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cDAp: An online package for 
evaluation of complex Detection 
Methods
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Methods for detecting protein complexes from protein-protein interaction networks are of the most 
critical computational approaches. numerous methods have been proposed in this area. therefore, 
it is necessary to evaluate them. Various metrics have been proposed in order to compare these 
methods. Nevertheless, it is essential to define new metrics that evaluate methods both qualitatively 
and quantitatively. In addition, there is no tool for the comprehensive comparison of such methods. In 
this paper, a new criterion is introduced that can fully evaluate protein complex detection algorithms. 
We introduce CDAP (complex Detection Analyzer package); an online package for comparing protein 
complex detection methods. CDAP can quickly rank the performance of methods based on previously 
defined as well as newly introduced criteria in various settings (4 PPI datasets and 3 gold standards). 
It has the capability of integrating various methods and apply several filterings on the results. CDAP 
can be easily extended to include new datasets, gold standards, and methods. furthermore, the user 
can compare the results of a custom method with the results of existing methods. thus, the authors of 
future papers can use cDAp for comparing their method with the previous ones. A case study is done on 
YGR198W, a well-known protein, and the detected clusters are compared to the known complexes of 
this protein.

Proteins are known as the smallest biological units and many biological activities are carried out by them. These 
small factories mainly do their own biological activities in groups which are known as complexes1. In other words, 
a complex is a group of proteins that gather together at a specific time to perform a biological activity collectively. 
Individual proteins can participate in different protein complexes. Since the proteins carry out many of the bio-
logical processes in the form of complexes, study, and analysis of protein complexes is of significant importance. 
We know that cells of the simplest living creatures consist of thousands of proteins, so millions of different cases 
for constituent proteins of a complex are possible. Although there are precise experimental methods to verify the 
existence of a complex, being time-consuming, high cost and a huge number of candidate complexes that should 
be considered, have made experimental methods practically inefficient2. In these situations, it seems that compu-
tational methods can be quite effective in limiting probable cases of a complex3.

Methods for detecting protein complexes from protein-protein interaction networks (PPINs) are of the most 
critical computational methods which have been widely used recently. Several methods have been proposed 
for the discovery of protein-protein interactions in recent years4. By using these methods, very large networks 
of interactions between proteins can be created which are a suitable bed for complex detection methods. These 
networks are commonly known as PPI networks and can be modeled by weighted graphs; so that each vertex 
represents a protein and each interaction between two proteins is represented by a weighted edge between the 
corresponding nodes. Different laboratory methods that detect interactions between proteins have different kinds 
of errors. Thus, each interaction that is detected using these methods has a different degree of reliability. The dif-
ference in the amount of reliability can be modeled by the weight of the associated edge in the mentioned graph5.

Complexes can be considered mainly as dense subgraphs of PPINs6. In other words, since the interactions 
within the proteins of a complex with each other (internal interactions) are usually much greater than the interac-
tions of these proteins with other proteins outside the complex (external interactions), complexes can be usually 
considered as dense subgraphs in PPI network7,8. Note that not only should the density be considered in the 
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comparison of the number of internal interactions with external interactions, but also the total weight of internal 
interactions should be higher than the total weight of external interactions. Many algorithms have been proposed 
to detect protein complexes using this idea, among which the most important ones are the followings:

•	 CFinder9 forms clusters by a greedy method for finding maximal cliques with at least k vertices.
•	 ClusterONE10 uses an iterative greedy method to detect protein complexes. In each iteration, it selects a vertex 

as a core and extends it through the neighboring vertices with the aim of increasing the density of the growing 
cluster.

•	 RNSC11 uses the idea of partitioning the network into subgraphs with the aim of maximizing a cost function. 
The obtained subgraphs are introduced as candidates for protein complexes.

•	 IMHRC12 removes a part of network hubs from the network. Then, by using a greedy evolutionary method 
such as ClusterONE, computes the initial clusters. Then, it returns some of the removed hubs to the network 
and applies a filtering step at the end.

•	 MCL4 utilizes random walk theory and Markov chains rule by iterating two stages of inflation and expansion, 
which are implemented using matrix multiplication and summation.

•	 RRW13 forms each cluster by selecting its core and adding the closest and most probable vertices via the 
random walk. The decisions for adding vertices to clusters are taken based on the maximization of flow in 
clusters.

•	 ProRank14 ranks the proteins based on their importance. The essential proteins have high interaction and 
evolutionary similarity with the others. After ranking proteins, the complexes are detected using the spoke 
model.

•	 ProRank+15 has the similar steps to ProRank. But it has several variations. ProRank requires a similarity 
matrix as an input which indicated the similarities between proteins, while ProRank+ do not need such 
input. Furthermore, ProRank+ can detect complexes with overlap and has some post-processing steps for 
refining complexes.

•	 PEWCC16 assesses the reliability of the interaction data, then predicts protein complexes based on the concept 
of weighted clustering coefficient.

Since there are numerous methods for detecting protein complexes, it is essential to evaluate and compare 
their results. The inherent properties of complexes, such as the overlapping feature, have led to defining various 
evaluation metrics for comparing and ranking these algorithms. Although different evaluation criteria have been 
introduced in recent years, none of them are able to evaluate the results of the algorithms comprehensively and 
cover their shortcomings. Therefore, introducing a new criterion for analysis methods both quantitatively and 
qualitatively is requisite. Furthermore, an efficient online package for an extensive comparison of protein complex 
prediction algorithms was not available.

In this paper, we present a survey of previously defined criteria and scrutinize their drawbacks. Also, we define 
a new evaluation metric for ranking protein complex detection algorithms.

