, and ketoconazole, could prevent the progression of
paracetamol-induced hepatotoxicity.14 Unfortunately, these
medications were unable to be further investigated because of
their side effects and therapeutic use.

As traditional herbal medicines are widely applied, herb−drug
interactions have become an increasing issue in the clinical use of
conventional drugs. Herb−drug interactions can have a variety
of outcomes: on the one hand, they can affect drug levels and/or
activities, potentially leading to therapeutic failure or adverse
reactions; on the other hand, some can result in beneficial
clinical effects such as increased efficacy and decreased side
effects.15 As a result, it became necessary to find more safe and
suitable candidates for preventing paracetamol-induced hep-

atotoxicity. It is well known that medicinal plants containing
phenolics as flavonoids (e.g., citrus) have antioxidant,
hepatoprotective, membrane-stabilizing activity, and CYP2E1
inhibitory effects.16 Citrus plants have great importance which
could be attributed to several medicinally bioactive metabolites,
for example, essential oils, limonoids, furanocoumarins,
flavonoids, sterols, alkaloids, and carotenoids.17 In recent
years, there have been reports of interactions between citrus
fruit products and several drugs.18,19 Notably, even just a single
glass of grapefruit juice causes a marked decline in CYP3A4
substrate metabolism. When grapefruit is consumed repeatedly,
hepatic CYP3A4 activity decreases.20 Other citrus juices may
have comparable effects via a different mechanism, resulting in a
decrease in the systemic concentration of specific medications.21

Thus, the aim of this research was to demonstrate how the
four common Egyptian citrus juices; Citrus sinensis L. Osbeck
var. Pineapple (sweet orange), Citrus reticulata Blanco × Citrus
sinensis L. Osbeck (Murcott mandarin), Citrus paradisi
Macfadyen var. Ruby Red (red grapefruit), and Fortunella
margarita Swingle (oval kumquat) had CYP P450 inhibition
activity with an impact on the prevention of paracetamol-
induced hepatotoxicity following an overdose in rats.

2. RESULTS
2.1. UHPLC−MS/MS Analysis. The retention times,

identities, observed molecular weights, and fragment ions for
individual metabolites are shown in Table 1. The identified
metabolites belong to different classes of compounds: 25
flavonoids, 3 phenolic acids, 2 phenolic glycosides, 2 coumarins,
1 furanocoumarin, 2 triterpenoids, 2 amino acids, 1 amino acid
glucoside, 1 sugar, and 1 organic acid. The mass fragmentations
of identified metabolites were compared to the previous
published references or database, as illustrated in Table 1.

Table 1. continued

aOP; pineapple orange with pulp, OPA; pineapple orange with pulp and albedo, OF; pineapple orange whole fruit, , MP; Murcott mandarin with
pulp, MPA; Murcott mandarin with pulp and albedo, MF; Murcott mandarin whole fruit, GP; red grapefruit with pulp, GPA; red grapefruit with
pulp and albedo, GF; red grapefruit whole fruit, KP; oval kumquat with pulp, KPA; oval kumquat with pulp and albedo, KF; oval kumquat whole
fruit, (+); present, (−); absent.
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2.1.1. Flavonoids. UPLC-MS/MS results revealed the
identification of 5 flavanone glycosides, 7 flavones, 10 flavone
glycosides, 2 flavonol glucosides, and 1 chalcone glycoside.
Citrus species are rich sources of flavanone glycosides,
particularly hesperidin and naringin.22 Our results revealed the
detection of narirutin (compound 16), naringin (compound
21), hesperidin (compound 23), didymin (compound 28), and
poncirin (compound 29) in the investigated samples.

Polymethoxyflavones which are present in commonly
consumed citrus juices, viz., sinensetin (compound 32),
demethoxy-tangeretin (compound 33), nobiletin (compound
34), demethoxy-nobiletin (compound 40), artemetin (com-
pound 36), methoxynobiletin (compound 37), and tangeretin
(compound 38), were also identified. Due to their greater oral
bioavailability than hydroxyflavones and the fact that they are
lipophilic, polymethoxyflavones have drawn a lot of attention.

Figure 1.Chemometric discrimination of citrus species based upon LC/MS analyses of their juices using PCA, showing score plot (A) and loading plot
(B) where pineapple orange whole fruit (OF); pineapple orange with pulp and albedo (OPA); pineapple orange with pulp (OP); Murcott mandarin
whole fruit (MF); Murcott mandarin with pulp and albedo (MPA); Murcott mandarin with pulp (MP); red grapefruit whole fruit (GF); red grapefruit
with pulp and albedo (GPA); red grapefruit with pulp (GP); oval kumquat whole fruit (KF); oval kumquat with pulp and albedo (KPA); and oval
kumquat with pulp (KP); values are the average of three triplicate readings.
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The quantity and location of methoxy groups affect these
compounds’ bioavailability.23

Additionally, rutin (compound 15) and quercitrin (com-
pound 24) were identified as flavonol glucosides.

