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Chronic allergic diseases and other disorders associated with mast cell activation can also be associated 
with tissue fibrosis, but a direct link between mast cell mediator release and fibroblast collagen 
gene expression has not been established. Using in situ hybridization, we show that the elicitation 
of an IgE-dependent passive cutaneous anaphylaxis (PCA) reaction in mice results in a transient, 
but marked augmentation of steady state levels of type or-1 (I) collagen mRNA in the dermis. 
While peak levels of collagen mRNA expression in the skin are observed 16-24 h after mast 
cell activation, substantial numbers of dermal cells are strongly positive for collagen mRNA 
at 1 and 2 h after antigen challenge, before circulating inflammatory cells are recruited into the 
tissues. Furthermore, experiments in mast cell-reconstituted or genetically mast cell-deficient 
WBB6F1-W/W" mice demonstrate that the increased expression of collagen mRNA at sites of 
PCA reactions is entirely mast cell dependent. In vitro studies show that the supernatants of 
mouse serosal mast cells activated via the Fc, RI markedly increase type c~-1 (I) collagen mRNA 
levels in mouse embryonic skin fibroblasts, and also upregulate collagen secretion by these cells. 
The ability of mast cell supernatants to induce increased steady state levels of collagen mRNA 
in mouse skin fibroblasts is markedly diminished by absorption with antibodies specific for either 
of two mast cell-derived cytokines, transforming growth factor B (TGF-131) or tumor necrosis 
factor c~ (TNF-o 0, and is eliminated entirely by absorption with antibodies against both cytokines. 
Taken together, these findings demonstrate that IgE-dependent mouse mast cell activation can 
induce a transient and marked increase in steady state levels of type oe-1 (I) collagen mRNA 
in dermal fibroblasts and that mast cell-derived TGF-B1 and TNF-c~ importantly contribute 
to this effect. 

M ast cell activation induces many of the acute changes 
observed in IgE-dependent allergic responses (reviewed 

in 1, 2). However, mast cells may also contribute importantly 
to certain later consequences of these reactions (1, 2). In the 
mouse, for example, mast cells are essential for virtually all 
of the leukocyte infiltration that is observed during the late 
phase component of IgE-dependent passive cutaneous 
anaphylaxis (PCA) 1 reactions (3). And in this IgE-dependent 
reaction, mast cell activation leads to leukocyte recruitment 
at least in part via the production of TNF-o~ (3). 

I Abbreviations used in this paper: BMCMC, bone marrow-derived cultured 
mast cells; NRS, normal rabbit sera; PCA, passive cutaneous anaphylaxis. 

Portions of this work were presented at the Annual Meeting of the American 
Association of Immunologists, (Denver, CO, 21-26 May 1993) and have 
been published in abstract form (1993. J. Immunol. 150:147A). 

While several lines of evidence now suggest that mast cells 
can promote leukocyte recruitment in many different settings 
(1), the contribution of the mast cell to other important 
changes that are observed in chronic allergic disorders is more 
obscure. For example, allergic asthma is associated not only 
with the infiltration of the affected tissues with lenkocytes, 
but also with the prominent development of increased amounts 
of collagen and other extracellular matrix proteins beneath 
the basement membranes of the respiratory epithelium (4). 
Fibrosis also can occur in the skin of patients with atopic 
dermatitis (5). A variety of other conditions that are associated 
with evidence of mast cell activation, but that apparently do 
not involve IgE antibodies, are also characterized by patho- 
logic deposition of fibrous tissue. Such conditions include 
chronic graft-vs.-host disease, scleroderma, Crohffs disease, 
and several disorders associated with pulmonary fibrosis (6, 7). 

Based on these and other findings, it has been suggested 
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that mast cells may promote the fibroblast activation and 
fibrosis associated with a wide range of allergic and nonallergic 
conditions that are characterized by evidence of mast cell 
proliferation and/or activation (6, 7). Remarkably, however, 
proof of a direct link between mast cell activation and the 
induction of fibroblast collagen production has remained elu- 
sive. In vivo studies have been inconclusive because mast cell 
activation often occurs in the context of complex biological 
responses involving many other cell types that may also 
influence fibroblasts. And the approaches which have been 
used to investigate mast cell-fibroblast interactions in vitro 
have focused primarily on mechanisms by which mast cells 
might influence fibroblast proliferation. For example, certain 
preformed mediators of mast cells, such as histamine (8) or 
tryptase (9), can induce fibroblast chemotaxis or prolifera- 
tion in vitro, and leukotriene C4 (LTC4), a lipid mediator 
produced by some mast cell subsets upon IgE-dependent ac- 
tivation, can induce proliferation of indomethacin-treated skin 
fibroblasts in vitro (10). Another preformed mediator of mast 
cells, heparin, has been reported to be both mitogenic (11) 
and growth inhibitory (12) for fibroblasts. IL-4 also report- 
edly can induce fibroblast proliferation in vitro (13). Finally, 
long-term coculture of mouse 3T3 fibroblasts with imma- 
ture, in vitro-derived mouse mast cells resulted in fibroblast 
proliferation and, in parallel, increased levels of collagen (14). 
However, in those studies, the changes in collagen levels were 
thought to reflect the effect of the mast cells on fibroblast 
numbers, not an effect on collagen synthesis per se (14). 

While these and other studies suggest several mechanisms 
by which mast cells might influence fibroblast proliferation, 
three considerations prompted us to explore whether mast 
cells activated via the Fc~RI might also have effects on 
fibroblast collagen gene expression. First, even if the effects 
of individual mast cell mediators on fibroblast proliferation 
that have been identified in in vitro studies can also occur 
as a result of mast cell activation in vivo, the effects of these 
mediators, or mast cell activation, on fibroblast collagen 
production might be quite different. For example, certain medi- 
ators have effects on fibroblast proliferation and fibroblast col- 
lagen synthesis that are quite distinct. Thus, heparin can 
decrease proliferation but increases collagen synthesis (11), 
platelet-derived growth factor can increase proliferation 
without influencing collagen synthesis (15), and melanoma 
growth-stimulating activity (MGSA)/GRO has no effect on 
proliferation but decreases collagen synthesis (16). 