We introduce “CDAP” an online package for analysis and comparison of such algorithms. “CDAP” ranks algo-
rithms on various PPI datasets (Collins, Gavin, Krogan-core and Krogan-extended) based on three well-known 
gold standard (MIPS, SGD and CYC2008). It is able to rank methods according to each of the evaluation metrics. 
The functionality of the package can be easily extended to incorporate new datasets, gold standards and compare 
novel methods with previously developed methods. Moreover, it visualizes the performance of each method 
based on evaluation metrics, which can help the user to get a better visual intuition of the performance of meth-
ods. Additionally, it has several custom options for integrating and filtering the results of methods.

Application
The CDAP server can be accessed from http://www.eslahchilab.ir/softwares/cdap. In order to compare the results 
of protein complex detection algorithms, the user should set up the desired setting in 5 steps.

 1. The settings about the PPIN dataset must be specified. The list of PPIN datasets contains Collins, Gavin, 
Krogan-core, and Krogn-Extended.

 2. The gold standard should be selected. The gold standards are Mips, SGD, and CYC2008.
 3. The algorithms shall be chosen from the list of {Cfinder, ClusterOne, RNSC, IMHRC, MCL, RRW, Pro-

Rank, ProRank+, and PEWCC}. A part of this list is shown in Fig. 1.
 4. The user can choose the type of integration, which is optional.
 5. At the end, the evaluation criteria should be selected. The sets of evaluation criteria include (SN, PPV and 

ACC), (MMR), (Recall, Precision and F– measure), (Recall+, Precision+ and F – measure+), (RecallN, Preci-
sionN and F – measureN) and (AUMF). There are also some filtering options in this step which are optional.

and Then, he/she may choose the algorithm(s) from the list shown in which are supposed to.
When the user complete these steps, the server applies algorithms on PPIN and evaluate the outputs with the 

gold standard based on evaluation criteria. Once a method is chosen, the default parameter values are shown 
in the related boxes; however, the user can change them arbitrarily. It should be noted that the default values of 
parameters are the values that have been recommended by their authors or by Nepusz et al.10. In fact, Nepusz 
et al. have calculated the best setting for every algorithm (except IMHRC) on each dataset and MIPS and SGD 
gold standards. The default values of IMHRC parameters on each dataset with MIPS and SGD gold standards are 
recommended by Maddi et al.12. Note that these default parameters are not for CYC2008 since it is less studied. 
ProRank, is the only method in this package that needs an extra biological information of protein similarities.
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presentation of results. Detected clusters by the selected algorithm are downloadable from the output 
section of the server. The computed criteria for each of the algorithms are tabulated and also displayed via multi 
plots. For each criterion, the comparisons are presented in a tab that contains a multiplot and a table. The multi-
plot shows the computed criteria of all selected algorithms indexed by various thresholds used in the computation 
of criteria. The areas under these curves are projected in a table. An example of outputs is shown in Fig. 2. In case 
of selecting (SN, PPV and ACC) or (AUMF) sets of criteria, no plot is shown, since setting a threshold for comput-
ing these criteria is meaningless. Thus, their absolute values are reported in a table.

custom options. In addition to the listed algorithms, the user may submit the detected clusters obtained by 
any method. It should be noted that when the results of a (or several) new method(s) are uploaded, the selected 
dataset should be the one that is used the process of obtaining the results. Moreover, this server has the ability to 
run the mentioned algorithms on other PPIN datasets. So the user can upload custom datasets. It is also possible 

Figure 1. Screenshot from CDAP server, showing the list of algorithms that can be chosen by the user.

Figure 2. A sample of results of the package.
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for the user to upload new gold standards for conducting comparison based on different complexes. The valid 
formats for uploading custom algorithms, PPINs and gold standards are described in Supplementary Table 2. 
Additionally, one can extend the server with a new criterion, protein complex detection algorithm, PPIN or 
gold standard, in such a way that future users can make use of them, by sending them to the contact mail to be 
adjusted and added to the server. The guidelines are represented in Supplementary Table 3. It is also possible to set 
a threshold θ for computing criteria based on it. To be more accurate, a cluster will be considered to be similar to 
a gold standard complex, if their overlap is greater than this threshold.

Moreover, the package has some option for filtering the detected clusters. The user can specify the minimum 
and maximum size of detected protein clusters. On the top of that, a very practical option of this package is that 
user can enter the STRING ID of a protein in order to receive all clusters detected by each method that contains 
the specified protein, an example of such applicable option is presented in the following. Another type of filtering 
can be done based on reliability, such that the results of methods will be filtered with the clusters that are detected 
by at least β methods.

integration. The package has the capability to integrate the methods’ results. It can yield the intersection or 
union of the clusters detected by various methods. To do this, it constructs a k-partite graph (k is the number of 
selected methods). Each part contains the nodes that are representatives of its clusters. There will be an edge 
between two nodes of two different parts if their corresponding clusters have more than φ% overlap. Then, all 
maximal cliques with size greater than ψ are considered and the clusters are used for intersection or union. So, the 
integration of results will contain the clusters with high reliability that are detected (with some alterations) by 
most methods. φ and ψ can be specified by user, otherwise their default values are considered which are 0.5 and 
k/2, respectively. Once the union or intersection is selected, the computed criteria for the integrated results are 
presented in the Results tab as shown in Fig. 2 and its file can be downloaded.

