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It is mathematically shown that ductile fracture after finite plastic strain is a necessary 
consequence of the polycrystalline nature of the materials. A closed–form equation for the plastic 
strain to fracture of a fine–grained polycrystal with no voids is derived. The mathematical model 
for the plastic deformation is grounded on the physical hypothesis that adjacent grains slide 
with a relative velocity proportional to the local shear stress resolved in the plane of the shared 
grain boundary, when exceeds a finite threshold. Hence plastic flow is governed predominantly 
by the in–plane shear forces making grain boundaries to slide, and the induced local forces 
responsible for the continuous grain reshaping are much weaker. The process is shown to produce 
a monotonic hydrostatic pressure variation with strain that precludes a stationary flow. The 
hydrostatic pressure dependence on strain has two solutions. One of them leads to superplasticity, 
the other one is shown to diverge logarithmically at a finite fracture strain and then represents 
ductile behaviour. Emphasis is done in the mathematical aspects of the deformation of the 
polycrystal up to the initiation of fracture. Although theoretical predictions agree well with 
mechanical tests of commercial alloys, technical issues like the effects of the presence and 
evolution of porosity and other imperfections, or how fracture evolves after initiation are left 
for a more specific communication.

1. Introduction

Resorting to a very general model for the structure of the solid, we demonstrate in what follows that fine grained polycrystalline 
materials, with no voids or cracks, are not able of steady plastic flow, no matter the strength of the forces involved, and should finally 
collapse. Continued plastic deformation inevitably makes crystalline solids to undergo either brittle, ductile or superplastic fracture. 
In particular, the ductile flow mode is characterized by fracture occurring when the plastic strain reaches a precisely defined finite 
value. The model may be perceived as fairly idealized because does not consider the presence, formation and evolution of voids, but 
shows that these defects are not necessarily involved in the initiation of ductile fracture. It is shown that fracture is a necessary step 
of the plastic deformation of a polycrystalline solid, even of a perfect one.

The ideas presented below confront the custom approaches to fracture. To date, the nucleation, growth and coalescence of 
internal voids and cracks have been taken as the dominant fracture mechanism of ductile solids subjected to strong enough stress 
fields. However, although void rapid evolution and fracture development show strong correlation, the causal aspect is not obvious. 

* Corresponding author.
Available online 30 January 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail addresses: mlagos@utalca.cl (M. Lagos), ceretamal@utalca.cl (C. Retamal), r.vallefuentes@gmail.com (R. Valle), raparede@dcc.uchile.cl (R. Paredes).

https://doi.org/10.1016/j.heliyon.2024.e25348

Received 10 July 2023; Received in revised form 11 January 2024; Accepted 25 January 2024

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:mlagos@utalca.cl
mailto:ceretamal@utalca.cl
mailto:r.vallefuentes@gmail.com
mailto:raparede@dcc.uchile.cl
https://doi.org/10.1016/j.heliyon.2024.e25348
https://doi.org/10.1016/j.heliyon.2024.e25348
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e25348M. Lagos, C. Retamal, R. Valle et al.

Whatever be the ultimate cause of ductile fracture, it may be expected to proceed by successive local collapses involving different 
small portions of the material which sequentially reach the fracture conditions at different places inside the material. In this picture 
the ultimate causes of fracture are prior to the accelerated development of voids and cracks, since these should be identified with the 
early local fractures mentioned before. Naturally, pre–existent defects may precipitate early fracture. As noted long ago by Orowan 
[1], fracture is not a single physical phenomenon, there are several essentially different processes that may lead to the disintegration 
of a body by the action of mechanical forces. The present point is why polycrystalline solids do not steadily flow under strong enough 
forces and break after a quite small plastic deformation. Of less importance is here what of the specific microscopic local rupture 
processes has the dominant role in a specific situation, or whether they work together or in a sequence during the fracture.

It will be demonstrated of key importance the observation that the faceted nature of the crystalline grains constituting the 
polycrystal has a determinant effect in the plastic flow, no matter how small the grains may be. At a scale much larger than the 
grain size, polycrystalline matter lacks symmetry constrictions and periodicity, and displays same average packing and properties in 
all directions, and over its whole extension. Despite this, assimilating an even very fine grained polycrystal to an homogeneous and 
isotropic continuum may lead to gross errors, no matter the scale, when dealing with it as a dynamical medium. It has been shown in 
a previous paper [2,3], and will be reviewed here, that the faceted nature of the structural constituents of a polycrystal determines 
that the force fields governing their plastic flow yield ∇ ⋅ 𝑣 ≠ 0, where 𝑣 is the velocity field of the material continuum. This means 
that flow makes the specific volume to vary, and hence the consequent rapid build up of the hydrostatic pressure. Grain elasticity 
in polycrystalline solids allows for some density variation, and hence the medium can flow up to some extent, yielding ductile 
behaviour. However, the consequent pressure build up influences strongly the ongoing deformation, which cannot be steady, and 
finally produces fracture. The theory predicts two possible regimes of deformation, one of them can be identified with superplasticity 
and the other one with normal ductile deformation because exhibits a well defined fracture strain at which the hydrostatic pressure 
has a logarithmic divergence.

Although the point is reviewed in precise terms later on, the dynamical effect of the faceted nature of the constituents of the 
flowing medium deserves to advance a physical explanation. The sliding of two contiguous grains is necessarily driven by the shear 
force field resolved in the plane of the grain surface shared by the two grains. However, if the normal to the common surface of the 
grains gets close enough to a principal direction of the stress tensor, then the resolved shear stress becomes smaller than the threshold 
stress 𝜏𝑐 for grain sliding, regardless the strength of the applied forces. Hence grains whose boundaries have normals in solid angles 
around the principal directions are impeded to slide (see Fig. 3a of Ref. [4]). This introduces a non–analytic anisotropy in the motion 
of the grains which is shown to be inconsistent with the equation of local conservation of mass density ∇ ⋅ 𝑣 = 0 [2,4,5,3].