Second, it is now clear that mast cells can produce several 
cytokines (reviewed in 17), some of which have effects on 
fibroblast gene expression and protein synthesis. Both in 
vitro-derived mouse mast cells and freshly isolated mouse 
serosal mast cells produce TNF-~ (18, 19) and in vitro-de- 
rived IL-3-dependent or -independent mouse mast cells (20) 
or canine mastocytoma cells maintained in vitro (21) contain 
TGF-~I mR.NA; canine mastocytoma cells also can secrete 
TGF-B1 after stimulation with phorbol esters (21). Both 
TNF-o~ and TGF-B1 are potent activators of fibroblast inter- 
stitial matrix production (reviewed in 22). On the other hand, 
it has not been reported whether normal mature mast cells 

can produce and release TGF-fll, or whether the amounts 
of TNF-o~ and TGF-~I that can be secreted by mast cells 
are sufficient to influence fibroblast collagen expression. 

Finally, it is now possible to compare the expression of 
biological responses in vivo in the tissues of normal mice, 
congenic genetically mast cell-deficient W / W  ~ mice, and 
mast cell-deficient W / W  ~ mice that have been selectively 
repaired of their mast cell deficiency (3, 17, 23). This system 
thus permits a direct analysis of the effects of mast cell activa- 
tion on dermal fibroblast collagen gene expression in vivo. 

Materials and Methods 

Mice 

BALB/c mice were purchased from the Animal Resources Centre 
of the University of Saskatchewan. Genetically mast cell-deficient 
WBB6F1-W/W" and the congenic normal (-+/+) mice were pur- 
chased from The Jackson Laboratory (Bar Harbor, ME). All an- 
imal treatments were performed while the mice were lightly 
anaesthetized with methoxyfluorane, according to the "Guidelines 
For the Care and Use of Experimental Animals" established by 
the Canadian Council on Animal Care. The mice were killed with 
methoxyfluorane. 

Cytokines and Antisera 

We purchased recombinant mouse TNF-c~ (rTNF-c~; Genzyme 
Corp., Cambridge, MA), purified human TGF-/~I (R&D Systems, 
Inc., Minneapolis, MN), and affinity isolated chicken anti-porcine 
TGF-/~I IgG antibodies (K&D Systems, Inc.). Normal rabbit sera 
(NRS) and rabbit anti-TNFo~ antisera were prepared as previously 
described (18). The IgG was purified from these by affanity chro- 
matography on Avid AL (BioProbe International, Inc., Tustin, CA) 
columns according to the manufacturer's recommendations and the 
protein concentrations of the eluted IgG were determined using 
a Coomassie Blue assay (Bio-Rad Laboratories, Mississauga, Ont., 
Canada). The purified anti-TNF IgG was titrated against rTNF-c~ 
and was determined to have a neutralizing capacity of '~10 s neu- 
tralizing U/ml. One unit of activity is that amount of sample re- 
quired to lyse 50% of the TNF-susceptible target cells in the L929 
cell cytotoxicity assay (see below). 

Cel/s 

The derivation and/or maintenance of the growth factor-inde- 
pendent mouse mast cell line C1.MC/C57.1, primary cultures of 
growth factor-dependent mouse bone marrow-derived, cultured 
mast cells (BMCMC), and the L929 cells have been reported (18). 
MvlLu mink lung cells (cell line CCL64; American Type Culture 
Collection [ATCC], RockviUe, MD) were obtained from Dr. B. 
Grahn (University of Saskatchewan) and were maintained in DMEM 
(GIBCO BRL, Gaithersburg, MD) supplemented with 10% FCS 
(GIBCO BILL), 10 mM L-glutamine, 5 • 10 -s M 2-ME (Sigma 
Chemical Co., St. Louis, MO), and 1% antibiotic/antimycotic 
(GIBCO BILL), as recommended by the ATCC. Connective tissue 
mast cells were purified to >99% purity (as assessed by Giemsa 
and/or neutral red staining) from the peritoneal cavities of 
WBB6FI-+/+ or BALB/c mice, as reported previously (18). 
BALB/c 3T3 fibroblasts, generously provided by J. Gilchrist (VIDO, 
Saskatoon, Canada), were originally obtained from the ATCC and 
were maintained as recommended by the ATCC. 
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Mouse embryonic skin fibroblasts were generated from 13-day 
BALB/c embryos. The adherent outgrowth cells from the minced 
skin were cultured in DMEM supplemented with 10% FCS, 2.5% 
essential amino acids mixture (GIBCO BRL), 10 mM r-glutamine, 
5 x 10 -s M 2-ME, and 1% antibiotic/antimycotic. The cells were 
passaged using trypsin/versene, maintained in a subconfluent state 
and expanded for 10 passages before being cryopreserved in liquid 
nitrogen. After thawing, the cells were maintained in RPMI 1640 
(GIBCO BILL), 10% FCS, 10 mM t-glutamine, 5 x 10 -s 2-ME, 
and 1% antibiotic/antimycotic (RPMI-10% FCS) and then, just 
before each experiment, they were transferred to RPMI 1640, 1% 
FCS (or 1% BSA, unless otherwise stated), 10 mM r-glutamine, 
5 x 10 -s M 2-ME, and 1% antibiotic/antimycotic (RPMI-1% 
FCS or -1% BSA). All experiments reported herein were performed 
with skin fibroblasts at passages 12-20. 

When cultured in RPMI medium containing/>2.5% FCS, the 
fibroblasts proliferated constitutively, contained high levels of type 
c~-1 (I) collagen mRNA, and secreted collagen, but when cultured 
in medium containing ~<1% FCS or 1% BSA, they contained very 
low levels of type c~-1 (I) collagen mRNA and secreted only back- 
ground levels of collagen (data not shown). 