An example of integration. Integrating the results of several methods may yield better results. As an exam-
ple, we selected all methods and integrate them with different values of hyperparameters φ and ψ. The best results 
were obtained in two cases:

•	 Integration11: φ = 1 and ψ = 1
•	 Integration12: φ = 1 and ψ = 2

ProRank is excluded from this analysis, because it uses extra biological information beside topology, while 
other methods are use only topological data. Thus, integrating ProRank with topological-based method is not 
suitable. It should be mentioned that when φ = 1, union and intersection yield the same results. The criteria value 
for Integration11, Integration12 and other methods are presented in Table 1. It can be seen that integration can 
improve the results of almost all methods. Integration11 improves all methods in terms of MMR, Sn, ACC, Recall, 
Recall+, and PrecisionN. Moreover, Integration12 improves all methods in terms of MMR, AUMF, Recall, and 
RecallN.

An example of filtering by reliability. As an example of the package capability of filtering method results 
by reliability, we applied this filtering on ClusterOne method with β = 3. The criteria values are presented in 
Table 2. It can been seen that this filtering improved the values of Precision, F – measure, Precision+, F – measure+, 
and RecallN. It should be noted that the filtering may decrease the quality of performance in terms of some crite-
ria, and it highly depends on the value of hyperparameters.

Complexes of YGR198W: An example of filtering by protein ID. YGR198W/YPP1 is an essential pro-
tein in Saccharomyces Cerevisiae. It also performs fundamental functions in Human, Mouse and other species. It 
is a Cargo-transport protein involved in endocytosis. Furthermore, it plays role in the assembly and recruitment 
of multiple copies of the kinase into phosphoinositide kinase (PIK) patches at the plasma membrane17–21.

Method: MMR Sn PPV ACC AUMF Prc Rec F Prc* Rec+ F+ PrcN RecN

Integration11 0.444 0.705 0.372 0.522 0.518 0.067 0.627 0.083 0.039 0.595 0.074 0.461 0.179

Integration12 0.323 0.548 0.397 0.466 0.667 0.321 0.526 0.395 0.286 0.430 0.344 0.336 0.417

MCL 0.256 0.571 0.415 0.487 0.601 0.459 0.493 0.494 0.351 0.339 0.345 0.332 0.328

RRW 0.231 0.459 0.385 0.420 0.572 0.452 0.454 0.453 0.409 0.292 0.341 0.278 0.408

RNSC 0.250 0.545 0.405 0.470 0.616 0.485 0.487 0.486 0.420 0.324 0.366 0.321 0.369

IMHRC 0.252 0.589 0.400 0.486 0.595 0.495 0.495 0.495 0.343 0.343 0.343 0.336 0.296

ClusterONE 0.281 0.640 0.416 0.516 0.599 0.378 0.525 0.437 0.276 0.376 0.319 0.364 0.249

CFinder 0.213 0.669 0.309 0.455 0.548 0.407 0.416 0.412 0.449 0.268 0.336 0.285 0.236

ProRank+ 0.236 0.665 0.406 0.520 0.575 0.096 0.579 0.133 0.109 0.520 0.181 0.430 0.204

PEWCC 0.012 0.461 0.326 0.338 0.030 0.051 0.085 0.053 0.010 0.082 0.018 0.236 0.038

Table 1. The comparison of integrated results and the results of single methods. Criteria names are abbreviated: 
(Prc stands for Precision, Rec stands for Recall, F stands for F – measure). The criteria values that are improved by 
integration, are represented in Bold.
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Knowing the complexes that included this protein, helps us to have better insight into its functionality. Four 
complexes have been reported for this protein in Yeast Resource Center (YRC) and Database of Interacting 
Proteins (DIP) which are listed in Supplementary Table 4. CDAP can help us to retrieve all detected clusters 
including this protein quickly using its filtering by protein ID option. It should be noted that this protein is 
included just in Krogan-core and Krogan-extended PPI datasets. Using CDAP, we executed all methods on these 
two datasets based on both gold standards.

Among all methods, just Cfinder, RNSC, and MCL returned clusters that contain YGR198W. Each of these 
methods on each setting found at most one cluster containing YGR198W, but with different size. As it is shown 
in Table 3, eight clusters were detected when YGR198W was provided as a query, 3 of which share common pro-
teins with reported complexes in YRC; 2 of these clusters are detected by MCL and another cluster is detected by 
RNSC. It should be noted that both clusters detected by MCL are verified with the same complex, i.e. there is a 
complex reported in YRC that all its proteins are detected by MCL, but in the second cluster, MCL identified more 
proteins as the constituent. Five other clusters have not been documented in earlier studies as known complexes 
of YGR198W. Such clusters may give clue to discovering other complexes of this protein in further studies. The 
detected clusters are presented in Supplementary Table 5.

Discussion
In our survey of previously defined criteria, it has alluded that some of the criteria values are dependent to thresh-
old θ. The dependency of criteria to the value of θ has several drawbacks.

•	 By changing the values of threshold θ, the meaning of “true” and “false” for detected clusters is altered.
•	 Setting an appropriate value for θ is crucial, challenging and hard.
•	 For a specified value of θ, the amounts of the difference of edge weights to θ are not considered. If two meth-

ods have the same bipartite graph that all weights are greater than θ and in the second graph, all edge weights 
are duplicated. However these two methods do not have equal performance, the calculated values of criteria 
for these two methods are equal; since in the calculation of threshold-based criteria, the quantities of weights 
are ignored.

There is a critical point that should be noticed in utilizing threshold dependent criteria that is by changing the 
value of the threshold, a ranking of method performances will be altered. Therefore, for a specified evaluation 
metric and the specified value of the threshold, method A may be better than method B; while with a different 
value of the threshold and the same criterion, method B is better than method A.

In previous papers such as9,12 evaluations and validations are based on a specific value of the threshold, which 
is not an appropriate assessment. For example, RNSC is reported in12 as a method that does not perform well, 
while this conclusion is based on a specific value of the threshold. Using CDAP, one can realize that RNSC is of the 
best methods based on the area under curves of the criteria that are listed in Table 4. To overcome this problem, 
we have used the area under the curve for each threshold dependent criterion. In fact, in CDAP, when the user 
selects a criterion, the value shown in the output table is the area under the curve of the values of this criterion 
indexed by values of the threshold.