1.1. Fracture evolution

Although the subject here is fracture initiation, subsequent evolution occupies considerable space in the literature and deserves 
some words. Tensile tests combining in situ X–ray microtomography with scanning electron microscopy (SEM) dramatically show 
the rapid increase of void number and size when fracture comes to the fore. [6–10]. However, as explained before, according to 
the ideas put forward here this phenomenon concerns more to how fracture evolves than why it takes place. Anyway the apparent 
importance of the problem in technical grounds has motivated a great deal of effort. The pioneer work of Griffith [11] on the tensile 
strength of glass, who postulated the presence of small pre–existent cracks that concentrate stresses when the material is loaded, and 
Irwin [12] and Orowan [1], who extended the idea to ductile solids, has initiated a rather fundamental investigation line devoted to 
study the breaking of solid materials from the atomic point of view. Brittle behaviour is ascribed to the ability of the stressed crack 
tips to propagate conserving their atomically sharp edges, while in ductile solids the tip of the crack blunts, broadens and flows, 
demanding increasing effort to make it progress. References [13], [14] and [15] show the general spirit of this research line and the 
work [16] gives a rather complete review.

A more phenomenologycal approach, more connected with the technical aspects of plastic yield is the one introduced by Gurson 
[17] and subsequently modified by other authors [18–20], which derive an analytical expression for the yield function in terms 
of the void concentration. Spherical and cylindrical voids are assumed in a continuous plastic matrix obeying the von Mises yield 
criterion and Lévy–Mises flow equations [21]. Emphasis is not in fracture, but in plastic yield. Other models [22–26] develop yield 
criteria and flow rules for the evolution under stress of porous ductile materials, showing the role of void nucleation, growth and 
coalescence in plastic yield.

The main ductile fracture criteria are discussed by Li et al. [27], which study their reliability by comparing predictions with the 
mechanical test of an aluminium alloy in a variety of conditions. In a recent paper Noell et al. [28] dissent of the widely accepted 
ideas and assert that fracture is not controlled by just void nucleation, growth and coalescence. Rather, the rupture process may 
be due to as many as seven different mechanisms, which are not necessarily independent or exclusive, and can work in sequence. 
Examples are intervoid necking, the nucleation of voids in a shear band, and void sheeting. However, most models link fracture with 
void nucleation and evolution. The Rosselier model describes the damage due to the plastic growth of cavities in metals. Cracking 
and ductile rupture is modelized by elastoplastic or viscoplastic processes with isotropic work hardening [29–32].

We do not extend the theoretical approach presented here to incorporate porosity because we wish to stress that ductile fracture 
of fine grained quality materials is caused by their polyhedral nature. The development of voids pertains to the fracture process 
rather than to its cause. The work of Khan, Yu and Liu [33–35] has a particular connection with the results presented here because 
these authors provide empirical evidence of the importance of the hydrostatic pressure in the fracture process. On the basis of 
2

the experimental data on titanium and aluminium alloys, taken with controlled negative and positive superimposed hydrostatic 
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Fig. 1. (a) Schematic view of the grain boundary shared by two adjacent grains, showing the local frame of reference (𝑥′𝑦′𝑧′) having the 𝑥′𝑦′ plane in the grain 
boundary plane, and the main frame of reference (𝑥𝑦𝑧) with the axes along the principal directions of the stress tensor. (b) The principal and local frames of reference, 
showing the Euler angles 𝜃 and 𝜙.

pressures, they establish a phenomenological fracture criterion using the magnitude of stress vector and the first invariant of stress 
tensor. The capital role played by the first invariant, the hydrostatic pressure, in our scheme has been commented before.

2. The model and force law

The model for the plastic flow of a polycrystalline solid already has been extensively studied in the context of superplasticity [2], 
but is expected to hold equally well for normal ductile solids [3]. The two flow regimes, superplastic and plastic, correspond to two 
different solutions derived from the same theoretical framework. A brief review of the physical basis of the model and the resulting 
general theoretical scheme is given next to make clear the conditions for the occurrence of either superplastic or normal ductile 
behaviour.

The plastic deformation of a fine grained polycrystalline solid is modelled as a flowing continuum of random irregular polyhedra of 
different shapes and sizes, representing grains, which share faces. The model is essentially the same as the one introduced in Ref. [2]

and refined in [4]. Grains can move over long paths by sliding along the shared surfaces, or grain boundaries, accommodating 
effortlessly their shapes to preserve matter continuity. Certainly, grain shape accommodation demands some effort, but it is assumed 
much smaller than the one required for grain sliding. In other words, the shear stress involved in the relative sliding of two grains is 
greater than the critical resolved shear stress (CRSS) demanded by slip deformation of the crystallites.

The macroscopic laws connecting the evolution in time of the strain tensor 𝜀𝑖𝑗 with the stress tensor 𝜎𝑖𝑗 , 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧, induced 
by the externally applied forces, are determined by the forces exerted between the many pairs of adjacent grains and their relative 
motions. Hence the dynamical analysis has to go first to the scale of grains. In this spirit we define a local frame of reference (𝑥′𝑦′𝑧′)
with the 𝑥′𝑦′ plane coincident with the boundary between two adjacent grains, as is represented in Fig. 1. The total shear stress in 
the boundary plane shared by the two adjacent grains then reads

𝜏𝑧′ = (𝜎2
𝑥′𝑧′ + 𝜎

2
𝑦′𝑧′ )

1∕2,

where 𝜎𝑖′𝑗′ , 𝑖′, 𝑗′ = 𝑥′, 𝑦′, 𝑧′, stands for the components of the stress tensor in this local coordinate system. There is strong evidence 
that the sliding relative speed |Δ𝑣| of two adjacent grains obeys a linear law of the general form |Δ𝑣| = (𝜏𝑧′ − 𝜏𝑐) for 𝜏𝑧′ > 𝜏𝑐 in 
plastic deformation [2,3,36–38], and vanishes when the critical shear stress 𝜏𝑐 is not reached. Here  is a proportionality coefficient. 
3

Fig. 2 expresses this in a graphical way.
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Fig. 2. The relative speed |Δ𝑣| of two adjacent grains is proportional to the shear stress 𝜏𝑧′ resolved in the plane of the grain boundary shared by the two grains, 
when greater than the critical stress 𝜏𝑐 . Otherwise the relative speed vanishes.