Activation of Cells 
Mast Cells. Mast cells were activated via the Fc~RI essentially 

as described previously (18). Briefly, the C1.MC/C57.1 cells and 
BMCMC were sensitized in vitro with a monoclonal IgE anti-DNP 
antibody (H1-DNP-e-26; reference 24) for 30 rain-3 h. The serosal 
mast cells were sensitized by injecting the mice intraperitoneally 
with `"7.5 gg of IgE anti-DNP antibody in I ml of Hepes-buffered 
HBSS (Hepes-HBSS). The next day, the mast cells were purified 
from the peritoneal cavities and further incubated with IgE as noted 
above for the cultured mast cells. After sensitization, the cells were 
washed and resuspended at a concentration of 3 x 106 cells/ml 
in DMEM supplemented with 1% antibiotics/antimycotics, 20 mM 
r-glutamine and, unless otherwise noted, either 1% FCS, for 
C1.MC/C57.1 and BMCMC, or 1% BSA (Pentex [Fraction V, fatty 
acid-free]; Miles Scientific, Kankakee, IL), for purified serosal mast 
cells. They were then either stimulated with DNPs0-40 HSA (50 
ng/ml; Sigma Chemical Co.) or left untreated (19). At varying times 
thereafter, the cell supernatants were harvested and either used fresh 
or stored at -80~ before assay. Maintenance of the mast cells 
in DMEM-1% FCS or -1% BSA during the cellular activation 
period had no adverse effects on their viability, as determined by 
trypan blue dye exclusion, or on their secretory abilities, as deter- 
mined by monitoring their release of serotonin and/or TNF-ct in 
response to Fc~RI signaling (not shown). 

Fibrobtasts. For activation of the embryonic skin fibroblasts or 
3T3 cells, subconfluent cultures of cells were trypsinized and replated 
into 8-chamber multi-well microscope slides (Lab-Tek; Miles 
Scientific) for in situ hybridization, or into 24-well tissue culture 
plates (Coming Glass Co., Coming, NY) for assays of collagen 
secretion, and maintained overnight in complete RPMI-10% FCS. 
Unless otherwise noted, the cells were then washed and incubated 
in complete RPMI-1% FCS or -1% BSA for an additional ,-24 h. 
Finally, the medium was again replaced with complete RPMI-1% 
FCS or -1% BSA and then mast cell supernatants, recombinant 
cytokines, or control medium (vehicle) were added to the cultures, 
using duplicate sets of wells for in situ hybridization and quadru- 
plicate sets for all other assays. Based on results of preliminary ex- 
periments, we used the mast cell supernatants at 10% (final con- 
centration) for in situ hybridization or 50% (final concentration) 
for assays of collagen secretion. 

Molecular Probe for Detection of T~e-ot-1 (I) Collagen raRNA 
A 0.6-kb mouse type c~-1 (I) collagen cDNA in the vector 

pGEM3Z (25) was kindly provided by Dr. L. Van de Water (Beth 
Israd Hospital and Harvard Medical School, Boston, MA). For in 
situ hybridization, sense and antisense cRNA probes were prepared 
by in vitro transcription using ~sS-UTP and were purified by 
affinity elution from glass (RNAid kit; BIO 101, La Jolla, CA). 

In Situ Hybridization 
Tissues were processed for in situ hybridization essentially as 

noted (25). Briefly, the tissues were fixed on ice for 3 h in 85% 
ethanol/5% ghcial acetic acid/4% formaldehyde and then processed 
into 6-#m paraffin sections. Suspensions of purified mouse serosal 
mast cells were placed on glass microscope slides and allowed to 
air dry; the cells were fixed for 30 min as above and then trans- 
ferred into and stored at -20~ in 70% ethanol. The rehydrated 
slides were digested with proteinase K (1 gg/ml), post-fixed in 4% 
paraformaldehyde, blocked with acetic anhydride and then hybrid- 
ized overnight at 50~ with 8.5 ng 3SS-cRNA/slide using a hy- 
bridization buffer comprising 50% formamide, 5% dextran sul- 
fate, and 10 mM dithiothreitol. The slides were then treated with 
RNAse A, washed at 65"C in 50% formamide/2x SSC, de- 
hydrated, and dipped in autoradiography emulsion. All slides ex- 
cept those used for the experiment shown in Fig. 4 (which were 
exposed for 7 d) were exposed for `"3 d; all slides were developed 
by standard procedures and counterstained in 0.2% toluidine blue. 

For analysis of the extent of type cr (I) collagen mRNA induc- 
tion in the embryonic skin fibroblasts, we calculated the mean ( + / -  
SEM) numbers of silver grains/cell in 10-20 randomly chosen 
cells/replicate, as determined by bright field microscopy using a 
100x oil immersion objective (1,000x final magnification). In pre- 
liminary experiments, we determined that we could accurately count 
the number of silver grains/cell only when grain counts were below 
*300/cell. Accordingly, we did not attempt to quantify grains/cell 
in slides, such as those in Fig. 4, with greater levels of autoradio- 
graphic signal strength. Each experiment was performed at least 
twice with each mast cell population tested. 

Collagen Assay 
We employed the collagen assay of Blumenkrantz and Asboe- 

Hansen, which is specific for hydroxyproline, but not proline (26). 
Briefly, secreted proteins were hydrolyzed overnight in 6 N HC1 
and the amino acids differentially extracted through phase separa- 
tion across aqueous and organic solvents. Hydroxyproline was 
quantified spectrophotometrically at ODsrs, after the addition of 
/~-dimethylamino-benzaldehyde to the eluted samples (26). In each 
assay, HPLC-purified hydroxyproline (Sigma Chemical Co.) was 
used to generate a standard curve and purified bovine tendon type 
I collagen (Sigma Chemical Co.) was used as a positive control. 
We also trypsinized the fibroblasts and counted them in a hemo- 
cytometer, and then calculated the levels of secreted hydroxypro- 
line/cell. 

The tissue culture media used in these experiments (RPMI- or 
DMEM-1% FCS) did not contain detectable amounts of hydrox- 
yproline. However, both RPMI 1640 and DMEM contain proline 
(GIBCO BRL). This result thus confirmed the specificity of the 
assay for hydroxyproline. The highest levels of hydroxyproline that 
were detected in supernatants from either C1.MC/C57.1 mast cells 
or BMCMC were <5% of those in the supernatants of quiescent 
embryonic skin fibroblasts and <0.07% of those in the 24 h super- 
natants of fibroblasts that had been stimulated with activated mast 

2029 Gordon and Galli 



cell supernatants. Moreover, none of our mast cell populations con- 
rained detectable levels of type ~-1 (I) collagen mRNA, as deter- 
mined by Northern blotting (not shown). Mouse mast cells have 
been reported to produce type IV collagen (27), indicating that 
production of small amounts of this species of collagen may have 
accounted for the low levels of hydroxyproline that we detected 
in the mast cell supernatants. 