In addition to the definition of AUMF which is not dependent on the threshold, we revise previous criteria 
by considering the area under curve concept. For instance, for F – measure criterion, the area under the curve 
of the graph which plots the F – measure vs. threshold on x- and y-axes is calculated. It is worth mentioning that 
CDAP can compute the value of threshold dependent criteria for a particular threshold in case of user demand. 
Furthermore, CDAP computes two new values, namely “AUPR” and “AUPR+”. “AUPR” is the area under curve of 
Precision vs. Recall and “AUPR+” is the area under curve of Precision+ vs. Recall+.

Method: MMR Sn PPV ACC AUMF Prc Rec F Prc+ Rec+ F+ PrcN RecN

Original 0.281 0.640 0.416 0.516 0.599 0.378 0.529 0.439 0.276 0.376 0.319 0.364 0.249

Filtered 0.198 0.624 0.399 0.499 0.528 0.454 0.449 0.452 0.363 0.302 0.330 0.329 0.268

Table 2. The comparison of filtered results and the original results of ClusterOne method. Criteria names are 
abbreviated: (Prc stands for Precision, Rec stands for Recall, F stands for F – measure). The criteria values that are 
improved by integration, are represented in Bold.

Dataset: Krogan-Core Krogan-Extended

Gold Standard MIPS SGD MIPS SGD

CFinder 1 of 8 1 of 8 0 of 0 0 of 0

MCL 15 of 15 0 of 0 14 of 22 1 of 2

RNSC 1 of 2 1 of 2 2 of 3 0 of 0

Table 3. Number of verified proteins in each detected cluster. To clarify the notation, x of y means that the 
method finds a cluster containing YGR198W with y proteins and there exists a known complex that shares x 
protein in common with the detected cluster.

https://doi.org/10.1038/s41598-019-49225-7
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conclusion
Methods for detecting protein complexes from protein-protein interaction networks (PPIs) are one of the most 
critical computational methods which have been widely used recently. Several methods have been proposed for 
the discovery of protein-protein interactions in recent years, namely Cfinder, MCL, RNSC, RRW, ClusterOne, 
IMHRC, ProRank, ProRank+, and PEWCC. Evaluating these methods is of high importance. The inherent prop-
erties of complexes, such as the overlapping feature, have led to defining various evaluation metrics and criteria 
for comparing and ranking these algorithms. Many evaluation metrics have been proposed previously such as 
ACC, PPV, SN, Precision, Recall, F – measure, PrecisionN, RecallN, and MMR, each of which has some drawbacks 
and cannot fully reflect the quality of an algorithm. We analyzed these evaluation metrics in this paper and 
expressed their flaws by presenting some examples. It is reasonable that a protein complex detecting algorithm 
performs well whenever it returns the clusters the same as the complexes in the gold standard. So, the evaluation 
metrics should be able to measure the quality and quantity of one-to-one and spanning relationship between 
the estimated clusters and complexes in the gold standard. In this paper, we introduced a new evaluation metric 
MMR + Fmeasure+. The newly introduced metric can better express the quality and quantity of the one-to-one 
and spanning relationship between the clusters and complexes. Nevertheless, its value depends on the value of the 
threshold. Thus, we defined a new criterion that is invariant with respect to values of threshold, which is the Area 
Under (MMR + Fmeasure+, θ) curve (AUMF). This criterion has the feature of assessing methods both qualita-
tively and quantitatively in addition to covering the drawbacks of previous criteria.

We have developed CDAP, an online package for the comparison and visualization of the performance of 
protein complex detection methods. It is available at http://www.eslahchilab.ir/softwares/cdap. CDAP lets the 
user select the PPI dataset, gold standard, protein complex detection method and set of criteria for evaluation.

Moreover, we revised previously defined criteria that are dependent on the threshold of θ. In CDAP the calcu-
lated value for such criteria is the area under curves of criteria indexed by values of θ.

CDAP also has the ability to compare the results of any custom method when its outputs are uploaded in a 
valid format on the website. Furthermore, one can upload new datasets or gold standards for training and eval-
uating algorithms. We tried to include AP22 and CMC7 methods in our package, but there was some problem in 
the compatibility of platforms that we are going to remove them. We are trying our best to add these methods and 
other newly proposed methods to our package.

One of the most applicable queries that can be done by CDAP is the option of filtering detected clusters by 
setting minimum or maximum size of their proteins or by specifying a protein as a query, which in this case the 
CDAP find all clusters detected by methods that contain the specified protein. Another type of filtering is based 
on the reliability such that filtered results contain only the clusters that are detected by several methods. A useful 
capability of the package is the integration of methods’ results via intersection and union.

Due to the rapid trend of producing and analyzing data, proposing novel algorithms and defining new criteria, 
anyone can extend CDAP simply by sending new datasets, gold standards, methods or criteria to the contact mail. 
The guidelines for sending files is described in Supplementary Table 3.

To sum up, CDAP can be a very useful package to compare methods exhaustively and comprehensively and 
can facilitate the validation process for authors of future papers and help them in comparison of their proposed 
method to the previous ones.

Methods
Datasets. The datasets of PPINs used in this package are: Collins5, Gavin1, Krogan-core23 and Krogan-
extended23. These datasets were used to learn methods in the package. All settings and parameters in every dataset 
were set based on what the original papers have proposed. We removed self-interactions and isolated proteins 
from all datasets. The weights of PPIs in the Gavin dataset are Socio-affinity indices, which show the log-odds of 
number of times that pairs of proteins are observed together as preys, or bait and a prey24. Selection of PPIs from 
the Collins was based on purification enrichment score which contains the top 9074 interactions. The weights of 
all PPIs in Krogan-core are greater than 0.273, while the weights of all PPIs in Krogan-extended are greater than 
0.101.