Also, 10 flavone glycosides were identified, namely as luteolin
6-C-glucoside 8-C-arabinoside (compound 9), apigenin 6,8-
digalactoside (compound 12), isovitexin 2″-O-rhamnoside
(compound 13), isovitexin 2″-O-arabinoside (compound
14), isoswertisin-O- glucoside (compound 18), kaempferol 3-
O-rutinoside (compound 19), isorhamnetin 3-O-rutinoside
(compound 20), rhoifolin (compound 22), 2-O-rhamnosyl-
swertisin (compound 25), and fortunellin (compound 27).
Fortunellin (acacetin-7-O-neohesperidoside) has long been
recognized as a significant component in kumquats.22,24

Furthermore, 3′,5′-di-C-β-glucopyranosyl phloretin (DGPP)
(compound 17) was shown to be the identified dihydrochal-
cone C-glycoside in oval kumquat juices only. This is consistent
with previously reported findings stating that the flavonoid
DGPP is a feature of the genus Fortunella.25

2.1.2. Coumarins and Furanocoumarin. Scoparone (com-
pound 26) and umbelliferone (compound 30) were the
detected coumarins, where umbelliferone is a characteristic of
grapefruits. Moreover, 6′,7′-dihydroxy-bergamottin (com-
pound 31) is a natural furanocoumarin found in grapefruits in
both the peel and the pulp and is reported to be responsible for
many grapefruit−drug interactions.26

2.1.3. Phenolic Acids. Feruloyl putrescine (Compound 6),
Ferulic acid (Compound 8), and Sinapic acid (Compound 10)
were identified.
2.1.4. Phenolic Glycoside. Syringin (Compound 7) and

Iriflophenone 2-glucoside (Compound 11) were identified.
These compounds were fragmented to yield free phenolic acid
through bond cleavage of glycosidic linkage, followed by
additional cleavage caused by the loss of carboxylic or hydroxyl
groups.
2.1.5. Triterpenoids. Tetranortriterpenoids, known as

limonoids, are among the bioactive compounds in citrus
products that have the greatest health benefits. The examined
samples contained limonin (compound 35) and nomilin
(compound 39), which are known to be the main limonoids
in citrus fruits.27

2.1.6. Miscellaneous Compounds. Two amino acids were
identified as arginine (compound 1) and L-tryptophan
(compound 5), and one organic acid was identified as citric
acid (compound 3), in addition to one amino acid glucoside,
namely, tryptophan N-glucoside, and one sugar identified as
sucrose (compound 2).28−54

2.2. Metabolic Discrimination of Citrus Species Based
on UPLC-MS/MS Analysis Coupled with Chemometrics.
Chemometric analysis of citrus species under investigation was
done relying upon qualitative and quantitative information
compiled from LC/MS study of the juices acquired from the
different layers of their fruits, namely, the whole fruit, pulp and
albedo, and pulp only. Twelve samples were compared using
principal component analysis (PCA) and hierarchical cluster
analysis (HCA) as unsupervised pattern recognition models.
These samples were OP, OPA, OF, MP, MPA, MF, GP, GPA,
GF, KP, KPA, and KF. The PCA score plot for principal
components (PCs) extracted seven PCs, accounting for 98.47%
of the total variances, whereas PC1 versus PC2 accounted for 53
and 18% of the total variance, respectively. Moreover, the PCA
score plot results, presented in Figure 1A, successfully
segregated the examined samples into three main clusters. OF
and MF are clustered together in the left upper quadrant,
showing negative values for PC1 and positive values for PC2
(cluster I). MPA, OPA, GF, GPA, MP, OP, and GP are clustered
together in cluster II, which is allocated in the lower quadrants
on either side of PC1, showing negative values for PC2.
However, KP, KPA, and KF are gathered in cluster III on the
right upper quadrant, revealing positive values for both PCs.
Meanwhile, cluster II was re-clustered into three discriminant
sub-clusters where MP, OP, and GP were collected in one
cluster existed on the right lower quadrant, showing positive
values for PC1 where negative values for PC2; GF and GPA
were segregated together, whereas MPA and OPA are collected
in one separate cluster. Through a comprehensive examination
of the score plot, it was clearly obvious that PC1 significantly
discriminates cluster I from cluster III, whereas PC2 effectively
separates clusters I and III from cluster II, and this basically
depends on the qualitative and quantitative variation in their
predominant secondary metabolites that greatly reflected upon
their biological activities. Additionally, the loading plot

