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Background: Tumor cells outcompete T cells for methionine via

overexpressing SLC43A2, causing T cells exhaustion. We explored the

influence of SLC43A2 on tumor immune microenvironment (TIME),

immune-related genes (IRGs) and the prognosis of liver hepatocellular

carcinoma (LIHC) patients.

Methods: The TCGA-LIHC dataset (n = 374) and the ICGC-LIRI-JP-LIHC (n = 231)

datasets were used as training and validation cohort, respectively. IRGs were

obtained from ImmPort. Statistical analyses were performed using R (V 4.0.5).

Online databases such as GEPIA, GSCALite, the Kaplan–Meier plotter, KEGG,

TIMER2, and CMap were used for differential expression, immune infiltration,

functional enrichment, survival, and drug-induced gene perturbation analysis.

Results: SLC43A2 expression was higher in LIHC, correlated with worse survival,

but could not predict prognosis of LIHC separately (AUC = 0.467). SLC43A2

positively correlated with immune exhaustion markers (all p < 0.001) and with

increased infiltration of Tregs, macrophages andmyeloid-derived suppressor cells

(MDSC) (all p < 0.05). SLC43A2 may regulate 120 IRGs. A prognostic risk score

model was developed using the TCGA-LIHC cohort and validated by the ICGC-

LIRI-JP cohort. Arachidonic acid, SB-202190 and guanethidine were identified as

possible immunomodulators pharmacologically targeting SLC43A2 in LIHC.

Conclusion: SLC43A2 may create suppressive tumor microenvironment and

regulate related IRGs, thus affecting the prognosis of LIHC. Arachidonic acid,

SB-202190, and guanethidine may be worthy of further study as

immunomodulators on SLC43A2.
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Introduction

Liver hepatocellular carcinoma (LIHC) is a highly prevalent and

lethal cancer, and many therapeutics are being tested for this disease

(Siegel et al., 2022). In recent years, immunotherapy has greatly

improved the prognosis of patients with LIHC (Fu et al., 2019; Ruf

et al., 2021). Immune cells depend on solute carrier transporters

(SLCs) to transportmetabolites involved in gene regulation and signal

transduction (Chen and Chen, 2021). A previous study, published in

Nature, indicated that tumor SLC43A2 (solute carrier family

43 member 2) could modify T cell methionine metabolism and

lead to T cell depletion. Inhibiting tumor SLC43A2 can normalize

methionine metabolism in effector T cells, rescue their function and

improve anti-tumor immunity in preclinical models (Bian et al.,

2020).

However, to the best of our knowledge, the relationships between

SLC43A2 and tumor immune microenvironment (TIME) as well as

prognosis in LIHC have not been reported. In addition to T cell

exhaustion, whether SLC43A2 plays a role in modulating other

immune cells infiltration or regulating immune-related genes

(IRGs) in LIHC is unclear.

Using readily available cancer databases, we investigated into

the predictive potential of SLC43A2 on LIHC prognosis and its

relationship with tumor-infiltrating immune cells. Furthermore,

we analyzed SLC43A2 related IRGs and constructed a prognostic

risk score model to improve the accuracy of prognosis prediction

in LIHC. Finally, we tried to find possible small molecule drugs

(SMDs) which may combat the adverse effects of SLC43A2 in

LIHC through the CMap database.

Materials and methods

Data collection and statistical analysis

Gene expression profiles and clinical information of 374 LIHC

patients were downloaded and extracted from the TCGAdatabases as

the TCGA-LIHC cohort (https://portal.gdc.cancer.gov/). In addition,

RNA expression sequencing data and clinical information of

231 LIHC patients were obtained from the ICGC-LIRI-JP cohort

(https://dcc.icgc.org/releases) for validation. The 1793 IRGs were

obtained from Immunology Database and Analysis Portal database

(ImmPort database, https://www.immport.org/shared/home).

The RNA-Seq gene expression data with workflow type of

FPKM was transformed into TPM format and converted to log2

for further study. All statistical analyses were performed using R

(https://www.r-project.org/, V 4.0.5). Corresponding R packages

of limma, survival, survminer, ROC, ClusterProfiler, Rms,

DESeq2, Venn, and ggplot2 were used.

