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Abstract

The basal ganglia neural circuit plays an important role in motor control. Despite the signifi-

cant efforts, the understanding of the principles and underlying mechanisms of this modula-

tory circuit and the emergence of abnormal synchronized oscillations in movement

disorders is still challenging. Dopamine loss has been proved to be responsible for Parkin-

son’s disease. We quantitatively described the dynamics of the basal ganglia-thalamo-corti-

cal circuit in Parkinson’s disease in terms of the emergence of both abnormal firing rates

and firing patterns in the circuit. We developed a potential landscape and flux framework for

exploring the modulatory circuit. The driving force of the circuit can be decomposed into a

gradient of the potential, which is associated with the steady-state probability distributions,

and the curl probability flux term. We uncovered the underlying potential landscape as a

Mexican hat-shape closed ring valley where abnormal oscillations emerge due to dopamine

depletion. We quantified the global stability of the network through the topography of the

landscape in terms of the barrier height, which is defined as the potential difference between

the maximum potential inside the ring and the minimum potential along the ring. Both a

higher barrier and a larger flux originated from detailed balance breaking result in more sta-

ble oscillations. Meanwhile, more energy is consumed to support the increasing flux. Global

sensitivity analysis on the landscape topography and flux indicates how changes in underly-

ing neural network regulatory wirings and external inputs influence the dynamics of the sys-

tem. We validated two of the main hypotheses(direct inhibition hypothesis and output

activation hypothesis) on the therapeutic mechanism of deep brain stimulation (DBS). We

found GPe appears to be another effective stimulated target for DBS besides GPi and STN.

Our approach provides a general way to quantitatively explore neural networks and may

help for uncovering more efficacious therapies for movement disorders.
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Introduction

The neural network is a complex dynamical system [1–4]. Individual neurons connected with

each other perpetually generate complex patterns of activities that are responsible for specific

cognitive functions. Some brain regions are characterized due to their activities being directly

correlated with the specific cognitive behaviors. For example, the activity of decision-associ-

ated brain areas, as that of lateral intraparietal (LIP) neurons, is correlated with the response

times and choices in decision-making tasks [5, 6]. While, on the other hand, some brain

regions play a significant role in physiological process by modulating the functions of other

regions. The basal ganglia neural circuit, as a typical example of the latter kind of brain region,

is well-known due to its crucial role in movement control [7]

In the past decades, great efforts have been made in understanding the basal ganglia neural

circuit, since the Parkinson’s disease(PD) is closely related to the basal ganglia dysfunctions

[8–11]. Classical models have described PD symptoms in terms of altered firing rates along the

direct/indirect pathways in basal ganglia [12]. Dopamine depletion leads to decreased activity

over the direct pathway and increased activity over the indirect pathway. Both of these changes

result in the increase of average firing rate of the basal ganglia output nuclei GPi/SNr. This

induces over-inhibition of thalamic and cortical activity from GPi/SNr, thereby suppressing

movements. Although many evidences support the hypotheses that PD results from the

changes in firing rate and imbalance between the direct and indirect pathways in the basal gan-

glia [9, 13, 14], this hypothesis was challenged by the recent electrophysiological studies that

fail to show the expected significant changes of firing rates in the pallidum, thalamus or motor

cortical areas of MPTP monkeys [13, 15]. This shifted the attention of researchers to the abnor-

mal firing patterns such as oscillations and neuronal synchronization in the pathophysiology

of PD rather than the changes in the firing rate, since an increased tendency of basal ganglia

neurons to fire in an oscillatory manner has also been identified in PD [13, 15, 16]. In addition,

the original firing rate description cannot easily explain tremor in the PD, which is another

obvious cardinal feature of PD. The mechanism of tremor is still in debate. We can see some

hints from recent experimental evidences showing that when tremor is present, an increased

tendency of basal ganglia neurons to fire in an oscillatory manner has also been identified in

Parkinsonism [15–21].

In order to uncover the origin of abnormal neuronal oscillations in the basal ganglia circuit

that may contribute to parkinsonian symptoms, some computational studies used the inhibi-

tory-excitatory loop architecture of the STN-GPe network for the generation of oscillatory

behavior in PD [22–24]. However, there are evidences showing that an isolated subthalamic-

globus pallidus circuit in vitro is not sufficient to generate pathological oscillations [25]. In

addition, synchronized oscillatory activity not only appears in STN-GPe but also closely links

to oscillations in SNr and cortex in PD [26, 27]. Therefore, inputs from other regions, such as

the cortex, are also necessary for generating pathological oscillatory activity. Furthermore, the

deep brain stimulation as a clinically therapy for PD has been shown to be effective at more

than one region of the basal ganglia-thalamo-cortical circuit [28, 29]. These findings suggest

that the whole basal ganglia-thalamo-cortical circuit may be associated with synchronized

oscillatory activity in PD. Therefore, in this work we developed a network model to capture

the core components in the basal ganglia-thalamo-cortical circuit, including the major connec-

tions between these neural populations.