Figure 2.HCA dendrogram for discrimination of citrus species based upon LC/MS analyses of their juices where pineapple orange whole fruit (OF);
pineapple orange with pulp and albedo (OPA); pineapple orange with pulp only (OP); Murcott mandarin whole fruit (MF); Murcott mandarin with
pulp and albedo (MPA); Murcott mandarin with pulp (MP); red grapefruit whole fruit (GF); red grapefruit with pulp and albedo (GPA); red
grapefruit with pulp (GP); oval kumquat whole fruit (KF); oval kumquat with pulp and albedo (KPA); oval kumquat with pulp (KP); the average of
three triplicate readings.
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displayed in Figure 1B highlighted that phloretin 3′,5′-di-C-
glucoside (3′ 5′-di-C-β-glucopyranosyl phloretin), narirutin,
naringin, hesperidin, 2-O-rhamnosyl-swertisin, fortunellin (aca-
cetin-7-O-neohesperidoside), sinensetin, nobiletin, and tanger-
etin represented the crucial discriminatory metabolites that
caused the segregation of the analyzed samples.

Moreover, HCA was further ascertained from PCA results,
where the HCA dendrogram revealed the classification of the
tested samples into three main clusters: clusters I, II, and III, of
which cluster II was further separated into sub-clusters 1, 2, and
3, as illustrated in Figure 2, where HCA results came in
coincidence with PCA results.
2.3. Total Phenolic Content. Phenolics in our study of the

fresh juices obtained from OP, MP, GP, and KF ranged from
609.18 to 1093.26 μg gallic acid equivalent/mL juice (GAE/mL
juice). Among juice samples, it was revealed that OP showed the
highest total phenolic content (1093.26 ± 39.56 μg GAE/mL
juice), followed by GP and KF (790.40 ± 13.01 and 736.93 ±
15.50 μg GAE/mL juice, respectively), and the last one was MP
(609.18 ± 19.38 μg GAE/mL juice).
2.4. In Vitro Assessment of Antioxidant Capacity. The

antiradical, ferric ion-reducing power, and reactive oxygen
species (ROS) scavenging activities were estimated using ABTS,
FRAP, and ORAC, respectively. All the tested juices revealed
antioxidant potency throughout those three different assays, as
represented in Table 2. The results were expressed as μM Trolox

equivalent per mL of juice. The samples showed antioxidant
values ranging from 1135.91 to 2913.92 μM Trolox eq/mL
juice, 718.95 to 3749.47 μM Trolox eq/mL juice, and 2304.74 to
4390.32 μM Trolox eq/mL juice in ABTS, FRAP, and ORAC,
respectively.
2.5. In Vivo Assessment of the Interactions of Citrus

Juices in Case of Paracetamol Overdose-Induced
Hepatotoxicity. From our results (Table 3), alanine trans-
aminase (ALT), aspartate transaminase (AST), and alkaline
phosphatase (ALP) levels were switched after paracetamol
overdose from 32.36 to 149.57 U/L, 53.43 to 237.68 U/L, and
116.42 to 321.43 U/L, respectively, indicating increments of
4.62, 4.44, and 2.76 folds. The level of nitric oxide (NO) also was
turned from 19.31 to 63.37 μmol/g tissue (3.28-fold increment
than the normal level), in addition to glutathione reductase
(GSH) that dropped from 8.67 to 3.21 μmol/g tissue (2.7-fold
reduction from normal values). In contrast, administration of
silymarin enhanced the values of ALT, AST, ALP, NO, and GSH
by (percentage change) −67.43, −71.65, −59.13, −66.66, and
144.86% compared to the paracetamol-treated group, respec-
tively. Noteworthily, when paracetamol was simultaneously

Table 2. In Vitro Antioxidant Activity of the Investigated
Citrus Juicesa

Citrus juice
sample ABTS FRAP ORAC

OP 2913.92 ± 134.12 3749.47 ± 87.55 4390.32 ± 161.57
MP 1135.91 ± 58.49 997.89 ± 85.19 2304.74 ± 323.37
GP 1838.61 ± 83.27 2229.47 ± 46.78 3737.17 ± 434.20
KF 2691.25 ± 67.67 718.95 ± 49.65 3689.22 ± 197.86

aOP; pineapple orange pulp juice, MP; Murcott mandarin pulp juice,
GP; red grapefruit pulp juice, KF; oval kumquat whole fruit juice,
ABTS; 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), FRAP;
ferric-reducing antioxidant power, ORAC; oxygen radical absorbance
capacity. The results were expressed as μM Trolox eq/mL juice ± SD.
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administered with citrus juices, some measured parameters were
apparently restored to levels with no significant difference to the
reference group (silymarin group). Noteworthy, in all measure-
ments, OP juice showed the highest potency in restoring the
liver parameters (ALT, AST, ALP, NO, and GSH) to normal
values after paracetamol-induced hepatotoxicity, with the
potency of 79.08, 61.32, 80.05, 62.62, and 62.58%, compared
to the reference drug, respectively, where MP, GP, and KF
showed % potency calculated to reference group values ranging
from 51.67−74.11, 48.39−52.57, 68.46−75.81, 46.73−57.2,
and 44.3−54.19% as ALT, AST, ALP, NO, and GSH levels,
respectively.