Gold standards. The results were compared with three gold standards for Saccharomyces cerevisiae, namely 
SGD, MIPS and CYC2008:

Criteria ACC MMR Fmeasure Fmeasure+ AUMF PrecisionN RecallN

CFinder 0.465 0.207 0.362 0.281 0.488 0.289 0.212

MCL 0.457 0.208 0.340 0.255 0.463 0.272 0.223

ClusterOne 0.469 0.242 0.293 0.251 0.493 0.315 0.218

RNSC 0.451 0.239 0.422 0.308 0.547 0.304 0.291

RRW 0.418 0.217 0.430 0.319 0.536 0.250 0.375

IMHRC 0.421 0.244 0.334 0.292 0.536 0.271 0.303

ProRank 0.445 0.217 0.447 0.297 0.514 0.291 0.275

ProRank+ 0.466 0.327 0.147 0.196 0.523 0.378 0.295

PEWCC 0.464 0.036 0.056 0.039 0.075 0.315 0.074

Table 4. A summary of calculated values of area under curves of the criteria using CDAP.
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•	 Gene Ontology-based protein complex annotations from SGD (Saccharomyces Genome Database)25. SGD 
includes Gene Ontology (GO) annotations which provide useful biological information for producing refer-
ence complexes.

•	 The catalog of protein complexes from MIPS26 (the Munich Information Center for Protein Sequences). The 
MIPS catalog has a hierarchical structure so the complexes may be composed of several subcomplexes10.

•	 The benchmark protein dataset CYC2008 that contains manually curated heteromeric protein complexes27.

previously introduced evaluation metrics. A common approach for comparing and evaluating protein 
complex detection algorithms is to match their outputs with reference complexes in gold standard sets. We call 
the true complexes of the gold standard as “reference complex” and detected complexes by methods as “detected 
clusters”. A remarkable point is the existing overlap among protein groups. These overlaps between reference 
complexes, as well as the existence of similar overlap between the protein clusters detected by the above algo-
rithms, have led to different comparison and evaluation methods. It should be noted that a reference protein com-
plex may correspond to several clusters detected by the algorithms. Conversely, a detected cluster may correspond 
to more than one reference protein complex. It is worth mentioning that the relation between detected clusters 
and gold standard complexes is often not complete and is sometimes partial. Thus, some reference complexes may 
have no relation with any detected clusters and vice versa. These connections can be represented by a bipartite 
graph, in which the circle nodes (Pi) in the first part are representatives of gold standard complexes and the square 
nodes (Cj) in the second part are the representatives of detected clusters. Figure 3 shows a schematic illustration 
of such relations. The number on each node (ni or mj) shows the number of proteins in that node (cluster or com-
plex). The weight tij on edge (Pi, Cj) reports the number of common proteins between complex Pi and cluster Cj.

Undoubtedly, these relations must be measured quantitatively and qualitatively. In other words, not only the 
number of unique matches among the members of the two groups should be taken into account, but also the 
quality of each matching is very important and should be considered. Three common categories of criteria are 
introduced in articles for such evaluation. We survey evaluation metrics in two parts: qualitative metrics and 
quantitative metrics.

Qualitative metrics

•	 SN, PPV and ACC
The first category consists of sensitivity (SN), positive predictive value (PPV), and accuracy (ACC) intro-
duced by Brohee and van Helden28. ACC is the geometric mean of two criteria: SN and PPV. Suppose that 
there are n complexes in a gold standard as the member of the reference complex and m clusters are de-
tected by an algorithm, tij represents the number of proteins that the reference complex i and the detected 
cluster j share in common and ni denotes the number of proteins that are in the reference complex i. SN 
and PPV are defined as follows:
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It is evident that the values of SN and PPV is in range [0, 1]. The expected value of PPV is low; since its 
numerator is the sum of m elements and its denominator is the sum of nm elements. All criteria of this 
category focus on the quality of detected clusters. In other words, they measure the number of proteins that 
reference complexes and detected clusters share in common. According to the definitions, SN represents 
the ratio of proteins in reference complexes that are corresponded to the detected clusters. Ignorance of the 
impacts of giant components and redundant groups in detected clusters is one of the shortcomings of this 
benchmark. Suppose that there is a giant component among the detected clusters that contains all the 
proteins in the reference complexes. It is obvious that the value of SN criterion will be maximized in that 
case. Figure 4 shows this issue.
 Additionally, if there are a lot of similar groups between the detected clusters, the value of this criterion 
is almost equal to value of SN after removing redundant clusters (removing all similar groups except one of 
them). Although, PPV tends to 1 by repeating similar clusters, while the results of algorithms is not great. 
This issue can be seen in Figs 5 and 6.

Figure 3. A schematic representation of relations between detected clusters and gold standard complexes.
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PPV is defined in such a way that the accumulation of proteins in a group (the existence of a giant compo-
nent) leads to reduction of PPV by incresing the denominator. Notice to PPV values in Fig. 4. Unfortunate-
ly, PPV ignores false negatives, i.e. if there are so many complexes that are not matched by clusters well, this 
issue do not decrease PPV value, but it declines SN value. Figures 7 and 8 shows this problem.
Therefore, both of these criteria has some drawbacks. So the accuracy criterion (ACC) is used to balance 
the values of the two criteria of SN and PPV.