The realistic neural networks are influenced by intrinsic and extrinsic fluctuations. There-

fore, the global stability of the motor network in pathological condition, namely the robustness

of the oscillatory activity in the whole basal ganglia-thalamo-cortical circuit still needs to be

quantified. However, the global dynamical natures of this system are hard to explore by just
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following the individual population trajectories in finite short times. We meet the challenge by

applying the landscape and flux theory to the dynamical neural network [30–36]. For an equi-

librium system, the potential landscape of the system is related to the equilibrium probability

distributions based on the Boltzman law. The driving force of the system can be written as a

gradient of the potential function. Since there are always constant exchanges of materials or

energies with the outside environment, neural circuits should be considered as non-equilib-

rium systems rather than equilibrium systems. Analogous to the potential landscape in equilib-

rium systems, we can still construct the potential function of a dynamical neural system

associated with corresponding steady state probability distributions. However, the driving

force of the non-equilibrium neural system cannot be written purely as a gradient of the poten-

tial function. We found the driving force of non-equilibrium neural networks with explicit

detailed balance breaking can be decomposed into two components: the gradient of the poten-

tial and the curl probability flux. Such probability flux represents probability flow in state

space of the activity of the neural circuit. In the landscape framework, certain significant

changes of physiological behavior can be understood as the transition from an attractor state

to another [4, 37]. Different from the energy landscape in the original Hopfield neural models,

the quantification of potential landscape in our study can be applied to general neural net-

works without the restriction on the symmetrical connections [4]. The probability flux pro-

vides an important driving force for the large-scale oscillations in the neural circuit, such as

abnormal oscillations in movement disorders.

Dopamine is a key neuromodulator in the basal ganglia-thalamo-cortical circuit [38]. We

quantified the probabilistic landscapes of the neural circuit for different dopamine levels. With

sufficient dopamine supply in the normal state, the landscape topography shows mono-stable

basin of attraction and there is no significant synchronized oscillatory behavior. When there is

not enough dopamine in the basal ganglia, we show that the system goes through a Hopf bifur-

cation to beta-band oscillations. The shape of the quantified landscape changes from single

basin of attraction to a Mexican hat-shape closed ring, which corresponds to the abnormal

oscillations in PD. We found both landscape and flux contribute to the dynamics of oscilla-

tions. The landscape attracts the network state down to the ring, and the curl flux drives the

oscillations along the ring path. We quantified the global stability through the barrier height of

the center hat. Both higher barriers and larger flux result in more stable oscillations. We found

that energy consumption is needed for supporting the stronger synchronized oscillations. We

also explore the effects of dopamine level on the frequency of oscillations. Moreover, by means

of the landscape and flux approach, we provided theoretical supports for the therapeutic mech-

anisms of the deep brain stimulation in terms of the effective reduction of the synchronized

oscillations in the circuit. According to our theoretical analysis, GPe appears to be another

effective target for DBS besides GPi and STN. Our theoretical predictions may be helpful to

uncover more efficacious therapies for movement disorders, such as the Parkinson’s disease.

Results and discussion

The landscape and flux theory for general neural networks

When exploring the dynamics of a neural network, individual deterministic trajectories are

often followed. However, the neural networks are under fluctuations from the intrinsic source

and external environments. In addition, following individual trajectories in finite short times

often gives local properties rather than global natures of the whole system. Rather than individ-

ual trajectory evolution, the probabilistic evolution can characterize the dynamics globally and

therefore is often more appropriate. In a recent work, we applied the landscape and flux theory

for studying general neural networks [34]. We quantified the potential landscape related to the
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steady state probability distribution. This is analogous to equilibrium systems where the poten-

tial landscape is related to the equilibrium distribution through the Boltzman law. Here the

potential function becomes U(x) = −ln(Pss(x)), where Pss represents the steady state probability

distribution and x is a vector variable representing the activity of each module in the circuit.

To quantify the steady state probability distribution, we can start with the dynamical equa-

tions of the neural network taking the fluctuations into account. A set of Langevin equations

describing the stochastic dynamics of neural networks can be written as: dx
dt ¼ FðxÞ þ z. Here F

represents the driving force of the neural network. z represents the stochastic fluctuations,

which are considered to follow a Gaussian distribution with autocorrelations specified by

< zðx; tÞzðx; t0Þ >¼ 2DðxÞdðt � t0Þ . Here D(x) is the diffusion coefficient matrix characteriz-

ing the level of noise strength. δ(t) is a delta function. Furthermore, we can write the corre-

sponding diffusion equation in the form of the probability conservation: @P/@t +r � J = 0(see

more details about solving the probability distributions in the Method section), where J is the

probability flux: J = FP −r � (DP). Here the diffusion coefficient matrix is considered as a con-

stant for simplification. For a general equilibrium system, one often knows the energy function

a priori and the driving force is the gradient of the energy function. However in reality, the

neural networks are open systems. The neural circuits often exchange energy and information

with the environment, which cannot be taken as an isolated conserved systems. The driving

force as a result can not always be written as a gradient of an energy function in such non-equi-

librium conditions. According to the expression of the probability flux J, we can decompose

the driving force of the neural systems into a gradient of a non-equilibrium potential and a

divergent free curl flux force [30–32] as: F = Jss/Pss − D � rU. The divergent free flux Jss has to

rotate around and becomes curl since it has no source or sink to go to or come out from.