Moreover, the histopathological sections of different groups
are illustrated in Figure 3. The control group revealed normal
hepatic features; the liver was observed to be composed of ill-
defined hexagonal classic lobules; the hepatic lobules were
organized in cords radiating from the central veins, appeared to
be made of hepatocytes, and were separated by blood sinusoids.
The blood sinusoids were lined by Kupffer cells and endothelial
cells (Figure 3A). Furthermore, the histopathological changes of
liver tissues treated with paracetamol overdose only showed
signs of degeneration in hepatocytes in the form of pyknosis and
karyolysis. In contrast, others showed peripheral chromatin
clumping and pericentral necrosis. Bile duct proliferation and a
thickened portal vein vascular wall indicate fibrosis within the
portal area. The inflammation was observed primarily around
the fibrous tissue and bile duct proliferation (Figure 3B,C).
Histological slides from rats treated with paracetamol and
silymarin revealed that the hepatic cells appeared normal despite
having a thickened portal vein vascular wall and few
inflammatory cells around the portal tract and in the blood
sinusoids. Some binucleated and activated Kupffer cells are still
present (Figure 3D). In addition, the histological sections in rats
that were treated with paracetamol and OP juice exhibited some
enhancement in the pathological alterations induced by
paracetamol overdose, and examination of liver tissues showed

the nuclei appeared nearly normal, indicating the juice’s ability
to reverse the paracetamol-induced intoxication in liver tissues.
However, some inflammatory cells around the normal central
vein and some dark small nuclei were seen (Figure 3E). The liver
section of the rats treated with paracetamol and MP juice
showed that liver tissues still suffered from pathological changes
in the form of hepatocytes with vacuolated cytoplasm, dilated,
vacuolated, congested central veins, and dilated blood sinusoids.
Early fibrosis was also seen around the portal vein. Some
hepatocytes appeared nearly normal (Figure 3F,G). When rats
were administered paracetamol and GP juice, some hepatocytes
appeared normal, although there were pyknotic nuclei with
inflammatory cell infiltration around the portal tract and
bridging necrosis with early fibrosis still present (Figure 3H).
Finally, light microscopic examination in the liver of rats treated
with paracetamol and KF juice showed a reduction of
pathological changes in the form of most nuclei appearing
nearly normal. However, some changes were still present in the
form of inflammatory cell infiltration around the congested
portal tract with early fibrosis (Figure 3I).

The rats received paracetamol at the toxic dose (1725 mg/kg,
oral); the protective groups administrated silymarin at a dose of
100 mg/kg or juice at a dose of 3 mL/rat, normal group; saline
only (1 mL).

BD; bile duct proliferation, BS; blood sinusoids, CPV;
congested portal vein, CV; central vein, DCCV; dilated
congested central vein, IF; cell infiltration, N; necrosis, NCV;
normal central vein, PV; portal vein, V; vacuolar degeneration,
Y; karyolysis.

% change of the tested sample and silymarin
mean of the tested sample mean of paracetamol

mean of paracetamol

100

=

×

Figure 3.Reports the histopathological sections of different groups. (A) Normal rats (x = 30 μm), (B,C) paracetamol-treated rats in toxic dose (x = 20,
30 μm), (D) paracetamol-treated rats + silymarin (x = 30 μm), (E) paracetamol-treated rats + OP (pineapple orange pulp juice) (x = 30 μm), (F,G)
paracetamol-treated rats + MP (Murcott mandarin pulp juice) (x = 30 μm), (H) paracetamol-treated rats + GP (red grapefruit pulp juice) (x = 30 μm),
and (I) paracetamol-treated rats + FK (Oval kumquat whole fruit juice) (x = 30 μm).
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% change of paracetamol
mean of paracetamol mean of normal control

mean of normal control
100

=

×
2.6. Molecular Docking Studies. Hesperidin, hesperetin,

phloretin 3′,5′-Di-C-glucoside, fortunellin, poncirin, nobiletin,
apigenin-6,8-digalactoside, 6′,7′-dihydroxybergamottin, narin-
genin, and naringin as the major identified metabolites from

citrus juices were docked against the active pockets of
cytochrome P450 isoforms (CYP3A4, CYP2E1, and
CYP1A2). The most promising compounds in the three
docking processes were hesperidin, fortunellin, poncirin, and
naringin. Therefore, these compounds were selected for further
investigation.