Expression analysis of SLC43A2 between
LIHC and normal tissues

GEPIA (http://gepia.cancer-pku.cn/) (Tang et al., 2019),

GSCALite database (Liu et al., 2018), and R software were used

for mRNA differential expression analysis of tumor/normal tissue.

Information on SLC43A2 protein expression in normal liver tissue

and LIHC tissue was extracted from the Human Protein Atlas

(HPA, http://www.proteinatlas.org/) (Uhlen et al., 2017).

Survival analyses of SLC43A2 in LIHC
patients

GEPIA, the Kaplan–Meier (K–M) plotter database and R

software were used to assess the effect of SLC43A2 expression on

survival. Endpoints of survival including overall survival (OS),

disease-specific survival (DSS), progression-free interval (PFI),

and recurrence-free survival (RFS). Survival curves were

generated by the Kaplan–Meier plots, and the results were

displayed with hazard ratio (HR) and p-value.

SLC43A2 expression and immune cell
infiltration in LIHC

TIMER2 (https://cistrome.shinyapps.io/timer/) is a

comprehensive resource for systematic analysis of immune

infiltrates across diverse cancer types (Li et al., 2017).

GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/)

integrates cancer genomics analysis based on TCGA data in

33 cancers and normal tissue data from GTEx for gene set

analysis in a one-in-all data analysis workflow (Liu et al.,

2018). We used these two datasets to analyze the relationship

between SLC43A2 expression, immune cell infiltration, and T cell

exhaustion markers (Andrews et al., 2017; Masugi et al., 2017;

Agresta et al., 2018; Pai et al., 2019; Wang et al., 2020; Wolf et al.,

2020). Furthermore, a multivariate Cox proportional hazards

regression model found immune cell subsets independently

associated with survival adjusted for age, stage, and sex. A p

value less than 0.05 was considered statistically significant.

SLC43A2 related differentially expressed
genes (DEGs) and functional enrichment
analysis

According to the median levels of

SLC43A2 expression, we divided LIHC patients into high/low
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expression groups. |log2 FC| >1.5 and p adjust <0.05 was used as

the threshold value to screen for DEGs. In order to elucidate the

functional profiles of the DEGs, Gene ontology (GO) (Walter

et al., 2015) and Kyotoencyclopedia of genes and genomes

(KEGG) (Kanehisa et al., 2017) analyses were used for

functional enrichment analysis. The “p.adjust” function in the

R programming language was used to adjust for multiple

comparisons.

Identification of IRGs that may be
regulated by SLC43A2

Based on the 1793 IRGs and SLC43A2 related DEGs, we

obtained 120 IRGs that may be regulated by SLC43A2, of which

22 OS related IRGs were found by Univariate Cox regression

analysis. Furthermore, Least Absolute Shrinkage and Selection

Operator (LASSO) Cox regression model was used for signature

construction (Tibshirani, 1997). Ultimately, 5 genes (LECT2,

CXCL8, FABP6, NR0B1, PGLYRP4) were selected from the

22 OS associated SLC43A2 related IRGs to construct a

prognostic prediction model.

Identification and validation of the
prognostic risk score model

Based on the expression levels of 5 genes and corresponding

regression coefficients, the risk score of patients in TCGA-LIHC

cohort were calculated. Risk score = sum (corresponding

coefficient × each gene’s expression). TCGA-LIHC patients

were divided into high-risk and low-risk groups by the

median of risk score. Principal component analysis (PCA) was

used for dimensionality analysis. The survival analysis was

visualized using K-M survival curves with log-rank testing.

The ICGC-LIRI-JP cohort was used to validate the prognostic

value of the risk score model. Multivariate cox regression analysis

and Receiver operating curves (ROC) were used to estimate

whether risk score in combination with stage had better

prognostication. In addition, a nomogram was constructed

and assessed by the calibration curves to predict 1-, 3-, and 5-

year OS rate. When the curve approaches to the 45-degree line, it

represents the best prognostic prediction.