When the steady state flux is zero, there is no net flux flow in or out; the system is in a detailed

balance. When the flux is not zero, there is a net steady state flux flowing around. This breaks

the detailed balance and measures how far away the system is from the equilibrium. Therefore

while the nonequilibrium potential quantifies the landscape and reflects the probability of each

state giving a global characterization, the dynamics of neural networks is determined by both

the gradient of the landscape and the curl flux breaking the detailed balance.

Application of landscape and flux theory for the quantification of motor

network dynamics

In this work, we constructed a neural network model which includes most of the main modu-

lation modules in the basal ganglia-thalamo-cortical circuit [8–11, 39–41] as shown in Fig 1.

The basal ganglia is closely connected with the cortex and thalamus. Excitatory inputs from

the cortex and thalamus enter the basal ganglia through the striatum, where they are trans-

formed into two inhibitory projections called the direct and indirect pathways. In the direct

pathway, striatal neurons form inhibitory synapses to the GPi/SNr complex. The GPi/SNr

complex serves as the output nuclei and connects to the cortex via the motor thalamus. On the

other hand, the indirect pathway striatal neurons provide inhibition to the GPe, which in turn

inhibits the SNr/GPi. The circuit forms a closed loop due to the inhibition from SNr/GPi to

the thalamus. The opposite effects of these two pathways control the movements. Dopamine

level dynamically modulates this circuit. It activates the direct pathway and inhibits the indi-

rect pathway through the D1 and D2 receptors in the striatum, respectively. The pathophysiol-

ogy of PD has been considered to be caused by the lack of balance between the excitatory and

inhibitory control. In the classical model, the Parkinson’s disease was understood as the results

from dopamine depletion in the SNc, which leads to decreased activity over the direct pathway

and increased inhibitory activity over the indirect pathway [9, 10, 13]. In addition, there is
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another hyperdirect pathway, which goes from the cortex to the subthalamic nucleus(STN)

and then to the GPi in the loop. Activation of this pathway would also increase basal ganglia

output and result in greater inhibition of thalamocortical activities.

Based on the neural network model shown in Fig 1, the dynamics of the system can be

quantitatively described by a set of ordinary differential equations as dx
dt ¼ FðxÞ. In this work,

each module is represented by a single Hopfield-type model neuron. Similar simplification is

also used in previous computational studies [24, 42]. In Fig 2, we show the phase diagram with

changing dopamine input derived by the analysis of the deterministic equations for neural net-

work dynamics. We found that the average activity of the motor cortex decreases gradually

with decreasing dopamine. This corresponds to the descriptions in the classical firing rate

model that dopamine depletion leads to inhibited thalamocortical activity resulting in akinesia

[9, 10, 13]. Moreover, as the dopamine supply decreases, system goes through a Hopf bifurca-

tion from a mono-stable phase to a limit cycle oscillation phase.

Given the equations that can describe the dynamics of the neural circuit, we can quantify

the corresponding potential landscapes in the state space. Since the cortex and thalamus

directly determine the movement execution, we focus on 2-dimensional state space (instead of

a 7-dimensional state space describing the activity of the 7 components in the circuit) for better

visualisation of potential landscape. To address whether the results are also valid for the other

nuclei activities, we show corresponding results in the state space of GPi and STN activity in

the S1–S4 Figs. In fact, choosing any two nuclei activities for the 2-dimensional state space

Fig 1. The schematic diagram of the basal ganglia-thalamocortical circuity and their interactions. Arrows represent

excitatory connections and the lines with solid circle represent inhibitory connections.

https://doi.org/10.1371/journal.pone.0174364.g001
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does not significantly change the theoretical predictions we get. The landscapes of the basal

ganglia-thalamo-cortical circuit with different dopamine levels in terms of motor cortex and

thalamus module activities are shown in Fig 3. In Fig 3(A)–3(F) we showed three-dimensional

landscapes for decreasing dopamine inputs. The states with lower potentials correspond to

higher probabilities. We see in Fig 3(A), with sufficient dopamine release, there is a basin of

attraction that corresponds to the state with both high activities of motor cortex and thalamus.

This is due to the increased activity over the direct pathway and decreased activity over the

indirect pathway. Once stimulated, the cortex projects its own excitatory outputs to the brain

stem and ultimately muscle fibers, thus enabling the movement execution. This attractor can

be regarded as the normal state. Dopamine depletion leads to less excited direct pathway and

over-activated indirect pathway. Therefore, the enhanced outputs from the GPi over-inhibit

the thalamocortical projection, and furthermore reduce the cortical neuronal activation associ-

ated with the movement initiation. As shown in Fig 3(F), when the dopamine release is

extremely low the basin of attraction is located at the state where both motor cortex and thala-

mus have lower activities. These results are consistent with the descriptions in the classical fir-

ing rate model [9, 10, 13].