= ×ACC SN PPV (3)

However, ACC cannot be considered as a flawless benchmark for evaluating and comparing protein com-
plex detection algorithms. As mentioned above, in case of adding redundant clusters to the results, which 
leads to low performance of algorithm, SN does not change and PPV increases, so ACC ascends.
Furthermore, consider a perfect complex detection algorithm that its outputs are exactly the same as the 
reference complexes in a gold standard. We expect that the criteria values to be the maximum. It is evident 
that the detected clusters may have some overlaps. For such results, SN value will be maximized, while this 
is not the case for PPV. Thus, ACC value of this perfect method is not 1. In other words, due to overlaps 
between the reference complexes, the value of ⁎ti , which is defined as follows, will be greater than ni.

Figure 4. A giant component is among detected clusters. So, ≈ ≈∑

∑
=

=
Sn 1n

n
i
n

i

i
n

i

1

1
 and =

+ + +
PPV n

n n n n
1

1 2 3 4
.

Figure 5. Four clusters in this figure, are so similar; so <l k, ≈ + +SN k l n n( )/( )1 2  and = +PPV k k l4 /(4 2 ). 
PPV tends to 1 by adding similar clusters.

Figure 6. This graph is the same as previous figure, except that similar clusters are removed. The value of SN is 
not changed after removing similar clusters but PPV decreased ( >k l). ≈ + +SN k l n n( )/( )1 2  and 

= +PPV k k l/( ).
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One can conclude from the equivalence of detected clusters and reference complexes that:

= =t t nmax max
j

ij
i

ij i

In this case, PPV and SN are:

= ∑
∑

< ==

= ⁎
PPV

n
t

SN1, 1i
n

i

i
n

i

1

1

In fact, due to the overlap between the reference protein complexes, there exist some proteins that belong 
to more than one protein complexes. Therefore, the numerator of PPV formula is almost always smaller 
than its denominator, so the PPV value will never be maximized. This issue is illustrated in Fig. 9. As a 
result, since we know that the existence of overlap is an intrinsic property of the protein groups, PPV, SN, 
and ACC criteria are not appropriate metrics.
Another important problem is the ignorance of false positives by this category of criteria. This means that 
detection of any number of incorrect protein clusters have no effect on the values of the criteria in this 

Figure 7. Some complexes are not covered well that are known as false negatives. 
= + + + + <SN n n n n n n( )/( ) 12 3 1 2 3 4  and = + + =PPV n n n n( )/( ) 11 2 1 2 .

Figure 8. This graph includes the same nodes as the previous figure but not the false negatives. The SN value in 
the previous figure is less than this one due to the false negatives, but the PPV values are the same. 

= + + =SN n n n n( )/( ) 11 2 1 2  and = + + =PPV n n n n( )/( ) 11 2 1 2 .
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category. Thus, methods that detect a huge number of clusters (containing a lot of incorrect clusters) often 
acquire high values of ACC. Figure 10 shows this drawback.
In sum, false positives does not affect PPV and SN. And False negatives does not affect PPV, but they de-
cline SN. Therefore, it is essential to analyze methods with another criterion.

•	 PreN, RecN, F – measureN
Zaki et al.14 defined a set of criteria which is almost analogous to the previous set (PPV, Sn, ACC):



 ∩
=

Σ | |

Σ | | | | = | |θ

=
| |

=
| |

>
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P K max P C, (4)
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i i

i i i C JCC P C i j

1

1 , ( , )j i j

∩
=

Σ | |

Σ | | | | = | |θ

=
| |
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+
F measure Prec Rec

Prec Rec
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where = ∩
∪

| |
| |

JCC P C( , ) P C
P C

 is the Jaccard index. This set of criteria have the same deficiencies as the previous 

set of criteria (PPV, Sn, ACC). The threshold-dependency of is an extra disadvantage of this set of criteria.
•	 MMR

MMR (Maximal Marginal Relevance) criterion was introduced in10 to overcome some of mentioned draw-
backs of previous criteria. In this criterion, a complete bipartite weighted graph is constructed based on 
threshold θ similar to the mentioned graph where

θ

θ
=







≥

<
t

NA P C NA P C
P C

( , ) ( , )
0 ( , ) (7)

ij
i j i j

i j

and

Figure 9. Complexes P1, P3 have some overlap and <s n2, <t n1, <l n3. = + + + + =SN n n n n n n( )/( ) 11 2 3 1 2 3  
and = + + + + + + <PPV n n n n n n l t( )/( ) 11 2 3 1 2 3 .

Figure 10. Despite of the existence of many spurious detected clusters, the value of these criteria are high; n1, n2, 
>n 23 , = + + + + =SN n n n n n n( )/( ) 11 2 3 1 2 3  and = + + + + +PPV n n n( 2 2)1 2 3 / + + +n n n( 1 2 3

+ + =2 2) 1 and =ACC 1.
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In this definition, NA(Pi, Cj), which is known as neighborhood affinity score, shows how the reference 
complex Pi has been able to match the detected cluster Cj

3.
By applying a weighted bipartite graph matching algorithm on this graph, a one-to-one mapping between 
the first and second sections is obtained. The MMR value is calculated by normalizing the total weight of 
the maximal matching edges on the number of reference complexes, so its value is in range [0, 1]. The 
defect of this criteria is that it ignores false positives; i.e. the detection of many spurious clusters do not 
affect the value of MMR. Because adding similar clusters to a set of detected clusters do not change the 
maximum matching. Thus, both the numerator and denominator do not change. Dependency of this 
criterion to the value of θ is its another disadvantage.
Quantitative metrics

•	 Precision, Recall and F – measure
This category of criteria includes F – measure, Precision and Recall. F – measure is the harmonic mean of 
Precision and Recall criteria. These criteria are defined as follows:

θ= | | ∃ ≥ |N P C NA P C{ , ( , ) } (9)p i j i j

θ= | | ∃ ≥ |N C P NA P C{ , ( , ) } (10)c j i i j


=

| |
Precision

N

(11)
p


=

| |
Recall N

(12)
c

− =
× ×

+
F measure Precision Recall

Precision Recall
2

(13)

where   and  are representatives of the sets of reference complexes and detected clusters, respectively. Zaki 
et al. used slightly different versions of Precision and Recall as follows14:

θ= | | ∃ ≥ |N P C JCC P C{ , ( , ) } (14)p i j i j

θ= | | ∃ ≥ |N C P JCC P C{ , ( , ) } (15)c j i i j

=
| |

Prec
N

(16)c
p



=
| |

Rec N
(17)c

c



Since Precc and Recc have almost similar meaning to Precision and Recall, we do not incorporate Precc and 
Recc in CDAP.
Both of these category of criteria attempt to examine the results of protein complex detection algorithms 
quantitatively. In fact, in these set of criteria, the main attention is to the number of detected clusters and 
less attention is paid to the internal quality of these clusters. Thus, the matching size more than a specified 
threshold cannot influence the quality measured by these criteria. This category has several drawbacks:

•	 The existence of exorbitant overlapping complexes does not have a significant effect on quality reduction. In 
other words, the low values for θ threshold increase the error rate when the size of the groups get bigger. For 
example, if θ = .0 25, for confirmation of a 10-member cluster, it is sufficient that half of its proteins exist in 
another 10-member gold standard complex. Thereby, the mentioned algorithm can detect similar groups with 
the mentioned core, all of which have 5 members in common with the gold standard, or detect some redun-
dant groups. Thus, all redundant groups are validated. Although Recall does not change but Precision 
increases which lead to an increase in F – measure. The reason for this drawbacks is that several clusters can 
be validated by one complex

•	 The values of the mentioned criteria is dependent on the value of θ.

In order to address this issue, we introduce a new set of criteria.

A new set of evaluation metrics. As mentioned in the previous section, each set of criteria has some 
drawbacks. One way to have a more expressive set of criteria is to gather various criteria. In order to cover MMR 
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shortcomings, ACC and Recall have been used in2. As explained above, ACC has a fundamental defect due to the 
presence of overlap between groups. In addition, ACC measures the groups qualitatively similar to MMR. Thus, 
there is no need for ACC criterion while using MMR. Moreover, usage of Recall criterion solely and without 
Precision criterion does not make sense. Therefore, the use of F – measure instead of the Recall criterion is more 
logical. One can add quantitative evaluation to the main evaluation process by using F – measure; however, all the 
deficiencies have not been resolved yet due to the mentioned defects for the second category. We used MMR cri-
terion alongside the modified F – measure to have a more accurate evaluation system. The modified F – measure, 
Precision, and Recall are represented by F – measure+, Recall+, and Precision+, respectively.

θ θ= | | ∃ ≥ ∈ |+N P C NA P C P C Match{ , ( , ) , ( , ) ( , , )} (18)p i j i j i j P C

θ θ= | | ∃ ≥ ∈ |+N C P NA P C P C Match{ , ( , ) , ( , ) ( , , )} (19)c j i i j i j P C

=
| |

+
+

Precision
N

(20)
p




=

| |
+

+

Recall N
(21)

c

− =
× ×

+
+

+ +

+ +F measure Precision Recall
Precision Recall

2
(22)

In this definition, θMatch( , , )P C  contains the set of edges obtained by applying maximum non weighted 
bipartite graph matching algorithm on the bipartite graph that consists of edges between reference complexes and 
detected clusters that has the affinity score greater than θ. Since both MMR and F – measure+ are in range [0, 1], 
we can consider the sum of these two criteria as the benchmark for ranking protein complex detection methods.

Obviously, the best algorithm for identifying protein complexes is an algorithm that has a one-to-one and 
spanning relationship between the detected clusters and the complexes within the gold standard. Therefore, this 
metric is suitable for evaluation, which can measure the quantity as well as the quality of this relation, while the 
old metrics do not have this property. The criterion introduced in this section explicitly examines the quality and 
quantity of such a relationship. It can be inferred that this criterion takes its maximum value 2 when the algorithm 
returns the clusters the same as the gold standard complexes. The values of this criterion for all methods applied 
on Collins dataset and compared with Mips gold standard is shown in Fig. 11 (ProRank is not considered in this 
comparison since it uses additional biological data).

This criterion still depends on the value of θ. Thus, for having a metric that is invariant with respect to θ, we 
consider the Area Under (MMR + Fmeasure+, θ) curve (AUMF) as a criterion for evaluating the results of the 
algorithms. The values of AUMF for 8 methods with default parameter values on each pair of dataset and gold 
standard are reported in Supplementary Table 1.

Data Availability
The package is implemented in Java and from the “CDAP” website (http://www.eslahchilab.ir/softwares/cdap)

Figure 11. The values of the MMR + Fmeasure+ for all values of θ.

https://doi.org/10.1038/s41598-019-49225-7
http://www.eslahchilab.ir/softwares/cdap


13Scientific RepoRtS |         (2019) 9:12751  | https://doi.org/10.1038/s41598-019-49225-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
 1. Gavin, A.-C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631 (2006).
 2. Hu, L. & Chan, K. C. A density-based clustering approach for identifying overlapping protein complexes with functional preferences. 