Identification of SMDs for reversing
immunosuppressive of SLC43A2 in LIHC

The Connectivity Map (CMap) v2.0 (https://portals.

broadinstitute.org/cmap) (Lamb et al., 2006) was used to

identify the SMDs that may reverse the

immunosuppressiveness of SLC43A2. CMap provide

transcriptomic data for drug treatments. We identified SMDs

possessing the lowest risk score of the 5 genes involved in the risk

score model (the connectivity enrichment value was > 0.8, p < 0.

01). And the 3D conformers of the top 3 candidate therapeutic

agents were downloaded (https://go.drugbank.com, https://www.

ncbi.nlm.nih.gov/geoprofile).

Results

Associations between SLC43A2
expression and clinicopathologic factors
in LIHC

Figure 1 was the workflow of our research. Compared to

normal tissue, LIHC had considerably higher expression

level of SLC43A2. Figure 2 showed the expression

differences of SLC43A2 in GEPIA (Figure 2A, p < 0.05),

GSCA (Figure 2B, p < 0.001), TCGA-LIHC unpaired

(Figure 2C, p < 0.001) and paired (Figure 2D, p < 0.001)

analyses respectively. Besides, immunohistochemical

staining from HPA indicated the upregulation of

SLC43A2 protein in LIHC [Figures 2E,F, Normal tissue:

Weak (<25%), LIHC Tumor: Moderate (25%–75%)]. High

expression of SLC43A2 had higher levels of AFP (25 vs. 4 ng/

ml, p = 0.012), while T stage, N stage, M stage, age, Albumin

(g/dl), or Body Mass Index (BMI) had no significant

differences (Table 1).

Associations between SLC43A2
expression and survival in LIHC

Elevated SLC43A2 expression had a negative effect on OS

of LIHC (GEPIA database analysis, HR = 1.6, log-rank p =

0.021) (Figure 3A). The K-M plotter database also showed that

high-levels of SLC43A2 were associated with worse OS and

RFS (45.73 vs. 71.03 months, log-rank p =0.01; 17.9 vs.

36.1 months, log-rank p = 0.021 respectively; Figures 3B,C).

Moreover, the 10-year OS, DSS, and PFI were significantly

lower in patients with higher SLC43A2 expression (in TCGA-

LIHC cohort, HR = 1.67, 95%CI = 1.18–2.37, p = 0.004; HR =

1.65, 95%CI = 1.06–2.58, p = 0.027; HR = 1.40, 95%CI =

1.02–1.93, p = 0.037; respectively, Figures 3D–F).

Associations between SLC43A2
expression and immune infiltration in LIHC

Multivariate Cox proportional hazards regression model

showed that CD8+ T cells, endothelial cells, and hematopoietic

stem cells could independently predict longer OS for LIHC

patients. While Th2 cell, T cell regulatory (Tregs),

macrophage, myeloid dendritic cell (MDC), and myeloid-
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derived suppressor cells (MDSC) predicted worse OS (Table 2, all

p < 0.05, adjusted by age, stage, and sex).

We found that SLC43A2 was positively associated with

Tregs, macrophage and MDSC infiltration in LIHC in both

the GSCA dataset (Figures 4A,B) and the TIMER2 dataset

(Figure 4C). SLC43A2 was also positively correlated with the

expression of T cell exhaustion markers PDCD1,

TIM3(HAVCR2), CD244, CD274, CTLA4, and LAG3 in

LIHC (p < 0.001) (Figure 4D).

SLC43A2 related DEGs and functional
enrichment analysis

Differential gene expression analysis in LIHC patients with

high or low SLC43A2 expression identified 638 upregulated

genes and 284 downregulated genes according to the standard

of p.adjust <0.05 and |log2 FC| > 1.5 (Figure 5A). GO enrichment

and KEGG pathway analysis revealed that genes upregulated by

SLC43A2 were enriched in several immune-related pathways

such as humoral immune response, circulating

immunoglobulin(lg), antigen binding (Figure 5B,

p.adjust <0.05). Genes downregulated by SLC43A2 were

enriched in pathways associated with copper ion (Figure 5C,

p.adjust <0.001).