As we discussed in the introduction section, dopamine loss promotes the tendency of neu-

rons in the basal ganglia-thalamo-cortical circuitry to generate oscillatory firing patterns. In

our model, when the dopamine supply decreases, we found the landscape of the circuit

changes from a single basin of attraction to oscillations with a Mexican hat shape as shown in

Fig 3(B)–3(E). In Fig 3(B)–3(E), we can see the oscillation path along the ring valley has lower

potentials or higher probabilities. One should also notice that the potentials along the ring are

Fig 2. The phase diagram of the basal ganglia-thalamocortical circuit in terms of varying dopamine input. The

solid line indicates the mono-stable phase and the dashed line indicates the unstable oscillation phase. HB represents the

Hopf bifurcation point. (A Hopf bifurcation is a critical point where a dynamical system loses stability and switches from a

fixed point to a periodic solution.)

https://doi.org/10.1371/journal.pone.0174364.g002
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inhomogeneous. There are two local basins on the oscillation ring. The two basins correspond

to the state with both higher cortical and thalamic activities as well as the state with both lower

activities. The inhomogeneous potentials along the oscillation ring imply the system may con-

verge to these basins of attraction when the oscillation becomes unstable. This can be seen that

at high dopamine release level, the network settles at the normal state while for extremely low

release of dopamine, the network settles to the disease state, where the neural circuit is not able

to execute movement(akinesia). The stabilities of oscillations are discussed in the next section.

In Fig 3(B)–3(E), the pink arrows represent the probabilistic flux, and the black arrows repre-

sent the force from negative gradient of the potential landscape. We can see the direction of

the flux near the ring is parallel to the oscillation path. The direction of the negative gradient of

the potential is almost perpendicular to the ring. Therefore, the landscape attracts the system

towards the oscillation ring, and the flux is the driving force and responsible for coherent oscil-

lation motion on the ring valley.

The effects of dopamine on the motor circuit in terms of barrier height,

flux, period and energy consumption

Since the emergence of pathological oscillations has been demonstrated in many movement

disorders, especially the Parkinson’s disease [15–17, 43], exploring the mechanism and stability

of such oscillations is crucial for not only the tremors but also other symptoms such as akine-

sia. Here we studied how the dopamine, as the key modulatory factor, influences the oscillatory

dynamics in motor circuits. Having quantified the potential landscape, we can further study

the robustness and global stability of oscillatory activity and the functions of the motor net-

work in PD by exploring the landscape topography. We used the barrier height as a quantita-

tive measure which is defined as Umax − Umin. Umax is the local maximum potential inside the

Fig 3. Potential landscapes based on a 2-dimensional state space for different dopamine levels. The dopamine

input is 1.4, 1.08, 1.0, 0.8, 0.7, 0.6, respectively. The black arrows represent the negative gradient of potential and pink

arrows represent probabilistic flux.

https://doi.org/10.1371/journal.pone.0174364.g003
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cycle ring, and Umin is the minimum potential along the ring. For higher barriers, it is more

difficult to go from the oscillation path to the inside or outside of the oscillation ring valley.

Therefore, the system is more likely to move along the ring step by step rather than jumping

from one location of the oscillation ring to another directly by crossing the barrier. This means

higher barrier height leads to more robust and coherent oscillations. In Fig 4(A), as the dopa-

mine release increases, the barrier height increases at first then decreases. This result is consis-

tent with the potential landscapes shown in Fig 3. With enough dopamine supply, the

potential landscape of the system is a basin of attraction and there are no oscillations.

Fig 4. The effects of dopamine on the motor circuit in terms of barrier height, flux, period and entropy production

rate. (A) and (B) show the changes in barrier height and flux with varying dopamine input. With enough dopamine supply,

there are no oscillations. Oscillations may emerge as the dopamine input decreases. However, the oscillations are not

stable when the dopamine input is around the Hopf bifurcation point. The corresponding barrier heights and flux are

smaller. The oscillations become more stable as the dopamine input decreases further. Accordingly, the barrier heights

and flux increase. However, when the dopamine supply is extremely low, both motor cortex and thalamus are suppressed.

The oscillations become unstable again. The corresponding barriers and flux also decrease. (C) shows the period of

oscillations decreases monotonously with increasing dopamine input. More dopamine results in higher frequencies for

oscillations. (D) shows the entropy production rate increases for more stable oscillations. The range of dopamine input is

limited for generating oscillations.

https://doi.org/10.1371/journal.pone.0174364.g004
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Oscillations may emerge as the dopamine input decreases. However, the oscillations are not

stable when the dopamine input is around the Hopf bifurcation point. The corresponding bar-

rier heights are lower. The abnormal oscillations become more stable as the dopamine input

decreases further. Accordingly, the barrier heights become higher. However, when the dopa-

mine supply is extremely low, both motor cortex and thalamus are suppressed. The oscillations

become unstable again. The corresponding barriers also become lower.