As Δ𝑣 is parallel to the shear force in the plane of the interface, its components are given by Δ𝑣𝑖′ =(𝜏𝑧′ −𝜏𝑐)(𝜎𝑖′𝑧′ ∕𝜏𝑧′ ), 𝑖′ = 𝑥′, 𝑦′, 
for 𝜏𝑧′ ≥ 𝜏𝑐 . This expression for Δ𝑣 has proven to hold with great accuracy for several aluminium, titanium and magnesium alloys 
[4,5,3]. Hence the force law at the grain scale takes the general form

Δ𝑣𝑖′ =
⎧⎪⎨⎪⎩


(
1 −

𝜏𝑐

𝜏𝑧′

)
𝜎𝑖′𝑧′ , 𝑖′ = 𝑥′, 𝑦′, if 𝜏𝑧′ > 𝜏𝑐

0, otherwise,

Δ𝑣𝑧′ ≡ 0.

(1)

The coefficient  =(𝑝, 𝑇 ) does not depend on the shear stresses and neither on the orientation of the grain boundary, therefore its 
dependence on the normal stresses is only via the hydrostatic pressure invariant 𝑝 = −(𝜎𝑥′𝑥′ + 𝜎𝑦′𝑦′ + 𝜎𝑧′𝑧′ )∕3. Here 𝑇 denotes the 
absolute temperature.

The next two steps are, on the one hand, to express the grain scale force law (1) in the frame of reference (𝑥𝑦𝑧), common to all 
the grain surfaces, instead of the local ones (𝑥′𝑦′𝑧′). Given the rotation matrix 𝑅(𝜃, 𝜙) = (𝑅𝑖𝑗 (𝜃, 𝜙)) connecting the two frames of 
reference one can put the local stress tensor

(𝜎𝑖′𝑗′ ) =𝑅(𝜃,𝜙)(𝜎𝑖𝑗 )𝑅𝑇 (𝜃,𝜙) (2)

in terms of the stress tensor (𝜎𝑖𝑗 ) of the externally applied forces and the Euler angles (𝜃, 𝜙) of the grain boundary plane. The 
macroscopic equations of motion are obtained from replacing the result in Eq. (1) and then averaging over the Euler angles. The 
second step in reformulating Eq. (1) is to put it in terms of the strain tensor and its time derivative instead of the relative velocity 
between adjacent grains.

3. The equations of motion in the plastic flow

3.1. Stress and the relative velocity between adjacent grains

A detailed account of the procedure outlined above can be found in the literature on superplasticity [2,4,5,3,38]. Specifically, 
section 2 of Ref. [3] gives a complete account of the program outlined in the last paragraph of the preceding section. However, 
the analysis of the general equations and discussions given there focuses on just the superplastic solutions [4,5]. We recall here the 
results already given in the just cited literature to make apparent that superplastic and normal ductile behaviour are two regimes 
which are inferred from the same mathematical scheme. Some derivations taken from already published papers will be reviewed 
next in the interest of completeness.

Assuming the important special case of an externally applied unidirectional normal stress 𝜎 along the 𝑧−axis on a polycrystalline 
solid, isotropic in the scale much larger than the mean grain size 𝑑, the stress tensor reads

(𝜎𝑖𝑗 ) =
⎛⎜⎜⎝
𝜎⟂ 0 0
0 𝜎⟂ 0
0 0 𝜎

⎞⎟⎟⎠ . (3)

A non–vanishing transversal stress 𝜎⟂ is assumed because it will be demonstrated that plastic strain always induces such kind of 
stress. Settling the transversal stress to zero may be acceptable as a circumstance occurring at a given time, but may yield gross 
errors if taken as a permanent condition when the mechanical analysis incorporates de possibility of plastic flow. Writing 𝜎⟂ in terms 
of the hydrostatic pressure 𝑝 it reads

𝜎⟂ = −1
2
(𝜎 + 3𝑝). (4)

The local (𝑥′𝑦′𝑧′) frame must be chosen so that the unit vector 𝑘′ along the 𝑧′−axis be normal to the plane of the shared grain 
surface. The other two axes can be taken in the most convenient way and hence the 𝑥′−axis will be selected as the intersection of 
the 𝑥′𝑦′ and 𝑥𝑦 planes. Calling 𝜙 the Euler angle between the 𝑥 and 𝑥′ axes, and 𝜃 the Euler angle going from the 𝑧 to the 𝑧′ axis, 
4

the rotation matrix takes the general form
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Fig. 3. The critical angle 𝜃𝑐 for a solid undergoing plastic strain in the direction of the 𝑧–axis. Adjacent grains whose common boundary has the normal inside the 
solid angles around the 𝑧–axis and the 𝑥𝑦–plane are impeded to slide by the condition (8). The axes are in the principal directions of the stress tensor and 𝜃𝑐 is defined 
by Eq. (9).