Associations between SLC43A2 and IRGs
in LIHC

SLC43A2 related IRGs were identified with the

intersection of the IRGs and SLC43A2-related DEGs in

LIHC. As shown in Figure 6A, we identified

111 upregulated and 9 downregulated SLC43A2 related

IRGs. Of the 120 SLC43A2 related IRGs, 22 IRGs were

found to be associated with OS and unassociated with age,

gender, AFP (ng/ml), and Child–Pugh grade (Figure 6B). To

minimize overfitting, LASSO Cox regression was used to select

5 genes (CXCL8, FABP6, NR0B1, PGLYRP4 and LECT2)

(Figures 6C,D), all of which were closely related to

SLC43A2 (Figure 6E) (p < 0.01).

Development and external validation of
the prognostic risk score model

The risk score of each patient was calculated based on

gene expression and corresponding regression coefficients.

The gray dashed line in Figures 7A,C represents the cutoff

value point and divided the cohort into two groups with the

left part represents low-risk score group and the right part

represents high-risk score group. Point plot shows high- and

FIGURE 1
Flow diagram of this study.
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low-risk score patients groups divided by the median cutoff

values and represented by color: Blue represents low-risk

score group, and red represents high-risk score group. The

scatter plot of ordered risk scores shows OS status of each

patient. Heatmap shows the expression profile of the 5-gene

signature. Each column indicates a patient in the low-risk

score group (blue) and high-risk score group (red). Each row

represents the level of gene expression associated with

survival (red represents high, and blue represents low).

The TCGA-LIHC cohort was divided into high-risk and

low-risk groups according to the median risk score

(Figure 7A). The OS difference between these two groups

was significant (Figure 7B, p < 0.001). Results were similar in

the validation cohort of ICGC-LIRI-JP (Figures 7C,D, p =

0.048). The clustered heat maps showed that the expression

of prognostic genes CXCL8, FABP6, NR0B1, and PGLYRP4

was upregulated in the high-risk group, while the expression

of LECT2 was downregulated in the high-risk group

(Figures 7A,C).

Construction of a nomogram based on the
prognostic risk score and stage

Pathological stage (stage III: HR:2.058; 95% CI:

1.342–3.156; stage IV: HR: 5.755; 95% CI: 1.775–18.658)

and high-risk score (HR: 6.691; 95% CI: 3.185–14.059)

were independent risk factors for OS in the Multivariate

Cox regression analysis (Figure 7F). The ROC curve analysis

showed acceptable discrimination with AUCs of 0.467, 0.618,

0.627, and 0.667 at SLC43A2, stage, risk score, and stage and

risk score, respectively. The diagnostic efficiency of stage and

FIGURE 2
Difference of SLC43A2 expression between LIHC and normal tissues. The difference of the mRNA expression of SLC43A2 between LIHC and
normal tissues in GEPIA (A) and GSCALite (B) datasets. The mRNA expression levels of SLC43A2 in 374 LIHC samples and 50 normal samples (C). The
mRNA expression levels of SLC43A2 in 50 LIHC and matched-adjacent normal samples (D). The difference of protein levels of SLC43A2 between
LIHC and normal tissues based on HPA (E, F). (ns, no significance, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
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TABLE 1 The association between SLC43A2 expression and clinicopathological variables.

Characteristic Low expression of SLC43A2 High expression of SLC43A2 p Value

n 187 187

T stage, n (%) 0.791

T1 94 (25.3%) 89 (24%)

T2 43 (11.6%) 52 (14%)

T3 40 (10.8%) 40 (10.8%)

T4 7 (1.9%) 6 (1.6%)

N stage, n (%) 0.361

N0 131 (50.8%) 123 (47.7%)

N1 1 (0.4%) 3 (1.2%)

M stage, n (%) 0.122

M0 134 (49.3%) 134 (49.3%)

M1 4 (1.5%) 0 (0%)

Age, median (IQR) 62 (52, 69) 61 (51, 68) 0.477

AFP (ng/ml), median (IQR) 9 (4, 114) 25 (5, 535.5) 0.012*

Albumin (g/dl), median (IQR) 4 (3.5, 4.3) 4 (3.5, 4.3) 0.842

BMI, median (IQR) 25.01 (22.01, 28.66) 24.16 (21.32, 28.66) 0.594

IQR, interquartile range; AFP, Alpha-Feto Protein; BMI, Body mass index.