We have shown that the flux is the main driving force of the non-equilibrium system after

being attracted into the closed oscillation ring. Therefore, the flux is another good measure to

quantify the stability of oscillations, since the larger flux means that the coherent oscillations

are harder to be influenced by the fluctuations around. Here we use the average flux along the

cycle to quantify the magnitude of flux, which is defined as JAverage ¼

H
Jdl
H

dl
. We can see in Fig 4

(B) that we got similar results as shown in Fig 4(A). The average flux increases first then

decreases with increasing dopamine due to emergence and disappearance of oscillations. In

conclusion, both the barrier height and flux are crucial for the synchronized oscillations

observed in motor disorders.

The frequency is a crucial feature of pathological oscillations in PD [13, 15, 16]. In Fig 4(C),

we explored how the dopamine influences the frequency of oscillations. Interestingly, the

trend of the oscillation period with varying dopamine level doesn’t show non-monotonic

behavior. The frequency of oscillations increases monotonically with increasing dopamine

level. Although the frequency increases monotonically, the oscillations in our model are still in

the beta band. There are some plausible hypothesis showing that the beta band oscillations

may be related to the hypokinetic symptoms as well as tremor in PD [18, 44–46]. Although the

oscillations in our model are not exactly at the tremor frequency, quantitatively exploring such

oscillatory behaviors in beta band is still useful for understanding the mechanisms of move-

ment disorders such as tremor. We found the curl flux force Jss/Pss approximately plays the

role of velocity when the oscillating system moves in the state space [33, 34]. Therefore, the

flux is closely related to the period of oscillations. It is natural to expect that the shorter period

of oscillations are accompanied by the larger flux. Our results shown in Fig 4(B) and 4(C) are

not incompatible with this prediction. This is because the oscillation period is determined by

both the flux(velocity) and the loop length of the cycle. We show that the flux multiplied by the

period has positive correlations with loop length(details are shown in the S1 Text). Our predic-

tions that the frequency of beta oscillations decreases as PD develops(fewer dopamine) are

consistent with previous simulation results [22].

As we introduced before, the dysfunction of the motor circuit may result from the patho-

logical oscillations in the basal ganglia, which disrupt the regular discharges of basal ganglia

output nuclei. Irregular firing in GPi cells were also observed in generalized dystonia [47]. The

changes in disorder(entropy) of the neuronal activity in the circuit can be quantified through

the flux in our model(the detailed definition of entropy production rate is shown in the S1

Text). We calculated the changes of entropy production rate with respect to the dopamine.

The Fig 4(D) shows that the entropy production rate is larger with higher barrier height and

stronger flux, which means more stable pathological oscillations correspond to larger entropy

prediction. A proposed therapeutic mechanism of STN deep brain stimulation (DBS) is that

the high frequency stimulation changes the firing of GPi neurons from an irregular pattern

into a regular pattern(reducing the entropy) [48]. We will show more details about the mecha-

nisms of DBS in the next section.

In addition, the entropy production rate in our model can be seen as the energy consump-

tion or cost per unit time [33, 35, 36]. Our results predict that more energy is needed to sup-

port the large-scale oscillatory neuronal activity over the circuit with stronger oscillations. It
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should be noted that the energy cost here represents the consumption of energy to maintain

the dynamics of the whole neural circuit, a true non-equilibrium system. Therefore, such

energy consumption or cost cannot be easily measured by the recordings of the glucose utiliza-

tion and O2 consumption in individual neural populations [49]. However, we can still see sup-

port from some experimental results. A previous experiment shows that oscillatory

synchronization is only found in the patients with limb tremor but not in the patients without

tremor [46]. This finding indicates that there may be more oscillations in the tremor dominant

(TD) PD than the non-tremor dominant(NTD) PD. Furthermore, there is another evidence

showing reduced blood oxygenation level dependent(BOLD) activity in the NTD PD patients

compared to the TD PD patients in several areas(cortex, GPi, GPe and thalamus) [50]. Taking

these results together, it is logical to hypothesize that more oscillatory activity in PD requires

more energy, which is consistent with our theoretical predictions.

Global sensitivity analysis on landscape and flux for identifying the key

connections in the motor circuit

Quantifying the flux and potential landscapes helps us to understand the mechanisms of how

synchronized oscillations emerge in the motor circuit. We have shown that both barrier height

and flux are good measures of the global stability and coherent oscillations of the system. Here

we will explore the effects of some key regulation connections on the circuit. As discussed

before, the output of basal ganglia is determined by the balance between the direct pathway

and indirect pathway. The direct pathway promotes the movement while the indirect pathway

suppresses the movement. In Fig 5(A) and 5(B), we show the potential landscapes with

increased activity over the indirect pathway and direct pathway, respectively. The black lines

represent the trajectories of the system switching from the fixed point to oscillations and oscil-

lations to the fixed point, respectively. We can see that as the inhibitory connection from the

striatum to GPe in the indirect pathway becomes stronger the landscape changes from a basin

of attraction to oscillations. Meanwhile, the oscillations become more stable. On the contrary,

increasing the inhibition from striatum to GPi in direct pathway makes the oscillation

Fig 5. Potential landscapes of the modulation circuit for different interaction strength. (A): Increased inhibitory

connection in the indirect pathway. (B): Increased inhibitory connection in the indirect pathway. As the inhibitory connection

from the striatum to GPe in the indirect pathway becomes stronger the landscape changes from a basin of attraction to

oscillations. On the contrary, increasing the inhibition from striatum to GPi in direct pathway results in the changing from

stable oscillations to a basin of attraction. In order to show the landscapes of the system switching from the fixed point to

oscillations and oscillations to the fixed point, the dopamine input is set as 1.00 and 1.25 in Fig 5(A) and (B), respectively.