𝑅(𝜃,𝜙) =
⎛⎜⎜⎝

cos𝜙 sin𝜙 0
−sin𝜙 cos𝜃 cos𝜙 cos𝜃 sin𝜃
sin𝜙 sin𝜃 −cos𝜙 sin𝜃 cos𝜃

⎞⎟⎟⎠ . (5)

Replacing (𝜎𝑖𝑗 ) and 𝑅(𝜃, 𝜙), as given by Eqs. (3) and (5), into Eq. (2) one obtains the rotated stress tensor

(𝜎𝑖′𝑗′ ) =
⎛⎜⎜⎝
𝜎⟂ 0 0
0 𝜎 sin2 𝜃 + 𝜎⟂ cos2 𝜃 (𝜎 − 𝜎⟂) sin𝜃 cos𝜃
0 (𝜎 − 𝜎⟂) sin𝜃 cos𝜃 𝜎 cos2 𝜃 + 𝜎⟂ sin2 𝜃

⎞⎟⎟⎠ .
Thus, recalling Eq. (4), one can write the components of the shear stress on the intergrain surface as

𝜎𝑥′𝑧′ = 0, 𝜎𝑦′𝑧′ =
3
2
(𝜎 + 𝑝) sin𝜃 cos𝜃.

With these results Eqs. (1) can be put in explicit form in the main frame of reference (𝑥𝑦𝑧). The relative velocity Δ𝑣 between two 
adjacent grains turns out to be

Δ𝑣 = 3
2
 (𝜎 + 𝑝) sin𝜃 cos𝜃

(
1 −

2𝜏𝑐
3|(𝜎 + 𝑝) sin𝜃 cos𝜃|

)
𝑣̂, (6)

where the unit vector 𝑣̂ is the vector 𝑗′ along the 𝑦′–axis. To express it in the main frame of reference we have to solve

𝑣̂ = 𝑗′ =𝑅𝑇 (𝜃,𝜙)
⎛⎜⎜⎝
0
1
0

⎞⎟⎟⎠
which, with help of Eq. (5), yields

𝑣̂ = (−sin𝜙 cos𝜃, cos𝜙 cos𝜃, sin𝜃). (7)

Eq. (6) holds whenever||||32 (𝜎 + 𝑝) sin𝜃 cos𝜃 |||| > 𝜏𝑐, (8)

otherwise Δ𝑣 = 0. By the choice of the 𝑥′ axis in the 𝑥𝑦 plane any direction in the 𝑥𝑦 plane is a principal direction and then 𝜎𝑥′𝑧′ = 0
for any 𝜃 and 𝜙.

Condition (8) is fulfilled whenever 𝜃 ≤ 𝜃𝑐 , where 𝜃𝑐 is a critical angle given by

sin(2𝜃𝑐) =
4𝜏𝑐

3|𝜎 + 𝑝| . (9)

Eq. (8) has a major effect in the plastic regime of deformation, which is quite easy to understand from just phenomenological 
arguments. No matter how strong the applied external forces may be, the shear stress vanishes in planes normal to the principal 
directions of the stress tensor. Hence, a grain boundary whose normal is close enough to a principal direction is impeded to slide 
because, by continuity, the magnitude of the shear stress in it is smaller than 𝜏𝑐 . Fig. 3 shows how this effect takes place in an axially 
symmetric medium. This effect shows that a continuous medium constituted by random polyhedra, leaving no voids between them, 
cannot be taken as an homogeneous and isotropic medium, irrespectively of how small and randomly oriented the polyhedra may 
5

be.
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3.2. Velocity field, strain rate and stress tensors

The proper configuration variables in the macroscopic scale are the components 𝜀𝑖𝑗 (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧) of the strain tensor, which, 
together with their time derivatives 𝜀̇𝑖𝑗 give a complete description of the dynamical state of the system. Alternatively, when dealing 
with the material medium as a flowing continuum the proper variable to characterize the dynamical state is the velocity field 𝑣(𝑟, 𝑡). 
The two pictures are related by

𝜀̇𝑖𝑗 =
1
2

(
𝜕𝑣𝑖

𝜕𝑥𝑗
+
𝜕𝑣𝑗

𝜕𝑥𝑖

)
, 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 or 𝑥𝑗 = 𝑥, 𝑦, 𝑧 . (10)

The first step to put the force law (1) between the elementary constituents in terms of the macroscopic variables at any point of 
the material medium is to find out the connection between the relative velocities Δ𝑣 of adjacent grains and the velocity field 𝑣 they 
give rise. To this aim consider first two points at (𝑥, 𝑦, 𝑧) and (𝑥 + 𝛿𝑥, 𝑦, 𝑧) inside a polycrystalline material, where the coordinates 
are referred to the main frame of reference (𝑥𝑦𝑧), common to all grains. Though small, the segment 𝛿𝑥 intersects a large number 𝑛
of grain boundaries, and hence 𝛿𝑥 = 𝑛𝑑, where 𝑑 is the averaged grain size. The relative velocity between the two extreme points of 
the segment 𝛿𝑥 is the sum of all the 𝑛 relative velocities between the consecutive grains. Therefore,

𝑣(𝑥+ 𝛿𝑥, 𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)
𝛿𝑥

= 1
𝑛𝑑

𝑛∑
𝑘=1

Δ𝑣(𝑘), (11)

where 𝑘 numbers the succession of intersected grain boundaries. But for the factor 𝑑 in the denominator, the right hand side of this 
equation defines the mean value of the grain relative velocities along the 𝑥–axis

1
𝑛𝑑

𝑛∑
𝑘=1

Δ𝑣(𝑘) = 1
𝑑
⟨Δ𝑣⟩𝑥. (12)

Thus, in the proper limit,

𝜕𝑣𝑖

𝜕𝑥𝑗
= 1
𝑑
⟨Δ𝑣𝑖⟩𝑗 , 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 or 𝑥𝑗 = 𝑥, 𝑦, 𝑧 , (13)

where symbol ⟨… ⟩𝑗 means the average over all boundary orientations along the 𝑥𝑗 axis in the positive sense. The dependence on 𝑗
in the right hand side of Eq. (13) denotes the direction along which the relative velocities are sampled, which in Eqs. (11) and (12)

is simply the 𝑥 direction.