Biological Assays of Cytokine Actiuity 
TNF-oe Assay. TNF-oe was detected using an 3-[4,5- 

Dimethylthiazol-2-yl]-2,5-diphenyl tetrazdium bromide (MTT) cy- 
totoxicity assay with L929 cell targets, essentially as reported pre- 
viously (18). The specificity of the assay for TNF-oe was confirmed 
by use of TNF-ex antisera (see above). Internal standards of rTNF-cr 
were used in each assay. The levels of TNF-ot in the mast cell su- 
pernatants are expressed as U/106 cells, where one unit equals the 
amount of bioactivity required to kill 50% of the cells in the cyto- 
toxicity assay. 

TGtZBAssay. A MvlLu growth inhibition assay (28) was em- 
ployed to detect TGF-B bioactivity. Briefly, monolayers of MvlLu 
ceils were trypsinized, and then washed and resuspended in 
DMEM-10% FCS and plated in 96-well plates at 104 cells/well. 
The following day, the medium in quadruplicate wells was replaced 
with DMEM-1% FCS and serial dilutions of transiently acidified 
serosal mast cell supernatants. After 48 h of culture, the ceU densi- 
ties in the cultures were then determined by MTT dye uptake, as 
indicated above for the fibroblast cultures. The TGF-fl was acti- 
vated by addition of 1.5/~1 of 6 N HC1/200/ll of supernatant and 
incubation for 5 min at 22~ and then the pH was neutralized 
by the addition of 30/xl of solution of 0.5 M Hepes/0.5 M NaOH 
(29). The levels of TGF-B in the mast cell supernatants are expressed 
as U/106 cells, where one unit equals that amount of activity re- 
quired to inhibit by 50% the proliferation of cells in the MvlLu 
growth inhibition assay. 

Neutralization of Mast Cell-dependent Fibroblast Responses with 
Anticytokine Antibodies 

To examine the ability of selected anticytokine antibodies to neu- 
tralize mast cell-dependent fibroblast responses, we used superna- 
tants from purified serosal mast ceils that had been stimulated via 
the Fc~RI for 2 h (19). For each antibody (anti-TNF-c~, anti-TGF- 
B1, and NRS IgGs), we generated specific immunoabsorption ma- 
trices by binding the purified IgG to protein A-agarose beads (Affi- 
gel Protein A; Bio-Rad Laboratories, Richmond, CA). We incubated 
150/A of a 50% slurry of beads in phosphate-buffered saline with 
75/A oflgG (1 mg/ml) for 2 h at 40C, then washed the IgG-beads 
extensively with RPMI-1% BSA. We incubated 150/A of test serosal 
mast cell supernatant with 75/A of IgG-beads for 2 h at 4~ and 
then centrifuged the mixtures to sediment the beads. The im- 
munoabsorbed supernatants were assayed for residual TNF-c~ and 
TGF-B bioactivity and tested for their abilities to induce type c~-I 
(I) collagen gene expression in embryonic skin fibroblasts. 

Induction of PCA Responses 
The protocol used for the induction of these Fc, RI- and mast 

cell-dependent responses has been reported in detail previously (3, 
19). Briefly, we injected ,v50 ng of monoclonal IgE anti-DNP an- 
tibody in 20/zl of Hpes-HBSS intradermally into the dorsal side 
of the ears of the mice. After 24 h, the mice were challenged intra- 
venously with 100/~g of DNP~-40 HSA (Sigma Chemical Co.) in 
200/xl of Hepes-HBSS containing 0.5% EvaNs blue dye. The pres- 

ence of PCA reactivity was confirmed by assessing the extravasa- 
tion of Evan's blue dye (3, 19). At varying times after antigen chal- 
lenge, ear biopsies were processed for in situ hybridization. 

Mast Cell Reconstitution of Genetically Mast Cell-deficient 
WBB6FrW/W v Mice 

We have reported previously that WBB6F~-W/W ~ mice can be 
selectively and locally repaired of their mast cell deficiency by the 
intradermal injection of BMCMC derived from WBB6F1-+/+ 
mice. These mast ceils fully reconstitute the ability of the recipients 
to express mast cell-dependent PCA responses (3, 23). Briefly, bone 
marrow cells from WBB6FI-+/+ mice were maintained in cul- 
ture with an exogenous source of II.,3 for "~3 wk, after which the 
cells remaining in culture were composed of t>98% immature mast 
ceils (BMCMC). 5 x l0 s BMCMC in 20/zl of DMEM were in- 
jected intradermally into the dorsal side of the left ear of each 
W/W ~ mouse (3). The mice were used 10 wk later, a period 
sufficient to permit maturation of the BMCMC that had been in- 
jected into the ear skin (3). 

Statistical Analyses 
Statistical analyses were performed using the program Statview 

512 + (Abacus Concepts, Berkeley, CA). The data were subjected 
to analysis of variance (ANOVA) testing to determine the overall 
impact of sample treatments within an experiment, with additional 
post-hoc testing using the Fisher Protected Least Significant Differ- 
ence (PLSD) test to determine the statistical significance of individual 
sample treatments on the parameters in question. Results are 
reported as significant only if both the ANOVA and Fisher PLSD 
tests yielded a probability (p) value of <0.05. Correlation analyses 
were also performed with the Statview 512 § package. All data are 
reported as mean _+ SEM. 