FIGURE 3
Correlations between SLC43A2 expression and survival in LIHC. OS curves in LIHC patients with SLC43A2-high or -low expression by using
GEPIA [(A), logrank p = 0.021, HR = 1.6]. OS (B) and RFS (C) in LIHC patients with SLC43A2-high or -low expression by using the Kaplan Meier plotter
database (logrank p = 0.01 and logrank p = 0.021, respectively). OS, DSS, and PFI between LIHC patients with high or low SLC43A2 expression in
TCGA-LIHC cohort [(D–F), p = 0.004, 0.027, and 0.037 respectively]. OS, overall survival; DSS, disease-specific survival; PFI, progression-free
interval; RFS, recurrence-free survival.
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TABLE 2 The associations analyzing by Multivariate Cox proportional hazards regression models between immune infiltrates and overall survival of
LIHC in TCGA (n = 371).

coef HR 95% CI_low 95% CI_upper p Value

T cell CD8+ −2.755 0.064 0.008 0.526 0.011**

T cell CD4+ Th2 5.401 221.664 18.139 2708.793 0.000**

T cell regulatory (Tregs) 5.819 336.527 1.376 82278.749 0.038**

B cell −0.923 0.397 0.047 3.391 0.399

Neutrophil 0.874 2.397 0.615 9.334 0.208

Macrophage 2.093 8.113 2.287 28.773 0.001**

Myeloid dendritic cell 13.301 5.978e + 13 19.217 1.859e + 10 0.012*

NK cell activated −2.646 0.071 0.001 10.063 0.295

Mast cell activated −2.839 0.059 0.003 1.042 0.053

Cancer associated fibroblast 0.873 2.393 0.004 1529.490 0.791

Common lymphoid progenitor 15.179 3.910e + 6 0.630 2.427e + 13 0.057

Common myeloid progenitor −42.329 0.000 0.000 771.004 0.090

Endothelial cell −4.782 0.008 0.000 0.817 0.041*

Eosinophil 92.144 1.04e + 40 0.000 6.293e + 87 0.101

Granulocyte-monocyte progenitor −11.595 0.000 0.000 111.900 0.164

Hematopoietic stem cell −2.690 0.068 0.009 0.528 0.010*

T cell follicular helper 1.505 4.505 0.025 806.634 0.570

T cell gamma delta 2.445 11.535 0.003 49994.354 0.567

T cell NK_XCELL −2.269 0.103 0.000 419.792 0.593

MDSC 5.705 300.361 18.296 4930.851 0.000***

#, Adjusted by Age, Stage and Sex. *p＜0.05; **p＜0.01 ***p＜0.001. MDSC, myeloid derived suppressor cell.

FIGURE 4
Correlationof SLC43A2expressionwith immune infiltration level in LIHC.CorrelationsbetweenSLC43A2expression (A), SLC43A2methylation (B) and the
relative abundances of 24 immunecells by usingGSCAdataset. Bubble size are correlatewith FDR significance. Black outline border indicates FDR ≤0.05, FDR:
the false discovery rate. (A, B). Correlation of SLC43A2 expression with immune infiltration level in LIHC using TIMER2 dataset (C). Correlation of
SLC43A2 expression with the abundance of PDCD1, TIM3(HAVCR2), CD244, CD274, CTLA4, and LAG3 in LIHC using TIMER2 dataset (D).
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risk score was better than that of stage (Figure 7E, pp < 0.05).

We then developed a nomogram to predict 1-, 3-, and 5-year

overall survival based on the risk score and pathologic stage

in LIHC (Figure 7G). Moreover, the calibration plot

(Figure 7H) demonstrated optimal predictive accuracy

with predicted survival rate highly consistent with actual

survival.