A complete set of equations for the velocity field 𝑣(𝑥, 𝑦, 𝑧) of the material medium can be derived from solving the mean values 
appearing in the right hand side of Eq. (13), which assumes that the mean grain size 𝑑 is conserved. The so obtained equations, 
relating 𝜕𝑣𝑖∕𝜕𝑥𝑗 with the stresses, can be combined to form rotation invariants like ∇ ⋅ 𝑣 and ∇ × 𝑣, or the components of the strain 
rate tensor by means of Eq. (10).

The normals to the boundaries shared by adjacent grains along a given coordinate axis 𝑥𝑗 are oriented at random. Hence the 
summation along a number of successive inter–grain surfaces can be carried out by averaging over all the permissible orientations, 
disregarding the spatial shift between the grain boundaries. Then the mean value appearing in Eq. (13) can be written as

⟨Δ𝑣⟩𝑗 = 1
2𝜋 ∫

𝐷𝑗

𝑑𝜙𝑑𝜃 sin𝜃Δ𝑣(𝜃,𝜙), (14)

where the integration domains 𝐷𝑗 are determined by the condition | sin𝜃| > sin𝜃𝑐 and 𝑧′ in the semi-space 𝑥𝑗 ≥ 0. (The average 
considers only a semi–space because the strain components have implicit the two sides of the volume element.) Explicitly, the 
integration domains are

𝐷𝑥 ∶ 𝜃 ∈ [𝜃𝑐 , 𝜋∕2 − 𝜃𝑐] ∪ [𝜋∕2 + 𝜃𝑐, 𝜋 − 𝜃𝑐],

𝜙 ∈ [0, 𝜋],

𝐷𝑦 ∶ 𝜃 ∈ [𝜃𝑐 , 𝜋∕2 − 𝜃𝑐] ∪ [𝜋∕2 + 𝜃𝑐, 𝜋 − 𝜃𝑐],

𝜙 ∈ [𝜋∕2,3𝜋∕2],

𝐷𝑧 ∶ 𝜃 ∈ [𝜃𝑐 , 𝜋∕2 − 𝜃𝑐],

𝜙 ∈ [0,2𝜋].

(15)

The integrals (14) can be solved exactly. Combining Eqs. (6) and (7)

Δ𝑣𝑥 = −3
2
(𝜎 + 𝑝)

[
sin𝜃 cos2 𝜃 sin𝜙−

2𝜏𝑐
3|𝜎 + 𝑝)| cos𝜃 sin𝜙

]
,

3
[

2 2𝜏𝑐
]

6

Δ𝑣𝑦 = 2
(𝜎 + 𝑝) sin𝜃 cos 𝜃 cos𝜙−

3|𝜎 + 𝑝| cos𝜃 cos𝜙 ,
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Δ𝑣𝑧 =
3
2
(𝜎 + 𝑝)

[
sin2 𝜃 cos𝜃 −

2𝜏𝑐
3|𝜎 + 𝑝| sin𝜃

]
,

replacing this into Eq. (14), integrating over the domains (15) and recalling Eqs. (10) and (13), it is obtained that

𝜀̇𝑥𝑥 = 𝜀̇𝑦𝑦 =

− 3
16𝑑

(𝜎 + 𝑝)
[
1 −

4𝜃𝑐
𝜋

+
sin(4𝜃𝑐)
𝜋

]
+ 𝑠

𝜏𝑐
𝑑

cos(2𝜃𝑐)
𝜋

,
(16)

𝜀̇𝑧𝑧 =
3
8𝑑

(𝜎 + 𝑝) cos(2𝜃𝑐) − 𝑠𝜏𝑐𝑑
(
𝜋

4
− 𝜃𝑐

)
, (17)

where 𝑠 is the sign 𝑠 = (𝜎 + 𝑝)∕|𝜎 + 𝑝|.
3.3. Hooke’s law and the plastic regime of deformation

Of special importance for the derivations what follows is a modality of Hooke’s law valid when a solid material is being plastically 
deformed. We spend some space next to explain a conception which, though not complex, may sound rather odd when mentioned 
in this context. Hooke’s law is often invoked when studying the elastic deformation of solids, but rarely when dealing with their 
plastic flow. However, elastic deformations at each of the many elements of matter constituting a body are still present when flowing 
plastically.

Take for instance a rectangular hexahedron of volume Δ𝑉 = Δ𝑥Δ𝑦Δ𝑧, being Δ𝑥, Δ𝑦, Δ𝑧 the edges. After a deformation Δ𝑥 →
Δ𝑥 + 𝛿Δ𝑥, Δ𝑦 →Δ𝑦 + 𝛿Δ𝑦, Δ𝑧 →Δ𝑧 + 𝛿Δ𝑧, up to the first order in the edge variations the volume change per unit volume is

𝛿Δ𝑉
Δ𝑉

= 𝛿Δ𝑥
Δ𝑥

+ 𝛿Δ𝑦
Δ𝑦

+ 𝛿Δ𝑧
Δ𝑧

. (18)

In a time dependent scheme the relative velocity between two opposite faces of the hexahedron, interpreted now as an elementary 
piece of matter of a deforming solid, is (𝜕𝑣𝑖∕𝜕𝑥𝑖)Δ𝑥𝑖. Hence, in a time interval 𝛿𝑡 their distance increases in

𝛿Δ𝑥𝑖 =
𝜕𝑣𝑖

𝜕𝑥𝑖
Δ𝑥𝑖 𝛿𝑡, 𝑥𝑖 = 𝑥, 𝑦, 𝑧.