Regarding the binding pocket of the CYP3A4 isoform (Table
4), the docked co-crystallized inhibitor got a binding score of
−10.57 kcal/mol (rmsd = 1.10 Å) with the formation of H-

Table 4. 3D Binding Interactions of Hesperidin, Fortunellin, Poncirin, and Naringin within the Active Pockets of Cytochrome
P450 Isoforms (CYP3A4, CYP2E1, and CYP1A2), Respectively
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bonds with Arg375, Arg105, and Arg106, a coordinate bond
with Cys442, and a pi−H-bond with Phe100. However,
hesperidin, fortunellin, poncirin, and naringin binding scores
were recorded to be −9.50, −9.06, −9.68, and −9.24 kcal/mol at
rmsd values of 1.55, 1.64, 1.60, and 1.56 Å, respectively.
Hesperidin formed three H-bonds with Arg105, Arg106, and
Cys442. Also, fortunellin bound both Arg105 and Cys442 with
two H-bonds. However, poncirin and naringin formed two H-
bonds with (Arg372 and Arg105) and (Glu374 and Arg105),
respectively.

However, visualizing the binding pocket of the CYP2E1
isoform (Table 4), the docked co-crystallized inhibitor achieved
a binding score of −4.40 kcal/mol (rmsd = 1.66 Å) with the
formation of H-bonds with Arg435, Arg100, Arg126, and
His370, a coordinate bond with Cys437, and pi-H-bonds with
Ala438 and Thr303. Besides, hesperidin, fortunellin, poncirin,
and naringin binding scores were found to be −12.78, −11.98,
−10.48, and −11.56 kcal/mol at rmsd values of 1.73, 1.17, 1.29,
and 1.34 Å, respectively. Hesperidin stabilized by forming three
H-bonds with Arg435, Arg100, and Arg126, and a pi−H
interaction with Phe430. Moreover, fortunellin showed four H-
bonds with Arg435, Arg100, Cys437, and Ala438. Furthermore,
poncirin was clear to bind Arg435, Arg100, Ile114, Ala438, and
Thr303 with five H-bonds. Finally, naringin bound Arg100,
Cys437, and Gln358 with three H-bonds.

Concerning the binding pocket of the CYP1A2 isoform
(Table 4), the docked co-crystallized inhibitor got a binding
score of −8.52 kcal/mol (rmsd = 1.63 Å) with the formation of a
pi−H-bond with Phe226. However, hesperidin, fortunellin,
poncirin, and naringin binding scores were recorded to be
−12.53, −12.61, −12.73, and −11.56 kcal/mol at rmsd values of
1.73, 1.38, 1.76, and 1.66 Å, respectively. Hesperidin formed one
H-bond with Thr124 and a pi−pi bond with Phe226. Fortunellin
showed the formation of two H-bonds with Thr124 and Leu450,
one pi−H-bond with Phe125, and one pi−pi interaction with
Phe226. However, poncirin formed three H-bonds with Arg108,
Arg456, and Leu450, besides a pi−pi bond with Phe226. On the
other side, Naringin formed three H-bonds with Ile386, Ile459,
and Leu450 and a pi−pi interaction with Phe226.

Based on the above findings, we can infer that the examined
candidates have superior inhibitory potentials based on their
promising binding scores, which outperformed those of the co-
crystallized ligands in CYP2E1 and CYP1A2 target receptors.
The close binding modes to the co-crystallized inhibitors also
indicated the proposed inhibitory potentials.

3. DISCUSSION
Medical practitioners and other health professionals should
increase patient awareness about possible adverse food/drug−
herb interactions and support patients in minimizing the risk of
these interactions. As an analgesic and antipyretic, paracetamol
is extensively used. It was used repeatedly during the COVID-19
pandemic in high doses and sometimes reached the risk limit of
paracetamol toxicity.2 Paracetamol is safe at prescribed doses,
while overdose or misuse of paracetamol can be a reason for
acute liver failure and even irreversible liver injury requiring liver
transplantation.55

After a paracetamol overdose, the main metabolic pathways of
sulfation and glucuronidation become saturated, and the excess
paracetamol is bioactivated by cytochrome P450 isoenzymes the
hepatotoxic NAPQI9 N-acetyl cysteine is considered the main
antidote for the treatment of paracetamol overdose cases by
converting NAPQI into non-toxic conjugates of mercaptate and

cysteine.10 On the other hand, N-acetylcysteine does not stop
the further production of these hepatotoxic metabolites,56 and
the only route to prevent more NAPQI formation is searching
for cytochrome P450 enzyme inhibitors to block this
hepatotoxic conversion pathway. Grapefruit−drug interaction
is a common major type of interaction through potent inhibition
of cytochrome liver enzymes such as CYP3A4.57 In 2018, the
FDA warned against this type of interaction and published a
warning letter titled “grapefruit juice and some drugs do not
mix.”.58,59

This study screened out different species of common citrus
fruits in Egypt for the possible occurrence of this type of
interaction compared to grapefruit, which is well known for its
CYP450 interactions assisted by their powerful antioxidant
activity and hepatoprotective actions. Additionally, the chemical
profiles of the investigated samples were studied to relate the
activity with detected metabolites.