l~estllts 

Increased Levels of Type I Collagen mRNA Occur in IgE- and 
Mast Cell-dependent PCA Reactions In ViM We first assessed 
whether IgE-dependent mast cell activation was associated 
with augmentation of collagen gene expression in vivo, by 
using in situ hybridization to search for type oe-1 (I) collagen 
mRNA expression during PCA responses in the ears of 
BALB/c mice (Fig. 1). The reaction sites could be easily rec- 
ognized histologicaUy by the presence of degranulated mast 
calls, tissue edema, and, beginning ,x,4 h after antigen chal- 
lenge, neutrophil and later monocyte infiltration. However, 
control tissues injected with medium rather than IgE showed 
no signs of mast ceU degranulation or interstitial edema, nor 
did they specificaUy bind the antisense probe (Fig. 1, A and 
B). On the other hand, type oe-1 (I) coUagen mRNA was 
induced in some ceils at the PCA reaction sites by 60 rain 
(Fig. 1 C). By 2 h, before inflammatory ceils had been recruited 
to the reaction sites, many ceUs in the PCA sites, as well as 
occasional cells more distant from the reactions, strongly hy- 
bridized with the antisense probes (Fig. 1 D). These results 
indicate that the collagen mRNA-positive cells were indeed 
resident cells of the dermis and that the initial upregulation 
of collagen mKNA levels did not depend on the recruitment 
of circulating inflammatory ceUs. Thereafter, both the numbers 
of calls that bound the antisense probe and the intensity of 
the mKNA signal in each call increased dramatically until 
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Figure 1. In situ hybridization analysis of type or-1 (I) collagen mRNA induction in vivo during PCA responses in the skin of mice. The ears 
of BALB/c mice were injected intraderraaUy with IgE anti-DNP antibodies or antibody diluent and, 1 d later, the mice were challenged intravenously 
with DNP3o-40 HSA. (A) Light field or (B) dark field photomicrographs of the same area of control (diluent injected) rites 16 h after antigen challenge. 
Little or no hybridization with the 3SS-labeled antisense probes is evident. (C and D). Light field photomicrographs of PCA reaction sites 1 h (C) 
or 2 h (D) after antigen challenge. Several cells (some indicated with arrows) are positive for type ol-1 (I) coUagen mRNA. (E) Light field or (F) dark 
field photomicrographs of the same area of a PCA reaction site 16 h after antigen challenge. Many cells (three of which are indicated with arrows 
in both E and F) exhibit strong hybridization signals with the 3sS-labded antisense probe for type o~-1 (I) collagen mRNA. All bright fidd pho- 
tomicrographs x 580; dark field photomicrographs x420. Toluidine blue counterstain. All autoradiographic exposures were for 3 d. 

"~16 h (Fig. 1, E and F) to 24 h post challenge. The inten- 
sity of the signals then began to wane until, by 48 h after 
antigen challenge, labeling was back to baseline levels (not 
shown). 

To demonstrate unequivocaUy that mast ceils were required 
for the development of the increased levels of type a-1 (I) 
collagen mRNA that appeared at IgE-dependent PCA reac- 
tions, we performed experiments in genetically mast 
ceil-deficient W B B 6 F i - W / W  ~ ( W / W  ~) mice, the congenic 

+/+ mice, and W / W  v mice that had been locally and selec- 
tively repaired of their mast cell deficiency. 

The kinetics and extent of type or-1 (I) collagen mRNA 
expression at PCA reaction sites in WBB6F1-+/+ mice 
were very similar to those in BALB/c  mice (Fig. 2, A and 
B). By contrast, when genetically mast ceU- deficient W / W  ~ 
mice were treated with IgE and antigen in an identical fashion, 
we observed no detectable expression of type ol-1 (I) collagen 
mRNA in the tissues (Fig. 2, C and D). However, when 
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Figure 2. Mast cell dependence of the expl~ssion of type r~-I (I) collagen mRNA at PCA reaction sites. Light field (A, C, and E) or dark field 
(/3, D, and F) photomicrographs of IgE-injected ears of normal WBB6FI-+/+ mice, (A and B), mast cell-deficient WBB6F1-W/W ~ mice (C and 
D), or mast cell-reconstituted WBB6F1-W/W �9 mice (E and F) 16 h after intravenous antigen challenge. The pairs of light or dark field photomicro- 
graphs are from the same field of sections hybridized to 3sS-labeled antisense probes for type rJ-1 (I) collagen mRNA and then counterstained with 
toluidine blue. Many type c~-1 (I) collagen mRNA positive cells (some of them indicated with arrows) are detectable in the WBB6FI-+/+ mice (A 
and B) or mast cell-reconstituted WBB6F1-W/W v mice (E and F), but none are apparent in the tissues of the mast cell-deficient WBB6F~-W/W~ 
mice (C and D). All bright field photomicrographs x 580; dark field photographs x 320. All autoradiographic e~posures were for 3 d. 

W B B 6 F t - W / W  v mice were tested 10 wk after the selective 
repair of their cutaneous mast cell deficiency, PCA reactions 
could be elicited, as previously reported (3, 23), and these 
reactions were associated with the high level induction of 
type o~-1 (I) collagen m R N A  expression (Fig. 2, E and F). 

Taken together, the results of our in vivo experiments 
demonstrated that high level induction of type o~-1 (I) col- 
lagen gene expression occurred in skin which was challenged 
with IgE and specific antigen, that this change, at least at 
the earliest stages of the response, did not reflect the infiltra- 

tion of inflammatory cells into the tissues, and that the de- 
velopment of the response was entirely dependent on mast cells. 