The black lines represent the trajectories of the system switching between the fixed point and oscillations.

https://doi.org/10.1371/journal.pone.0174364.g005
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unstable. This indicates that direct-pathway activation help to alleviate the corresponding

symptoms in PD. Our theoretical predictions are supported by the experimental evidences

that activation of the direct pathway neurons with the optogenetic tool can ameliorate a series

of motor deficits in a mouse model of PD [14].

Furthermore, we explored the details of how the key modulatory connections in the circuit

influence the system in terms of barrier height and flux. Similar with the discussion above we

enhanced different inhibitory connections separately in the circuit shown in the Fig 1. Fig 6

(A) and 6(B) show the changes in barrier heights when different wirings are strengthened. Fig

6(C) and 6(D) show the corresponding changes in flux. The vertical axis represents the per-

centage changes in the specific connection strength. Our predictions are consistent with a

recent theoretical work which shows that the connections from cortex to striatum and striatum

to GPe play crucial roles in generating pathological oscillations [51].

During the last decades, the deep brain stimulation (DBS) has become an effective therapy

for the treatment of numerous movement disorders [28, 29, 52]. However, the therapeutic

Fig 6. The global sensitivity analysis in terms of the barrier height and flux. Fig 6(A) and (B) show the changes in

barrier heights when different wirings are strengthened. Fig 6(C) and (D) show the corresponding changes in flux. The

horizontal axis represents the percentage changes in the specific connection strength. Here the dopamine input is 0.95.

https://doi.org/10.1371/journal.pone.0174364.g006
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mechanism of DBS remains unclear. The earliest hypotheses on DBS mechanisms arise from

the fact that DBS has a similar effect to a lesion on parkinsonian symptoms [28, 53]. Accord-

ingly, DBS was originally considered to inhibit neuronal activities around the stimulated sites.

This hypothesis was supported by the recordings of reduced somatic activity in GPi and STN

neurons during GPi and STN DBS respectively [28, 53]. In addition, the original firing rate

model provides a good explanation why local inhibition of GPi or STN should be therapeutic.

Therefore, the therapeutic mechanism of DBS was once explained by the direct inhibition

hypothesis. However, the direct inhibition hypothesis fails to explain why lesions of the GPe

can lead to parkinsonism yet PD can be reversed by GPe DBS [54]. Moreover, the reduction in

somatic activity doesn’t necessarily result in the decreased output of the stimulated nuclei. In

fact, there are experimental evidences which suggest that the output from the stimulated

nucleus(e.g. GPi and STN) is increased due to the activation of axons [29]. In other words, the

effects of stimulation on somatic and axonal activity are decoupled [55]. The somatic inhibi-

tion maybe caused by depression of excitatory afferents [29]. On the other hand, the axonal

excitation results in activation of efferents [28, 29].

Here we first try to explore the underlying mechanism of DBS by introducing a negative

input directly to the targeting neurons(GPi, GPe, STN, respectively) according to the direct

inhibition hypothesis. In this simulation, we considered the neural circuit including the STN

nuclei. In the top row of the Fig 7, we show the relationship between the decrease of neural

activity in the stimulated target and the average flux that measures the stability and coherence

of oscillations in our study. Decrease in the activities of GPi and STN not only reduces the

inhibition to thalamic and cortical neurons, but also leads to the monotonic decrease in flux,

which means the oscillations become less stable. In the case of stimulations of the GPe, our

simulation results show that although the flux may increase first due to the decreased activity

in GPe, it also significantly decreases when the GPe is further inhibited. Second, according to

the hypothesis of the decoupling effect of DBS, we simulate the inhibitory effect on the stimu-

lated target and the excitatory effect on the corresponding output to the downstream nucleus

at the same time. As shown in the bottom row of Fig 7, the flux that drives the oscillations in

PD can also be effectively suppressed. Our results point to the validity of both hypotheses on

the effect of DBS and suggest that both the abnormal firing rates and firing patterns in the cir-

cuit are responsible for the symptoms in PD. Interestingly, according to our theoretical predic-

tions, GPe appears to be another effective stimulated target for DBS besides GPi and STN.

Further refinement of the suggested model may lead to the identification of other potential

effective target nuclei in DBS for movement disorders.