Identification of SMDs for reversing
immunosuppressive of SLC43A2 in LIHC

We furtherly analyzed the CMap database to predict

potential SMDs for reversing immunosuppressive of SLC43A2

in LIHC. The top three SMDs were revealed using the highest

absolute enrichment values and p < 0.01 (Table 3). The 3D

conformers for the top three most significant candidates are

shown in Supplementary Figure S1.

Discussion

LIHC is one of the most frequently occurring cancers

worldwide, ranked 3rd in global incidence by the

International Agency for Research on Cancer (WHO, 2022).

However, the clinical response of some LIHC patients to this

treatment has been unsatisfactory (Fu et al., 2019). Previous

studies have shown that CD8+ T cells were critical to the efficacy

of immunotherapy (Fan and Rudensky, 2016; Guo et al., 2020).

SLC43A2 was found to impair T cell function, partly because the

tumor cells highly expressed SLC43A2 and then outcompeted T

cells for methionine (Bian et al., 2020). However, the effects of

FIGURE 5
Differential expression analysis of SLC43A2 and the functional enrichment analysis of these DEGs. Volcano plots of the DEGs (|log2(FC)|>1.5 & p.
adjust <0.05) (A). GO enrichment and KEGG Pathway analyses of 638 genes upregulated and 284 genes downregulated in SLC43A2 (B and C). BP,
biological process; CC, cellular component; MF, molecular function.
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FIGURE 6
Analysis of SLC43A2 related IRGs in LIHC. Venn diagrams showing the intersection of the IRGs and SLC43A2-related DEGs in LIHC, which was
defined as SLC43A2-related IRGs (A). Forest plots showing the results of univariate Cox regression analysis of OS based on clinicopathological factors
(such as age, gender, AFP, Child-Pugh grade and stage) and SLC43A2 IRGs [(B), only the 22 IRGs significantly associated with OS were shown]. Five
genes (LECT2,CXCL8, FABP6,NR0B1, PGLYRP4) were furtherly selected from the 22 SLC43A2 related IRGs by the LASSO Cox regression (C, D).
Correlation of SLC43A2 with the 5 genes (LECT2, CXCL8, FABP6, NR0B1, and PGLYRP4) (**p < 0.01) (E).
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FIGURE 7
Risk score model prediction and validation. Building a five-gene signature risk score in the TCGA-LIHC cohort (A) with the OS probability for
high and low risk patients (B) and validating in the ICGC-LIRI-JP cohort (C, D). The risk score was calculated based on the expression of 5 genes
(LECT2, CXCL8, FABP6, NR0B1, PGLYRP4). The Kaplan-Meier survival curves of OS between high-risk and low-risk groups were shown in TCGA-
LIHC cohort [(B), p < 0.001] and in the ICGC-LIRI-JP cohort [(D), p = 0.048]. ROC analysis to compare SLC43A2, stage, risk score, stage and risk
score in predicting survival [(E), AUC = 0.467, 0.618, 0.627, 0.667]. Multivariate Cox regression analysis of OS based on stage and risk score in the
TCGA cohort (F). A nomogram was constructed based on stage and risk score (G). Calibration plot evaluating the predictive accuracy of the
nomogram at 1-, 3-, and 5-year survival (H).
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SLC43A2 on TIME, IRGs, and prognosis of LIHC have not been

reported.

We firstly reported that high SLC43A2 expression was

associated with worse OS and strong enrichment of

inhibitory immune cells such as Tregs, macrophages,

MDC, and MDSC in LIHC. Consistent with previous

reports (Ma et al., 2016; Zhang et al., 2019a; Fu et al.,

2019; Xu et al., 2022) we found that Tregs, macrophages,

MDC and MDSC predicted worse OS, even in Multivariate

Cox proportional hazards regression analysis (Table 2, all p <
0.05, adjusted by age, stage and sex). This may partly explain

why patients with high SLC43A2 have lower survivorship.

Intriguingly, we found that SLC43A2 was associated with

higher CD8+ T cell, higher T cell exhaustion markers, and

lower levels of naive CD8+ T cell. Genes that may be

influenced by SLC43A2 were enriched in immune

pathways. These results support the conclusion that

SLC43A2 could lead to CD8+ T cell exhaustion and may

affect TIME.