BMC bioinformatics 16, 174 (2015).
 3. Li, X. et al. Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC genomics 

11, S3 (2010).
 4. Pereira-Leal, J. B., Enright, A. J. & Ouzounis, C. A. Detection of functional modules from protein interaction networks. Proteins: 

Structure, Function, and Bioinformatics 54, 49–57 (2004).
 5. Collins, S. R. et al. Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Molecular & Cellular 

Proteomics 6, 439–450 (2007).
 6. Srihari, S. & Leong, H. W. A survey of computational methods for protein complex prediction from protein interaction networks. 

Journal of bioinformatics and computational biology 11, 1230002 (2013).
 7. Liu, G., Wong, L. & Chua, H. N. Complex discovery from weighted ppi networks. Bioinformatics 25, 1891–1897 (2009).
 8. Spirin, V. & Mirny, L. A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of 

Sciences 100, 12123–12128 (2003).
 9. Palla, G. et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814 (2005).
 10. Nepusz, T., Yu, H. & Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks. Nature 

methods 9, 471 (2012).
 11. King, A. D., Pržulj, N. & Jurisica, I. Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020 (2004).
 12. Maddi, A. & Eslahchi, C. Discovering overlapped protein complexes from weighted ppi networks by removing inter-module hubs. 

Scientific Reports 7, 3247 (2017).
 13. Macropol, K., Can, T. & Singh, A. K. Rrw: repeated random walks on genome-scale protein networks for local cluster discovery. 

BMC bioinformatics 10, 283 (2009).
 14. Zaki, N., Berengueres, J. & Efimov, D. Detection of protein complexes using a protein ranking algorithm. Proteins: Structure, 

Function, and Bioinformatics 80, 2459–2468 (2012).
 15. Hanna, E. M. & Zaki, N. Detecting protein complexes in protein interaction networks using a ranking algorithm with a refined 

merging procedure. BMC bioinformatics 15, 204 (2014).
 16. Zaki, N., Efimov, D. & Berengueres, J. Protein complex detection using interaction reliability assessment and weighted clustering 

coefficient. BMC bioinformatics 14, 163 (2013).
 17. Flower, T. R. et al. Ygr198w (ypp1) targets a30p α-synuclein to the vacuole for degradation. The Journal of cell biology 177, 

1091–1104 (2007).
 18. Rodriguez-Peña, J. M. et al. The deletion of six orfs of unknown function from saccharomyces cerevisiae chromosome vii reveals two 

essential genes: Ygr195w and ygr198w. Yeast 14, 853–860 (1998).
 19. Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686 (2003).
 20. Zhai, C. et al. Ypp1/ygr198w plays an essential role in phosphoinositide signalling at the plasma membrane. Biochemical Journal 415, 

455–466 (2008).
 21. Baird, D., Stefan, C., Audhya, A., Weys, S. & Emr, S. D. Assembly of the ptdins 4-kinase stt4 complex at the plasma membrane 

requires ypp1 and efr3. J Cell Biol 183, 1061–1074 (2008).
 22. Frey, B. J. & Dueck, D. Clustering by passing messages between data points. science 315, 972–976 (2007).
 23. Krogan, N. J. et al. Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440, 637 (2006).
 24. Zhang, B. et al. From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics 24, 

979–986 (2008).
 25. Cherry, J. M. et al. Sgd: Saccharomyces genome database. Nucleic acids research 26, 73–79 (1998).
 26. Mewes, H.-W. et al. Mips: a database for genomes and protein sequences. Nucleic acids research 30, 31–34 (2002).
 27. Pu, S. et al. Up-to-date catalogues of yeast protein complexes. Nucleic acids research 37, 825–831 (2008).
 28. Brohee, S. & Van Helden, J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC bioinformatics 7, 488 

(2006).

Acknowledgements
The authors would like to thank EslahchiLab group members for their helpful suggestions for developing package.

Author contributions
Ali M. A. Maddi and Fatemeh A. Moughari performed the experiments. Ali M. A. Maddi, Fatemeh A. Moughari 
and Changiz Eslahchi conducted the experiments and analyzed the results. Fatemeh A. Moughari wrote the main 
manuscript text. Ali M. A. Maddi, Fatemeh A. Moughari and Mohammad M. Balouchi developed the software 
and system. All authors reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-49225-7.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-49225-7
https://doi.org/10.1038/s41598-019-49225-7
http://creativecommons.org/licenses/by/4.0/

	CDAP: An Online Package for Evaluation of Complex Detection Methods
	Application
	Presentation of results. 
	Custom Options. 
	Integration. 
	An example of Integration. 
	An example of filtering by reliability. 
	Complexes of YGR198W: An example of filtering by protein ID. 

	Discussion
	Conclusion
	Methods
	Datasets. 
	Gold standards. 
	Previously introduced evaluation metrics. 
	A new set of evaluation metrics. 

	Acknowledgements
	Figure 1 Screenshot from CDAP server, showing the list of algorithms that can be chosen by the user.
	Figure 2 A sample of results of the package.
	Figure 3 A schematic representation of relations between detected clusters and gold standard complexes.
	Figure 4 A giant component is among detected clusters.
	Figure 5 Four clusters in this figure, are so similar so , and .
	Figure 6 This graph is the same as previous figure, except that similar clusters are removed.
	Figure 7 Some complexes are not covered well that are known as false negatives.
	Figure 8 This graph includes the same nodes as the previous figure but not the false negatives.
	Figure 9 Complexes P1, P3 have some overlap and , , .
	Figure 10 Despite of the existence of many spurious detected clusters, the value of these criteria are high n1, n2, , and / and .
	Figure 11 The values of the MMR + Fmeasure+ for all values of θ.
	Table 1 The comparison of integrated results and the results of single methods.
	Table 2 The comparison of filtered results and the original results of ClusterOne method.
	Table 3 Number of verified proteins in each detected cluster.
	Table 4 A summary of calculated values of area under curves of the criteria using CDAP.