Comparison with other models and future directions

About years ago, researchers focused on the altered firing rates along the direct/indirect path-

ways in basal ganglia when describing the Parkinson’s disease(PD) [9, 13, 14]. With the fact

that the presence of synchronized oscillations is a distinctive feature of PD and the symptoms

in PD such as tremor cannot be easily explained by the classic firing rate description, recent

computational models focused more on the synchronized oscillatory activity in PD.

Many computational models explored the oscillatory behaviors in PD based on the inhibi-

tory-excitatory interactions between the STN and GPe neurons [22, 56–58]. Terman et al. sug-

gested a spiking neuron model of the STN-GPe circuit that the emergence of oscillatory

activity results from the increasing inhibitory input from striatum to GPe [56, 57]. However,

the oscillations in their model have much lower frequency than the beta range. The lack of

beta oscillations may be due to the absence of cortical input. Holgado et al. developed a

STN-GPe circuit model where beta oscillations are produced by both the changes in the
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strength of the interactions between the STN and GPe neurons and the presence of the cortical

input [22]. Another model proposed by Leblois et al. suggested that the oscillatory behaviors

can be produced by the competition between the direct pathway and the hyper-direct pathway

(cortex-STN-GPi) [58]. However, the indirect pathway was ignored in their model.

Although these above mentioned models are capable of producing oscillations, their con-

clusions are limited by the incomplete structure of the basal ganglia-thalamo-cortical loop. For

example, the prediction that the input from cortex to striatum is also very crucial for the emer-

gence of oscillation according to our work and another theoretical study [51] cannot be

obtained from the STN-GPe circuit model. In addition, as we have introduced, there are evi-

dences showing that the deep brain stimulation is effective at more than one region of the

basal ganglia-thalamo-cortical circuit [28, 29]. Therefore, it is necessary to explore a model

including all the main neural modules in the circuit. Our circuit model can provide more

details on the corresponding mechanisms in PD and DBS.

In another related work, Frank et al. suggested a model with a similar architecture to ours

showing consistent results that the normal action selection function of basal ganglia in motor

control is impaired due to dopamine depletion [38]. Different from our current work and

other works introduced above that focused on the oscillatory activity in PD, they mainly

explored the underlying role of dopamine in learning and execution of cognitive tasks. They

showed that both the dopamine depletion in PD and dopamine overdose would impair the

learning function [38]. However, the abnormal oscillations in PD are not explicitly explored in

Fig 7. Exploring the mechanism of DBS in terms of average flux. (A-C) show how the flux changes during DBS of GPi,

GPe and STN based on the direct inhibition hypothesis. (D-F) show how the flux changes during DBS of GPi, GPe and

STN based on the hypothesis that although the DBS inhibits the stimulated target, it may increase the output of the

stimulated nucleus.

https://doi.org/10.1371/journal.pone.0174364.g007
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their model. Local inhibition or activation is not sufficient to explain all the characteristics in

the basal ganglia circuit.

Previous electrophysiological studies have failed to show the expected significant changes of

firing rates in the pallidum, thalamus or motor cortical areas of MPTP monkeys [13, 15]. Both

abnormal firing rates and firing patterns in the circuit should be paid attentions upon. In our

model, the action selection function is affected in PD because the abnormal oscillatory firing

behaviors jam normal information processing in the motor circuits. With our landscape and

flux theory we are not only able to explore the conditions for the production of oscillations in

PD, but also quantitatively explore the stability of oscillatory behaviors through both the topol-

ogy of the quantified landscape and strength of the flux. Our approach can also help to find

effective stimulated targets through quantifying the reduction of the pathological oscillations

during DBS in terms of flux.

Frank et al. also showed that the basal ganglia circuit participated in higher level cognitive

processes such as decision-making in which two pathways compete with each other and selec-

tively facilitate the execution of the cortical command, which is analogous to the functional

roles of basal ganglia in motor control processes. In addition, they have also modeled some

behavioral characteristics, such as the speed(reaction time)-accuracy tradeoff in decision-mak-

ing tasks [59]. In fact, our landscape and flux approach can also help facilitate an understand-

ing of the underlying physical mechanisms of decision-making tasks. In our recently work, we

apply our approach to a neural model of the visual motion discrimination task [60]. Differently

from previous works, the quantifications of the reaction time and accuracy performance with

our method avoided time-consuming calculations from the statistics of the data. We also quan-

tified the energy consumption in the decision-making processes in terms of the entropy pro-

duction rate. We found that instead of the well-known speed-accuracy tradeoff, there are

tradeoffs among decision-speed, accuracy and energy cost in decision-making tasks. In our

future works, we’d like to explore the modulatory role of the dopamine/basal ganglia system in

decision-making tasks with our landscape and flux theory.

Conclusion

We explored the dynamics of the basal ganglia-thalamo-cortical circuit from the landscape

and flux perspective. The quantified potential landscape is associated with the steady state

probability distributions. Dopamine dynamically modulates neural activity in this motor con-

trol circuit. Different dopamine levels result in different behaviors. With enough dopamine

supply in the basal ganglia circuit, the landscape topography becomes a basin of attraction cor-

responding to the state with activated motor cortex and thalamus. With dopamine depletion,

the system goes through a Hopf bifurcation to beta-band oscillations. The corresponding land-

scape changes significantly from a monostable basin to a closed oscillation ring. The driving

force of the system can be decomposed into the gradient of the potential and the curl flux. The

gradient of the potential attracts the system down towards the closed ring, and the flux drives

the oscillations along the ring valley.