The phytochemicals of citrus plants are diverse and vary with
their species, origin, and different tissues.60,61 The chemical
profiles of the investigated species were tentatively characterized
by UPLC-MS/MS, which is considered as one of the highly
robust analytical techniques, where pineapple, sweet orange, and
Murcott mandarin in Egypt did not receive sufficient chemical
investigation. Metabolites were tentatively identified by
comparing the accurate mass and fragmentation pattern with
metabolites previously reported in the literature as well as
databases using Sirius62 and GNPS.36 As a result, twelve juices
were examined using ESI-MS in both positive and negative ion
modes, resulting in the identification of about 40 metabolites
from various phytochemical classes.

The plant phenolic content is frequently present in leaves,
fruits, vegetables, nuts, seeds, etc. The consumption of fruit
juices is highly valuable because of their ascorbic acid content
and other phenolic compounds and carotenoids.17 They serve as
singlet oxygen quenchers, hydrogen donors, reducing agents,
and metal chelators.63 In this context, citrus juices (Rutaceae),
the most popular fruits, are known to protect against oxidative
stress due to their phenolic content.63,64 The antioxidant
capacity of citrus fruit juices is directly linked to total phenolic,
carotenoids, and vitamin C content. Flavonoids, such as
hesperidin, naringin, and naringenin, are important in reducing
ROS.61,65 Thus, we could correlate the total phenolic results and
metabolite profile with the observed antioxidant capacities in
this section. Remarkably, among the juice samples, OP exhibited
the greatest antioxidant potential in all measured in vitro assays,
where the estimated phenolic content concurred with the
promising antioxidant activities. Furthermore, the profiles of the
four juices showed the presence of approximately 25 flavonoids
as well as 5 phenolic acids and glycosides, all of which were
responsible for the detected significant antioxidant activity.66

From the literature survey, liver damage results in cellular
enzymes seeping into the bloodstream that could be quantified
in the serum. Consequently, serum ALT, AST, and ALP values
are commonly used as indicators of the severity of liver disease.67

Our study illustrated liver function parameters obtained 48 h
after oral administration of paracetamol overdose alone and in
combination with silymarin or citrus juices. Therefore, after co-
administration of paracetamol with citrus juices, all in vivo
biochemical parameters were significantly enhanced, evidenced
by a normal histopathological pattern of hepatocytes. Besides, all
tested citrus juices revealed promising in vivo antioxidant action,
which may synergistically aid in restoring normal liver function
after toxic invaders. However, the main suggested mechanism
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behind this hepatoprotective action may refer to the inhibitory
effect of citrus juices on some cytochrome P450 isoforms.

Molecular docking is considered one of the most promising
computational chemistry tools to investigate the proposed
mechanism of action for a particular drug or describe the binding
interaction pattern for a known mechanism of action.68

Although previously reported grapefruit interactions with
cytochrome P450 had been mediated through furanocoumar-
ins,55,69,70 our UPLC results revealed different chemical classes
that may play the same inhibitory role of furanocoumarins,
where, these results were clarified and supported by a molecular
docking study. The previous in silico studies demonstrated that
several dietary flavonoid compounds, including quercetin,
naringenin, naringin, and rutin, have the ability to associate
with cytochromes P450 as the CYP1A2 isoform.71 Interestingly,
this current molecular docking study highlighted the proposed
interaction of major constituents in juices with the main three
CYP isoforms that are mainly involved in NAPQI formation,
showing superior affinity exceeding the co-crystallized ligands in
CYP2E1 and CYP1A2. Moreover, it was the first time to
investigate the inhibitory action of fortunellin and poncirin on
those CYP enzymes in silico.

Outstandingly, this study introduced insights into the efficient
role of citrus juices in the management of liver damage induced
after an overdose of paracetamol. This supported the probability
of a direct inhibitory effect of the tested samples on cytochrome
P450 enzymes, which consequently decreased the level of toxic
metabolites. The best way to avoid hepatotoxicity is to ensure
that hospitalized patients take paracetamol along with the
antidote (enzyme inhibitor, citrus juice), so this study offered a
unique, safe, and cheap antidote to the hazards of paracetamol
hepatoxicity. Therefore, this study tamed food/drug−herb
interactions from a risk to a source of benefit.