Mast Cells Activated Via the Fc~RI Induce Type cr-I (I) Col- 
lagen m R N A  Accumulation in Fibroblasts In Vitro. We used 
in vitro approaches to investigate possible mechanisms by 
which IgE-dependent mast cell activation might  lead to in- 
creased expression of type ol-1 (I) collagen. We first assessed 
whether supernatants from cloned C1.MC/C57.1 mast cells 
could induce changes in steady state levels of collagen m R N A  
in skin fibroblasts. Since FCS itself can be mitogenic for fibro- 
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blasts, we also examined the effects in this system of increasing 
concentrations of FCS in the culture medium during both 
mast cell activation and subsequent incubation of fibroblasts 
with mast cell supernatants (Fig. 3 A). We used 3sS-labeled 
sense (negative control) and antisense type cr-1 (I) collagen 
cKNAs to probe the fibroblasts after the addition of the su- 
pernatants, and assessed the specific collagen mKNA levels 
by counting the numbers of silver grains deposited over in- 
dividual fibroblasts in these preparations. In all of our ex- 
periments, fibroblasts incubated with 3SS-sense cKNA 
probes were uniformly negative (i.e., <0.1 _ 0.01 silver 
grain/cell). By contrast, fibroblasts incubated for 16 h with 
medium lacking FCS or mast cell supernatants gave a signal 
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Figure  3. Type c~-1 (I) collagen mKNA levels, expressed as the number 
of silver grains/fibroblast by in situ hybridization with a 3sS-labeled an- 
tisense cKNA probe, in skin fibroblasts stimulated for 16 h with superna- 
tants of activated or quiescent mouse mast cells. The supernatants were 
from mast cells that had been sensitized with a monoclonal IgE anti-DNP 
antibody and then either challenged with DNP3o-4o HSA (+)  or left un- 
challenged ( - )  for 2 h. (.4) Effect of FCS concentration on the induction 
of type ol-1 (I) collagen in fibroblasts incubated with C1.MC/C57.1 mast 
cell supernatants. *, p <0.05; * *, p <0.01; NS = no significant differ- 
ence; vs. values in fibroblasts incubated with supernatants of unstimulated 
mast cells at the same FCS concentration. (B) Comparison of the abilities 
of supernatants from unstimulated ( - )  or activated (+)  C1.MC/C57.1 
mast cells, BMCMC, or freshly purified serosal mast cells (>99% purity) 
to stimulate type c~-1 (I) collagen m R N A  expression in skin fibroblasts. 
�9 , p <0.05; ** ,  p <0.01; * * * ,  p <0.001 vs. medium alone (n = 
10/condition). 
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with 3SS-antisense probes, reflecting "baseline" levels of col- 
lagen mKNA, of 44 _ 5 silver grains/cell (Fig. 3 A). 

In the complete absence of FCS, supernatants from 2 h 
cultures of unstimulated C1.MC/C57.1 cells had no significant 
effect above background on the expression of collagen mRNA 
by the fibroblasts, whereas medium from parallel cultures of 
mast cells activated via the Fc~RI-induced levels of signal for 
collagen mKNA expression which were more than twice base- 
line (p <0.01; Fig. 3 A). As expected, FCS itself (but not 
1% BSA, not shown) significantly increased collagen mKNA 
signal strength in fibroblasts incubated with supematants from 
unstimulated mast cells (F[s. sl] = 8.25; iv <0.001) (Fig. 3 
A). Indeed, there was a strong correlation between the con- 
centration of FCS in the cultures and the steady state levels 
of fibroblast collagen mRNA which were detected by in situ 
hybridization, whether we added supematants from unstimu- 
lated C1.MC/C57.1 cells (Fig. 3 A; r 2 = 0.83, n = 4) or 
medium alone (not shown). By contrast, in fibroblast that 
were incubated with supernatants from activated mast cells, 
the concentrations of FCS employed in the cultures did not 
significantly affect the induction of collagen mKNA (F[3, 36] 
= 0.791, iv = 0.51). At 0, 1, and 5% FCS, supernatants 
from activated C1.MC/C57.1 cells induced higher level ex- 
pression of collagen mRNA than did the supernatants from 
unstimulated mast cells (Fig. 3 A). 

We next compared the abilities of growth factor-indepen- 
dent C1.MC/C57.1 mast cells, growth factor-dependent 
mouse BMCMC, and freshly purified mouse serosal mast cells 
to induce type 1 collagen responses in these fibroblasts (Fig. 
3 B). In these and all subsequent experiments, fibroblasts were 
maintained in the same medium used for mast cell activa- 
tion: 1% FCS for C1.MC/C57.1 cells or BMCMC, 1% BSA 
for serosal mast cells. Supernatants from all three populations 
of activated mast cells induced markedly elevated steady state 
levels of fibroblast collagen mRNA (Fp. 401 = 15.34, 
iv <0.0001; Fig. 3 B), with increases in grain count values 
compared to those in cells incubated in medium alone of 157% 
for C1.MC/C57.1 cells, 150% for BMCMC, and 281% for 
serosal mast cells (Fig. 3 B). By contrast, supernatants from 
unstimulated C1.MC/C57.1 cells or BMCMC had no 
significant effect above background (medium alone). While 
there were no statistically significant differences between the 
collagen mKNA signals in fibroblasts treated with superna- 
tants of unstimulated C1.MC/C57.1 cells, BMCMC or serosal 
mast cells (p I>0.05, n = 10), values in fibroblasts incubated 
with the unstimulated serosal mast cell supernatants in this 
experiment were slightly but significally elevated when com- 
pared with those in cells incubated in medium alone (p = 
0.048, n = 10). 

We also investigated the kinetics of mast cell activation- 
dependent type or-1 (I) collagen mRNA accumulation in 
fibroblasts (Fig. 4). As noted above, even with prolonged (7 d) 
autoradiographic exposure times, sense cRNA probes did not 
bind to the fibroblasts, even after stimulation with superna- 
tants from activated BMCMC (Fig. 4 A), and unstimulated 
fibroblasts (Fig. 4 B), or those incubated with supernatants 
from unstimulated BMCMC (not shown), bound only low 
levels of the 35S-antisense probes. Supernatants from acti- 



Figure 4. Kinetics of induction of type oL-1 (I) collagen 
mKNA expression in skin fibrobhsts incubated with super- 
natants from unstimuhted (B) or activated (.4, C-E) 
BMCMC. (A) Fibroblasts stimulated for 90 rain with acti- 
vated mast cell supernatants and probed with the 3sS-sense 
(negative control) cRNA. (B) Umtimuhted fibroblasts probed 
with the 3sS-antisense cRNA. (C-E) Fibroblasts stimulated 
with 2 h supernatants from activated BMCMC for (C) 90 
rain, (/9) 8 h, or (E) 24 h and then hybridized with the sss- 
antisense cRNA probe. All autoradiographic exposures were 
for 7 d. 

vated BMCMC induced a high level of expression of collagen 
mRNA in the fibroblasts (Fig. 4, C-E). The signal strength 
was noticeably elevated 90 rain after addition of the superna- 
tants of activated BMCMC (Fig. 4 C), was markedly increased 
by 8 h (Fig. 4 D), appeared to have waned somewhat by 24 h 
(Fig. 4 E), and was reduced further by 48 h (not shown). 