Recalling Eq. (18) and combining this simple geometric observation with Eq. (10) one can deduce that the local time rate of volume 
variation per unit volume of the deforming material is

𝑉̇

𝑉
=∇ ⋅ 𝑣 = 𝜀̇𝑥𝑥 + 𝜀̇𝑦𝑦 + 𝜀̇𝑧𝑧.

Hooke’s law 𝐵(Δ𝑉 ∕𝑉 ) = 𝑝, where 𝐵 is the bulk modulus, relates the hydrostatic pressure 𝑝 with the volume variation Δ𝑉 ∕𝑉
per unit volume, no matter the mechanical process the material may be going through. In our case Hooke’s law takes the form 
𝑝̇ = 𝐵(𝑉̇ ∕𝑉 ) where, as usual, the dots indicate time derivatives. Combining this with Eqs. (16) and (17) we have that

𝑝̇ = 𝑠𝐵
𝜏𝑐
2𝑑

[
1 − cos(2𝜃𝑐)
sin(2𝜃𝑐)

− 2𝜃𝑐
(
1 + 2

𝜋 sin(2𝜃𝑐)

)
− 2
𝜋
cos(2𝜃𝑐) +

𝜋

2

]
, (19)

which, together with the equation

𝜀̇ = 𝑠
𝜏𝑐
2𝑑

[
cot(2𝜃𝑐) + 2𝜃𝑐 −

𝜋

2

]
(20)

for the axial strain 𝜀 ≡ 𝜀𝑧𝑧, constitute the force laws in the macroscopic scale. Eqs. (19) and (20) were written in terms of 𝜃𝑐 just for 
brevity. Recalling its definition (9) the state variables turn out to be the axial stress 𝜎, the axial strain 𝜀, and the hydrostatic pressure 
𝑝.

The relevant role of 𝑝 in the plastic deformation of polycrystalline solids may seem quite amazing, however it explains a number of 
properties specific to this kind of physical processes. Bauschinger effect is one of them: the time dependent plastic flow is determined 
by the initial value of 𝑝, which is difficult to measure and is in most cases disregarded, attributing its effect to a dependence on 
history of the structure of the material.

3.4. The coefficient 
The properties of the specific material enter the theoretical formulation through the coefficient (𝑝, 𝑇 ), where 𝑇 is the tempera-

ture, governing grain boundary sliding. It has been studied in detail for fine grained polycrystalline solids and has been shown to be 
of the general form [3,38,36,41,40]


4𝑑

= 𝐶0
Ω∗

𝑘𝐵𝑇
exp

(
−
𝜖0 + Ω∗𝑝

𝑘𝐵𝑇

)
, (21)

where 𝑘𝐵 is the Boltzmann constant, the coefficient 𝐶0 depends only on the grain size 𝑑, the constant 𝜖0 is the energy necessary for 
7

evaporating a crystal vacancy from the grain boundary, and Ω∗ is the excitation volume for the same process. The major role played 
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in grain sliding by the exchange of crystal vacancies between the grains and their boundaries has been evidenced both theoretical 
[38,40] and experimentally [41].

Eqs. (19), (20) and (9) show that plastic flow is essentially a time dependent problem. They govern the coupled time evolution 
of the three variables, 𝜎, 𝜀 and 𝑝, relevant for the cylindrically symmetric deformation of a polycrystalline continuous medium. The 
actual behaviour of these variables in specific circumstances depends also on the initial conditions and deformation path (either 
𝜎 = constant, 𝜀̇ = constant, or any other imposed condition between the variables and their time derivatives). The initial conditions 
should include the usually ignored variable 𝑝 [39]. One can set the transversal stress 𝜎⟂ = −(𝜎 + 3𝑝)∕2 = 0 as a natural initial 
condition if the material has been previously annealed, but 𝜎⟂ is expected to take finite values in the subsequent deformation, 
evolving in time as dictated by the equations of motion. The plastic stretching in one direction is always accompanied by a finite 
compression 𝜎⟂ in the plane normal to the deformation axis, which increases monotonically with strain. This explains why necking 
always precedes ductile fracture [39].

4. Plastic deformation at constant strain rate 𝜺̇

At constant temperature 𝑇 the coefficient  depends only on the hydrostatic pressure 𝑝. Reordering Eq. (20) in order to isolate 
 in the left hand side of the equation, and then derivating with respect to 𝑝, with 𝜀̇ constant, one readily shows that

− 𝜀̇𝑑
𝜏𝑐

1
2

𝑑
𝑑𝑝

=
[
− 1

sin2(2𝜃𝑐)
+ 1

]
𝑑𝜃𝑐

𝑑𝑝
.

Replacing next in this result , as given by Eq. (21), it follows that

𝑑𝑝

 = −𝑠
𝜏𝑐𝑘𝐵𝑇

Ω∗𝜀̇𝑑
cot2(2𝜃𝑐)𝑑𝜃𝑐. (22)

Dividing Eq. (20) by Eq. (19), inserting the result in the identity 𝑑𝜀 = (𝜀̇∕𝑝̇) 𝑑𝑝, using Eq. (22) to substitute the differential 𝑑𝑝 by 𝑑𝜃𝑐 , 
and then integrating, it is obtained that

𝜀 = −
2𝑘𝐵𝑇
Ω∗𝐵

𝜃𝑐

∫
𝜃0

𝑑𝜃 cot2(2𝜃)
[
1 − cos(2𝜃)
sin(2𝜃)

− 2𝜃
(
1 + 2

𝜋 sin(2𝜃)

)
− 2
𝜋
cos(2𝜃) + 𝜋

2

]−1
.