Our study was the first to report on the relationship

between SLC43A2 and IRGs. We found 120 IRGs that

may be influenced by SLC43A2 and then identified 5 IRGs

(CXCL8, FABP6, NR0B1, PGLYRP4 and LECT2) to establish

a risk score model to predict the OS of LIHC. CXCL8, FABP6,

and NR0B1 promote tumor growth in LIHC (Bar-Peled et al.,

2017; Zhang et al., 2019b; Sun et al., 2019; Huang et al.,

2015). PGLYRP4 plays a role in inflammation and immune

cell recruitment (Dabrowski et al., 2019; Karami et al., 2021).

LECT2 inhibits the tumorigenicity of the LIHC cells in vivo

(Zhu et al., 2022; Ong et al., 2011). This risk score model was

developed using the TCGA-LIHC cohort and validated using

the ICGC-LIRI-JP cohort. Combining risk score and

pathologic stage was the most effective method for

predicting OS of LIHC patients.

SLC43A2 played an important role in suppressing anti-

tumor immunity, however, precise inhibition of SLC43A2 of

tumor cells in vivo was difficult since it was widely expressed

in various tissues such as the placenta, small intestine

enterocytes, kidney epithelium, and peripheral blood

leukocytes (Chen and Chen, 2022). Thus we tried to find

SMDs that may reverse the immunosuppressive role of

SLC43A2. Based on the CMap database (Lamb et al.

2006), which collected expression data from cells

following exposure to drugs and other perturbations, we

found that our three drugs—arachidonic acid, SB-202190,

and guanethidine would lead to lower expression of CXCL8,

FABP6, NR0B1, and PGLYRP4 and higher expression of

LECT2 in LIHC. In our risk score model, CXCL8, FABP6,

NR0B1, and PGLYRP4 were recognized as risk genes while

LECT2 was a protective gene. This is to say, after being

treated by the 3 SMDs, the risk score of LIHC could

decrease. Arachidonic acid, a phospholipase

A2 metabolite, reduced cell and migration and increased

apoptosis of breast cancer and lung cancer (Muzio et al.,

2006). SB-202190, an ATP competitive antagonist of the

p38 stress-activated protein kinases (Shanware et al., 2009),

could be valid for inhibiting tumor cell migration, invasion,

and metastasis in LIHC (Yang et al., 2010; Düzgün Ş et al.,

2017). Guanethidine could inhibit the release of

noradrenaline, which usually served as an

immunosuppressor to improve a suitable environment for

tumor cells to grow and metastasize (Sarkar et al., 2013)]. To

the best of our knowledge, these three drugs have not been

adequately studied in LIHC.

Our study is based on bioinformatic analysis and lacks

experimental verification, but we have several suggestions

for further research on SLC43A2. First, the detailed

mechanism of the impact of SLC43A2 on immune

infiltration in LIHC needs to be verified in vitro and in

vivo. Second, how SLC43A2 alters the expression of the 5

IRGs in LIHC needs to be verified. Third, verify whether the

selected SMDs (arachidonic acid, SB-202190 and

guanethidine), could affect anti-tumor immunity and

achieve therapeutic effects.

In conclusion, the high expression of SLC43A2 was

significantly associated with the poor survival and T cell

exhaustion in LIHC. SLC43A2 may influence IRGs expression

and lead to suppressive TIME. Our risk score model could

improve the predictive efficiency of SLC43A2 and the

pathologic TNM stage on OS. Arachidonic acid, SB-202190,

and guanethidine may reverse the adverse role of SLC43A2 in

LIHC.

TABLE 3 Top 3 small molecules with the highest absolute enrichment values identified with risk score model DEGs.

Rank Cmap name Enrichment p < 0.01 Description

1 arachidonic
acid

−0.925 0.00072 An unsaturated, essential fatty acid; A precursor in the biosynthesis of prostaglandins, thromboxanes, and
leukotrienes

2 SB-202190 −0.801 0.0007 p38 MAPK inhibitor

5 guanethidine −0.877 0.00377 Inhibiting or interfering with the release distribution of norepinephrine
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