Mast Cell Activation Promotes Collagen Secretion by Fibro- 
b/asts. To confirm that augmented collagen secretion occurred 
in the transcriptionally active populations of mast cell-stimu- 
lated fibroblasts, we measured the collagen production by 
these cells, as determined by the levels of hydroxyproline in 
the culture medium (Fig. 5). We found that supernatants 
from activated, but not unstimulated, C1.MC/C57.1 cells 
significantly increased fibroblast collagen secretion at 16 or 
32 h after addition of the supernatants (Fls, 131 = 4.27, iv -<< 
0.01). Additional experiments showed that supernatants from 
quiescent or activated BMCMC had effects on collagen secre- 
tion by 3T3 fibroblasts that were virtually identical to those 
observed in primary cultures of embryonic skin fibroblasts 
which had been stimulated with C1.MC/C57.1 mast cell su- 
pernatants (r 2 = 0.988, n = 6; not shown). 

Role of TGF-~ and TNF-ot in Mast Cell-mediated Induction 
of Fibroblast Type 1 Collagen Expression. We employed normal 
rabbit serum IgG, anti-TGF-31 IgG or anti-TNF-oe IgG ma- 

trices to absorb supernatants of serosal mast cells that had 
been activated via the Fc~RI, and then tested the absorbed 
supernatants for their abilities to induce type oe-1 (I) collagen 
mRNA expression in embryonic skin fibroblasts (Fig. 6). Su- 
pernatants from unstimulated serosal mast cells cultured for 
2 h in 1% BSA medium contained low levels of TNF-cz 
(0.73 _+ 1.4 U/106 cell equivalents) and TGF-3 (1.1 + 
0.3 U/106 cells) bioactivities. Absorption of the supernatants 
from activated mast cells with the NRS IgG-agarose beads 
had no significant affect on the levels of TGF-3 or TNF-ol. 
Thus the unabsorbed activated mast cell supernatants con- 
rained 169 _+ 11 U TNF/106 cell equivalents and 9.7 + 1.4 
U TGF-B/IO 6 cell equivalents while the NRS IgG matrix- 
absorbed supernatants contained 155 + 20 U TNF/106 cell 
equivalents and 12.1 _+ 1.2 U TGF-~/106 cell equivalents 
(both, p >0.05, n = 6). The anti-TNF-ol absorptions re- 
moved 94 + 2% of the TNF-oe activity from the superna- 
tants while the anti-TGF-Bl-agarose beads removed 97 _+ 
6% of the TGF3 bioactivity. The anti-TNF-oe matrices had 
no effect on the TGF-3 activities of the activated cell super- 
natants, while the anti-TGF-3l matrices slightly reduced (by 
9 + 3%) the TNF-c~ bioactivity. 

In this set of experiments, supernatants of unstimulated 
serosal mast cells cultured for 2 h in medium alone had no 
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Figure 5. Effect of supernatants from unstimulated (IgE/-) or acti- 
vated (IgE/Ag) C1.MC/C57.1 mast cells, or medium alone, on the secre- 
tion of collagen (hydroxyproline) by subconfluent monolayers of embryonic 
skin fibroblasts 16 or 32 h after adding mast cell supernatants, the number 
of fibroblasts in each culture was determined by direct counting of the 
trypsinized cells, and the amount of collagen secreted was assessed by mea- 
suring the level of hydroxyproline in the culture supematants. *, p <0.05; 
* *, p <0.01 vs. value for IgE/-  or medium alone. 

statistically significant effect on fibroblast type oL-1 (I) col- 
lagen mRNA expression, as assessed by grain count analysis 
of in situ hybridization preparations (Fig. 6; p ;>0.05 versus 
medium alone, n = 10). As noted previously, supernatants 
from activated serosal mast cells dramatically upregulated 
fibroblast collagen expression (Fig. 6), with statistically in- 
distinguishable effects observed with unabsorbed supematants 
(165% increase in grains/cell vs. medium alone, p <0.001, 
n = 10) or NRS IgG-absorbed supernatants (173% increase 
vs. medium alone, p <0.001, n = 10). By contrast, the anti- 
TNF-oe or anti-TGF-fll matrices depleted the activated serosal 
mast cell supernatants of 59 _+ 8% or 77 +_ 7%, respec- 
tively, of their ability to augment signal for type c~-1 (I) col- 
lagen mRNA. Absorption with anti-TGF-/31 matrices was 
more effective than absorption with anti-TNF-oe, in that values 
for fibroblasts incubated with medium alone or with anti- 
TGF-fll-absorbed mast call supernatants were statistically in- 
distingnishable, whereas the anti-TNF-c~-absorbed superna- 
tants had a residual activity that was still significantly greater 
(by *74%) than that of medium alone (p <0.05, n = 10). 
Absorption with both anti-TGF-fll and anti-TNF-a matrices 
was significantly more effective than absorption with either 
the anti-TNF-oe (p <0.001, n = 10) or the anti-TGF-fll (p 
<0.05, n = 10) matrices alone. 

Discussion 

Our results show that the Fc~RI-dependent activation of 
mouse mast cells can induce increased levels of type oe-1 (I) 
collagen gene expression in mouse skin fibroblasts in vitro 
or in vivo. Analysis of dermal fibroblast collagen gene ex- 
pression by in situ hybridization demonstrated a striking in- 
crease in collagen mRNA at PCA reaction sites in normal 
BALB/c  or WBB6Ft-+/+ mice and in genetically mast 
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Figure 6. Role of TGF-fl and TNF-oe in the mast cell activation-de- 
pendent induction of type ce-1 (I) collagen mRNA in mouse skin fibro- 
blasts in vitro. Supematants from purified serosal mast cells that were sen- 
sitized with IgE and then either were left unstimulated (IgE/-) or were 
challenged with specific antigen (IgE/Ag) were absorbed with NRS, anti- 
TGF-B1, anti-TNF-a, or a combination of anti-TGF-fll/anti-TNF-c~ IgG 
immunoaffinity matrices, and then tested by in situ hybridization with 
specific antisense cRNA probes for their residual abilities to induce type 
oe-1 (I) collagen mRNA expression in embryonic skin fibroblasts, as in 
Fig. 4. *, p <0.05; * * *, p <0.001; NS, not significant; vs. medium alone 
(n = 10, condition). 

cell-deficient W B B 6 F 1 - W / W  v mice that had been selectively 
repaired of their cutaneous mast cell deficiency, but not in 
W B B 6 F 1 - W / W  v mice that remained mast cell deficient. 
These results demonstrate unequivocally that the increased 
expression of type c~-1 (I) collagen mRNA which developed 
at sites of PCA reactions was mast cell dependent. 