The lower integration limit 𝜃0 incorporates the initial conditions. When the material has been previously submitted to a stress 
relieving heat treatment, the initial conditions are 𝜎⟂ = 0 and 𝜎 = 𝜎0, being 𝜎0 the initially applied axial stress. The initial pressure 
is then 𝑝0 = −𝜎0∕3. In such situation

𝜃0 =
1
2
arcsin

2𝜏𝑐|𝜎0| .
The upper limit is given by the final stress 𝜎 and hydrostatic pressure 𝑝

𝜃𝑐 =
1
2
arcsin

2𝜏𝑐|𝜎 + 𝑝| .
Defining the universal function 𝐹 (𝜃) as the indefinite integral

𝐹 (𝜃) = −2∫ 𝑑𝜃 cot2(2𝜃)
[
1 − cos(2𝜃)
sin(2𝜃)

− 2𝜃
(
1 + 2

𝜋 sin(2𝜃)

)
− 2
𝜋
cos(2𝜃) + 𝜋

2

]−1
,

the expression for the strain reads

𝜀 =
𝑘𝐵𝑇

𝐵Ω∗ [𝐹 (𝜃𝑐) − 𝐹 (𝜃0)], (𝜀̇ = constant). (23)

Fig. 4 shows the function 𝐹 (𝜃) with the arbitrary constant chosen so that 𝐹 (0.8) = 0.

5. Plastic and superplastic solutions

As shown in Fig. 2, 𝐹 (𝜃) is monotonically decreasing in its whole range (0, 𝜋∕4) and has two singularities, at 𝜃 = 0 and 𝜃 = 𝜋∕4. 
If the material has been thoroughly annealed for removing any residual internal stress prior to the plastic deformation, it holds the 
initial condition 𝑝 = −𝜎0∕3 at 𝜀 = 0, where 𝜎0 is the stress at the beginning of the plastic deformation.

The magnitude of 𝜀 is controlled by the adimensional coefficient appearing in Eq. (23), which is a very small quantity. The bulk 
modulus 𝐵 for metals is of the order of 1011 Pa. Previous literature on aluminium and titanium alloys shows that Ω∗ is 2.6 ×10−27 m3

for Al–8090 and 5.9 × 10−28 m3 for titanium Ti–6Al–4V at rather high temperatures [3]. Assuming Ω∗ does not vary too much with 
𝑇 one can take these figures to estimate that, at 𝑇 = 300 K,

𝑘 𝑇
8

𝐵

𝐵Ω∗ ∼ 2.3 − 7.0 × 10−5. (24)
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Fig. 4. The universal function 𝐹 (𝜃) showing the two singularities, corresponding to superplastic and normal ductility regimes.

Because of the small value of the coefficient (24), any significant strain 𝜀 demands that the function 𝐹 (𝜃) be large, of the order of 
103, to have a strain of a few percents. Hence 𝜃0, or 𝜃𝑐 , or both, must be in one of the two asymptotic regions 𝜃 ≳ 0 or 𝜃 ≲ 𝜋∕4. 
The threshold stress 𝜏𝑐 for grain sliding of superplastic materials at high temperatures is generally in the range 0.5 − 5 MPa For 
ductile materials the figures are somewhat higher, of the order of twice the CRSS, which may be of the order of 20–25 MPa, as is the 
case of iron at normal temperature. Anyway we can consider 𝜏𝑐 as much smaller than the applied stresses 𝜎 that are customary in 
mechanical tests. Hence the divergence at 𝜃 = 0 should be the right one for ductile plastic distortion, and appreciable strains occur 
for

𝜃𝑐(𝜀, 𝜀̇, 𝑇 ) ≈ 0. (25)

The other pole of function 𝐹 (𝜃) corresponds to very slow flux, as occurring in superplastic deformation, and has been extensively 
studied in the literature.

6. Ductile deformation, necking and strain to fracture

Making the quotient between Eqs. (19) and (20) one has that

𝑑𝑝

𝑑𝜀
= 𝑠𝐵

𝜏𝑐
2𝜀̇𝑑

[
1 − cos(2𝜃𝑐)
sin(2𝜃𝑐)

− 2𝜃𝑐
(
1 + 2

𝜋 sin(2𝜃𝑐)

)
− 2
𝜋
cos(2𝜃𝑐) +

𝜋

2

]
. (26)

To materialize the asymptotic limit (25), just terms up to the first order in 𝜃 are retained in this equation. The expression in between 
the square brackets in Eq. (26) reduces to 𝜋∕2 −4∕𝜋− 𝜃. The constant 𝜋∕2 −4∕𝜋 = 0.29756 is not small enough and we can neglect 𝜃
when compared with it. Thus, with no significant loss of precision the exact equation can be reduced to the much simpler first order 
differential equation

𝑑𝑝

𝑑𝜀
= 𝑠

(
𝜋 − 8

𝜋

) 𝐶0𝐵𝜏𝑐Ω∗

𝑘𝐵𝑇 𝜀̇
exp

(
−
𝜖0 + Ω∗𝑝

𝑘𝐵𝑇

)
,

whose solution can be written as

𝑝− 𝑝0 =
𝑘𝐵𝑇

Ω∗ ln
[
1 −𝐶0

𝜋2 − 8
𝜋

𝜏𝑐𝐵

𝜀̇

(
Ω∗

𝑘𝐵𝑇

)2
exp

(
−
𝜖0 + Ω∗𝑝0
𝑘𝐵𝑇

)|𝜀|] , (27)

where it was substituted 𝑠𝜀 = |𝜀|.
Eq. (27) expresses a main finding of this work: when the modulus |𝜀| of the strain approaches from below the value

𝜀frac =
𝜋𝜀̇

(𝜋2 − 8)𝐶0𝜏𝑐𝐵

(
𝑘𝐵𝑇

Ω∗

)2
exp

(
𝜖0 + Ω∗𝑝0
𝑘𝐵𝑇

)
(28)

the hydrostatic pressure 𝑝 diverges logarithmically. According to the definition of 𝑝, positive stresses (tension) contribute negatively 
to the hydrostatic pressure 𝑝. If the sample is conveniently annealed prior to the tensile test then 𝑝0 = −𝜎0∕3, where 𝜎0 is the applied 
9

initial tensile stress. As the test proceeds, 𝑝 = −(𝜎 + 2𝜎⟂)∕3 increases monotonically with 𝜀, and the transversal stress 𝜎⟂ increases 
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Fig. 5. Circles represent the stress–strain experimental data for a copper–alloyed high–strength interstitial free steel at the three strain rates shown in the inset [42]. 
The continuous lines represent the predictions of Eq. (23) with the parameters optimizing the fit to the experimental points, shown in Table 1.