4. CONCLUSIONS AND FUTURE PERSPECTIVES
Flavonoids, phenolic acids, and coumarins were detected by
UPLC-MS/MS and estimated by Folin−Ciocalteu, where
chemometric analysis revealed that eight metabolites repre-
sented the crucial discriminatory metabolites. The in vivo study
suggested that dietary supplementation with citrus juice may be
a novel protocol for the protection and treatment of para-
cetamol-induced liver toxicity. Furthermore, molecular docking
studies proposed the superior inhibitory potentials of the
examined candidates according to their promising binding
scores, which surpassed those of co-crystallized ligands in
CYP2E1 and CYP1A2 target receptors. In addition, the close
binding modes to the co-crystallized inhibitors suggested the
proposed inhibitory potentials that would significantly decrease
paracetamol-induced liver injury and death. Conclusively, the
co-administration of citrus juices as an enzyme inhibitor with a
toxic dose of paracetamol reduced the risk of paracetamol-
induced hepatotoxicity in rats. Finally, the study switched food/
drug−herb interaction from a source of risk to a source of
benefit. Moreover, clinical practice and future scientific studies
such as bioavailability, pharmacokinetic interactions, and
pharmacodynamics of the major compounds of citrus are in
demand to support the prediction of molecular docking
simulations.

5. MATERIALS AND METHODS
5.1. Plant Material. The fruits of Citrus sinensis L. Osbeck

var. Pineapple (pineapple sweet orange) (O), Citrus reticulata

Blanco × Citrus sinensis L. Osbeck (Murcott mandarin) (M),
Citrus paradisi Macfadyen var. Ruby Red (red grapefruit) (G),
and F. margarita Swingle (oval kumquat) (K) were collected in
the mid-season (February 2019). The plant was kindly identified
by Professor Dr. Gamal Elashmanty, Head of Citrus Research
Department, Citrus Research Department, Horticultural Re-
search Institute, Agricultural Research Centre (El-Gamaa St. 9,
Orman, Giza, Egypt). Voucher specimen nos. (28.12.22 I,
28.12.22 II, 28.12.22 III, and 29.12.22, respectively) are kept at
the herbarium of the Department of Pharmacognosy, Faculty of
Pharmacy, Cairo University, Egypt.
5.2. Chemicals and Instruments. A microplate reader

(Tecan, USA) was used for total phenolic. Where, a plate reader
(FluoStar Omega, Germany) was used in antioxidant assays. 96-
Well Microplate for ELISA Assay, Flat bottom, 350 μL/well
working volume was used. Trolox, Methanol-HPLC grade,
2,4,6-Tris(2-pyridyl)-1,3,5-triazine (TPTZ), 2′-Azobis(2-ami-
dinopropane) dihydrochloride (AAPH), 2,2′-azino-bis-3-ethyl-
benzthiazoline-6-sulphonic acid (ABTS), and Folin- Ciocalteu′s
phenol reagent were obtained from Aldrich Chemicals (St.
Louis, MO, USA). Na2CO3, sodium phosphate, hydrochloric
acid, and ferric chloride were purchased from El-Nasr Company
for Pharmaceutical Chemicals, Egypt.
5.3. Preparation of Samples. The samples that were

subjected to UPLC-MS/MS and multivariate analysis consisted
of 12 citrus juices prepared in the laboratory in three forms per
species: juice from the pulp (P) (using a juice squeezer), pulp
and albedo, and whole fruit (F) (using a blender). Thus, the
samples of pineapple sweet orange (O) are OP, OPA, and OF,
and those of Murcott mandarin (M) are MP, MPA, and MF,
while those of red grapefruit (G) are GP, GPA, and GF, and
finally, the samples of oval kumquat (K) are KP, KPA, and KF.
However, only four juices of the previously mentioned ones
were subjected to total phenolic, in vitro, and in vivo biological
assays. Those four forms of juices are the most administered in
daily life. Thus, OP, MP, and GP were selected in addition to KF,
which is eaten whole with its peel.72

5.4. UHPLC-QTOF-MS/MS Profiling. UHPLC was run on
an Agilent LC-MS system composed of an Agilent 1290 Infinity
II UHPLC coupled to an Agilent 6545 ESI-Q-TOF-MS in both
negative and positive modes. Aliquots (1 μL) of citrus juices (1
mg/mL in MeOH) were analyzed following the method
previously described.73

5.5. Chemometric Analysis (Metabolic Discrimination
of Citrus Fruits Using LC/MS Analyses Coupled with
Chemometrics). Metabolic discrimination of citrus species
was done depending upon qualitative and quantitative data
gathered from LC/MS analyses of the juices obtained from
different parts of their fruits and coupled with multivariate data
analysis. This was done via PCA and HCA as unsupervised
pattern recognition models. CAMO’s Unscrambler X 10.4
software (Computer-Aided Modeling, As, Norway) was used to
accomplish both models as reported before.74,75