In normal mice, increased signals for type ol-1 (I) collagen 
mRNA were noted at PCA reaction sites 1 h after adminis- 
tration of specific antigen and were further increased by 2 h 
after challenge, before the recruitment of significant numbers 
of circulating leukocytes to the sites (3). This finding indi- 
cates that the increased levels of dermal collagen mRNA ex- 
pression that are observed at the early stages of these IgE- 
and mast cell-dependent reactions can occur independently 
of the action of recruited leukocytes. However, this finding 
can not rule out the possibility that activated mast cells pro- 
mote dermal fibroblast collagen gene expression in vivo at 
least in part by influencing the function of a third cell type 
resident in the skin. 

We therefore used in vitro approaches to investigate mech- 
anisms that might account for the ability of activated mast 
cells to promote fibroblast collagen mRNA expression. We 
found that the Fc~RI-dependent activation of all three mouse 
mast cell populations tested resulted in the release of medi- 
ators that markedly increased type a-1 (I) collagen mRNA 
expression in mouse embryonic skin fibroblasts in vitro (Fig. 
3 B). These mast cell populations included a cloned, growth 
factor-independent cell line (C1.MC/C57.1), as well as pri- 
mary cultures of immature, IL-3-derived BMCMC and freshly 
isolated mature serosal mast cells, both of which contained 
>98% mast cells. These experiments thus strongly indicate 
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that mouse mast cell activation can directly augment fibro- 
blast collagen mtLNA expression. 

We (1, 17) and others (6) have proposed that mast cells 
might influence fibroblast gene expression and protein syn- 
thesis through the production of muhifunctional cytokines. 
Our results provide the first direct support for this hypoth- 
esis. We found that absorption of the supernatants of acti- 
vated serosal mast cells with antibodies to TGF-~I, which 
depleted the TGF-B bioactivity in these supernatants by 97 
_+ 6%, also markedly reduced (by ,,o78 _+ 7%, according 
to autoradiographic grain count analysis) the ability of these 
supernatants to augment fibroblast type oe-1 (I) collagen 
mRNA levels in vitro. Absorption of the same supernatants 
with antibodies to TNF-oe also reduced their ability to aug- 
ment signal for fibroblast collagen mKNA, but to a sig- 
nificantly lesser extent than did absorption with antibodies 
to TGF-31, and the combination of antibodies to both cyto- 
kines was significantly more effective than either one alone. 
Based on these findings, we propose that both TGF-31 and 
TNF-c~ represent mediators that can contribute to the ability 
of activated mast cells to augment fibroblast collagen mRNA 
levels. 

A comparison of the findings of our in vivo and in vitro 
in situ hybridization experiments suggests that the increases 
in fibroblast type c~-1 (I) collagen mRNA levels which oc- 
curred at sites of IgE-dependent mast cell activation in vivo 
may have been even greater than those detected when cul- 
tured fibroblasts were stimulated with the supernatants of 
mast cells that had been activated via the Fc~RI in vitro. 
These findings might have reflected differences in the pheno- 
types of the mast cell (and/or fibroblast) populations that 
were analyzed in vivo as opposed to in vitro, or the influence 
of additional cell types that were present in vivo but not in 
vitro. However, the precise relationship between the numbers 
of silver grains/cell which are detected by in situ hybridiza- 
tion, and the actual mRNA copy numbers/cell, is unknown. 
Nor is it certain that this relationship necessarily is the same 
for slides derived from in vivo as opposed to in vitro experi- 
ments. Accordingly, autoradiographic grain count analysis 
is best regarded as a "semiquantitative" assessment of the levels 
of mRNA for the transcript of interest. 

Several lines of evidence indicate that the increases in the 
steady-state levels of fibroblast collagen mRNA, or augmented 
collagen synthesis, which are induced by a single instance 
of IgE-dependent mast cell activation are rather transient. 
Our in vivo studies showed that the increase in type oe-1 (I) 
collagen mRNA that occurred at PCA reaction sites peaked 
at ,,o16-24 h after antigen challenge and waned to background 
levels by 48 h. Notably, the kinetics of this response paral- 
leled very closely the kinetics of the mast cell-dependent gran- 
ulocyte infiltration that we observed in these reactions (3). 
The addition of supernatants of activated mast cells to skin 
fibroblasts in vitro also produced a transient increase in steady- 
state levels of fibroblast type c~-1 (I) collagen mRNA (Fig. 
4), and the kinetics of this response was very similar to that 
observed in dermal fibroblasts at PCA reaction sites in vivo. 
Finally, we measured the hydroxyproline content of mouse 
skin at various intervals after the induction of an IgE-dependent 
PCA reaction. At 12-15 h after antigen challenge, we found 
only a slight increase (of "~26%) in hydroxyproline levels 
compared to those at control reaction sites not injected with 
IgE. Moreover, these increases achieved statistical significance 
in only one of three experiments. 

Our findings are consistent with observations indicating 
that the development of clinically or histologically significant 
tissue fibrosis is a feature of chronic allergic responses, such 
as long-term allergic asthma or atopic dermatitis, rather than 
isolated type I hypersensitivity responses (1, 6, 7).'And even 
though we have shown that a single instance of mast cell 
activation can rapidly induce changes in local levels of dermal 
collagen gene expression, leukocytes recruited to sites of mast 
cell activation in vivo may also importantly contribute to the 
regulation of collagen production in these tissues. Accord- 
ingly, it will be of interest to develop model systems that 
permit evaluation of the effects of repeated or persistent mast 
cell activation on tissue levels of collagen and other compo- 
nents of the extracellular matrix, and also to determine the 
extent to which any changes in the extracellular matrix that 
are observed in these responses reflect the direct or indirect 
effects of mast cell activation. 
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