Table 1

Values for the parameters giving the fits of Fig. 5.

𝜀̇ [s−1] 𝜎0 [MPa] 𝐵Ω∗

𝑘𝐵𝑇
𝜏𝑐 [MPa]

𝑘𝐵𝑇

Ω∗ [MPa] 𝜀frac

200 362 6805 457 0.370

20 318 9704 1440 0.615

1 268 10511 1980 0.750

from zero to negative (compressive) values. When 𝜀 approaches the critical value 𝜀frac the transversal stress 𝜎⟂ increases very rapidly, 
producing the characteristic neck and fracture. Therefore, Eq. (28) for 𝜀frac expresses the strain to fracture of the material.

Eq. (28) gives the strain to fracture in terms of the constants of the theory. However one can express it in terms of more standard 
coefficients and easily measurable quantities. Combining Eqs. (20) and (21), and taking into account the asymptotic approximation 
(25) to write

cot(2𝜃0) + 2𝜃0 −
𝜋

2
≈ 1

2𝜃0
≈
𝜎0
2𝜏𝑐

,

Eq. (28) can be written as

𝜀frac =
𝜋

(𝜋2 − 8)
𝑘𝐵𝑇

𝐵Ω∗
𝜎0
𝜏𝑐

(29)

and the strain becomes given by Eq. (30) below

𝜎 = 𝜎0 +
2
3

(
𝜋 − 8

𝜋

) 𝐵Ω∗𝜏𝑐
𝑘𝐵𝑇

𝜀+
𝑘𝐵𝑇

Ω∗ ln
(
1 − 𝜀

𝜀frac

)
. (30)

We recall that 𝜎0 is the stress registered when the plastic deformation at the chosen constant strain rate 𝜀̇ begins. The bulk modulus 
𝐵 is in tables and the only undetermined parameter is the product Ω∗𝜏𝑐 . However, Ω∗𝜏𝑐 can be determined independently from other 
features of the plastic deformation of the sample in order to have a parameter free test of Eq. (28). To show how well this expression 
compares with experiment, we include next a study of a representative commercial steel.

As a representative example, Fig. 5 shows the results of a mechanical test of a copper–alloyed high–strength interstitial free steel 
at strain rates 1, 20 and 200 s−1 [42], together with the fits of Eq. (23) with the asymptotic approximation (25). The high quality of 
the agreement between theory and experiment is apparent in the figure, and the very little dispersion of the fitting parameters Ω∗𝐵

and 𝜏𝑐 shown in Table 1 reinforces this perception. The last column of Table 1 displays the strain to failure 𝜀frac for the three strain 
rates, as given by Eq. (29) where the parameters appearing in the left side of Table 1 were substituted. The values are very close to 
those measured in the mechanical testings. Comparisons between predicted strains to fracture with published results of experimental 
tests for many other commercial alloys exhibit same agreement as the one shown in Fig. 5 and Table 1.

Although the existence of cracks and imperfections inside a stressed solid may contribute to accelerate fracture, the general cause 
of ductile fracture is not in them. An ideal fine–grained polycrystalline material, free of voids and cracks, whose grains are prone to 
10

slide, readily accommodating each other’s shapes, inevitably should fail after a finite plastic strain.
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7. Final remarks

The preceding sections show that plastic flow governed by the ductile pole of the universal function 𝐹 (𝜃) should end in fracture, 
without the intervention of voids and cracks. Fracture occurs at a precise strain, for which the hydrostatic pressure diverges when 
the solid is in the plastic regime associated to the pole at 𝜃 = 0 of the universal function 𝐹 (𝜃). The effect is essentially dynamic and 
caused by the faceted geometry of the grains. When dealing with the static properties in a scale much larger than the grain sizes, 
the polycrystal can be taken in the average as an isotropic homogeneous medium. However, this picture ceases to be valid when the 
material flows. The faceted nature of the elementary constituents has a macroscopic effect no matter how small the grains may be.

The hypotheses employed here are not contradictory with previous studies attributing fracture to the nucleation, growing and 
coalescence of voids, because predict simply an alternate self–consistent mechanism. The model is consistent also with the standard 
theory of plasticity [21]. In effect, notice that Eqs. (4) of Ref. [39] reduce to

𝜖̇𝑥𝑥

𝜎𝑥𝑥 + 𝑝
=

𝜖̇𝑦𝑦

𝜎𝑦𝑦 + 𝑝
=

𝜖̇𝑧𝑧

𝜎𝑧𝑧 + 𝑝
(31)

because in the asymptotic approximation 𝜃𝑐 ≈ 0 used here one has that 𝑓𝑠(2𝜃𝑐) = 𝑔𝑠(2𝜃𝑐). Eqs. (30) are the well–known Lévy–Mises 
equations. Also Eq. (5) of Ref. [39] is the von Mises yield criterion with von Mises yield stress

𝜎𝑌 = 2𝜏𝑐 .

Hence the Lévy–Mises equations and von Mises yield criterion are rigorously demonstrated in the theoretical scheme used here.
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