5.6. Total Phenolic Content. The total phenolic content
was estimated using the Folin−Ciocalteu method, described by
the previously described method.76 Data are expressed as means
± SD.
5.7. In Vitro Assessment of Antioxidant Capacity. The

free radical scavenging activity of the samples was determined
using 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid
(ABTS) according to the published method.77 In order to
determine the reducing power activity, the ferric-reducing
antioxidant power (FARP) assay was used.78 Finally, the
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peroxide radical quenching activity using the oxygen radical
absorbance capacity (ORAC) assay.79 Antioxidant capacities
were expressed in micromoles of Trolox equivalent per mg
sample (μM TE/mg sample) and are represented as means (n =
3) ± SD.
5.8. In Vivo Assessment of the Interactions of Citrus

Juices in Case of Paracetamol Overdose-Induced
Hepatotoxicity. 5.8.1. Animal Care. Adult albino rats (male,
130−150 g) were obtained from the National Research Center’
Animal House in Cairo. They were kept under the same hygienic
condition, they were fed on a standard laboratory diet, and water
was supplied ad libitum. The experimental design was approved
by the Institutional research ethics committee (MP-3089) at the
Faculty of Pharmacy, Cairo University, Egypt.
5.8.2. Drugs and Biochemical Kits.

• PAR tablets (500 mg of pure drug per tablet) were
purchased from Chemical Industries Development
Company “CID”, A.R.E. Silymarin (SIL) sachets were
obtained from South Egypt Industries Company “SED-
ICO”, A.R.E.

• Kits for determination of ALT, AST, ALP, NO, and GSH
were obtained from Biodiagnostic Co. Egypt (Ad Doqi, El
Omraniya, Giza Governorate).

5.8.3. Experimental Design. Seven groups of six rodents (n =
6) each were formed by randomly dividing the rats into groups.
PAR and SIL were dissolved in 1 mL of normal saline. The first
group (GP I) served as normal control and received normal
saline (1 mL) orally. The second group (GP II) was treated with
a single oral toxic dose of paracetamol (1725 mg/kg b.wt.).9 The
other groups (GP III-VII) were separately treated once with
oral doses of silymarin (100 mg/kg b.wt.),80 or OP, MP, GP, and
KF (3 mL/rat)9 and co-administered with the toxic dose of
paracetamol.
5.8.4. Biochemical Analysis. After 48 h of administration,

rats were anesthetized using thiopental (50 mg/kg, IP). Blood
samples were collected from retro-orbital sinus, then centrifuged
to separate serum, and kept at −80 °C for the determination of
biochemical parameters in serum, viz., ALT,81 AST,81 and
ALP.82

Then, the livers were excised and divided into two parts. One
of them was washed with ice-cold saline solution (0.9% NaCl),
weighed, and then homogenized with 0.1 M phosphate buffer
saline at pH 7.4 to give a final concentration of 10% w/v for more
biochemical measurement in tissues; NO (nitric oxide),83 and
GSH (glutathione reductase).84

5.8.5. Histopathological Studies. The second piece of liver
underwent a saline wash before being rapidly fixed in 10%
formalin. The samples were then analyzed using conventional
histopathological methods. Hematoxylin and eosin (H&E) was
used to prepare sections of 6 m thickness, which were then
inspected under a microscope and captured on camera.
5.8.6. Statistical Analysis. All data are expressed as mean ±

SE and analyzed by one-way ANOVA and Duncan’s multiple-
range test compared the means of different groups. P < 0.05 was
considered statistically significant.
5.9. Molecular Docking Studies. The major identified

metabolites from citrus juices were docked against the active
pockets of cytochrome P450 isoforms (CYP3A4, CYP2E1, and
CYP1A2) in three different docking processes to investigate
their inhibitory potentials. Therefore, hesperidin, hesperetin,
phloretin 3′,5′-Di-C-glucoside, fortunellin, poncirin, nobiletin,
apigenin-6,8-digalactoside, 6′,7′-dihydroxybergamottin, narin-

genin, and naringin were sketched in ChemDraw. After, the
chemical structures of the aforementioned compounds were
copied and pasted into the MOE85,86 working window
individually. Each compound was corrected for partial charges
and energy-minimized to improve its stability.87 The prepared
compounds and the co-crystallized inhibitor in each target
receptor were inserted in a single database. Besides, the target
protein structures of cytochrome P450 isoforms (CYP3A4,
CYP2E1, and CYP1A2) were obtained from the PDB website
(accessed on 1/3/2023) (https://www.rcsb.org/structure/
8EWD, https://www.rcsb.org/structure/3E6I, and https://
www.rcsb.org/structure/2HI4, respectively). Each protein was
opened using the MOE, corrected, 3D hydrogenated, and
energy-minimized, as discussed before.88 Three general docking
processes with the default program specifications89 were
performed by inserting the appropriate database for each target
receptor. The superior compounds with the best docking scores
and root mean square deviation (rmsd) values90 were selected.
Furthermore, three validation processes were done by redocking
the co-crystallized inhibitor in each target receptor within its
binding pocket. The valid performance was confirmed by finding
low rmsd values (<2 Å) in each case.91
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