We used the barrier height and flux to quantify the global stability and coherence of the oscil-

lations in the circuit. Higher barriers accompanied with larger flux lead to more stable and

coherent oscillations. Meanwhile, more energies are dissipated. Quantifying the barriers and flux

can help us to understand the emergence of abnormal synchronized neuronal activity in move-

ment disorders. Our theoretical predictions quantitatively validate the main hypotheses for the

therapeutic mechanism of the deep brain stimulation in the Parkinson’s disease. We find a new

potential simulating target for DBS besides the existing GPi and STN. We aim to further refine

the suggested model and try to compare our theoretical predictions with clinical data [61, 62].
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Methods and models

The model of the basal ganglia-thalamo-cortical circuit

As we have discussed in the Introduction section, we consider the whole basal ganglia-tha-

lamo-cortical circuit rather than the inhibitory-excitatory loop architecture of the STN-GPe

network for exploring the dynamics in PD [22–24]. A computational model of the modulatory

network has been constructed, which includes most of the main modulation modules in the

circuit as shown in Fig 1 [8–11, 39–41]. In the present work, we suggest a circuit model con-

sisting of seven main brain regions. They are motor cortex, striatum(direct pathway neurons),

striatum(indirect pathway neurons), GPi/SNr complex, GPe, thalamus and STN, which are

labeled as 1, 2, 3, 4, 5, 6, 7, respectively in our model. Here, each module in the circuit is repre-

sented by a single Hopfield-type model neuron [4]. Similar simplification was also used in pre-

vious computational studies [24, 42]. We can write down a set of ordinary differential

equations describing the dynamics of this circuit as:

F1 ¼
1

Ci
I1 �

x1

R1

þ
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6
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6
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Here, xi represents the activity of each module in the circuit and Dinput is used to represent

the dopamine input. The function fi(xi) represents the average firing rate of neural module i,
which has a monotonic and sigmoid form. In this work we use the Hill function as the form of

the response function fi(xi) [34]. s and n are the coefficients of the Hill function which deter-

mine the threshold and steepness of the sigmoidal function. Here we choose the same parame-

ter value that s = 2.0 and n = 2 as our previous work [34]. Ti, j represents the strength of the

connection or interaction from neural module j to i. Here the excitatory connection strengths

are set as T1,6 = T4,7 = 2, T2,1 = T2,6 = T3,1 = T3,6 = 1.4, T5,7 = 1, T1,7 = 1.8. The inhibitory con-

nection strengths are set as T4,2 = T5,3 = T6,4 = 3.2, T4,5 = 3.0, T7,5 = 1.8. We chose these param-

eter values of the connection strengths according to the previous theoretical modeling work,

where the range is 0–7 [51]. Ci and Ri are the membrane capacitance and resistance, respec-

tively. We use Ri = 1.67 according to Hopfield’s previous work [63]. RC plays the role of time

constant in this model. The realistic time constant τ = RC is considered as equal to 6ms [23].
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Therefore, we can have the parameter value of Ci as Ci = τ/Ri. The external inputs are set as I1

= 0.1, I2 = 0.05, I3 = I7 = 1.2, I4 = 4.4, I5 = 2.8, I6 = 2. We chose the values of these parameters

based on the constrains that the average firing rate of each neural module has to be positive

and the steady state solution can switch from mono-stability to beta-band oscillations.

Self-consistent mean field approximation

In order to obtain the underlying potential landscape that is defined as U = −lnPss, we need to

calculate the steady-state probability distribution first. However, due to the huge dimensions

of the system, it is often difficult to solve this equation directly. Therefore, we used the self-

consistent mean field approximation to reduce the dimensionality [31, 34].

Generally speaking, to obtain the probability P(x1, x2, . . ., xN, t) of a N-dimensional system,

we usually have to solve a N-dimensional partial differential equation. Assuming that every

variable has M values, then the dimensionality of the system will become MN. This is impossi-

ble for numerical calculation when N is large. We split the probability into the products of

individual ones: Pðx1; x2; :::; xN ; tÞ � PN
i Pðxi; tÞ with a mean field approach [31, 34]. Then the

probability can be solved computationally, since the degrees of freedom are reduced from

exponential to polynomials M × N.

However, it is still often difficult to solve the coupled diffusion equation directly. Fortu-

nately, the moment equations are usually relatively easy to obtain. In principle, if we have the

information of all the moments, we can construct the probability distribution. In many cases,

not all the moments can be reached. We can start from the moment equations and assume

there are specific relations between moments [31, 34]. Here we use Gaussian distribution as an

approximation ansatz. Then we need two moments, mean and variance.

In the case of small diffusion coefficient D, the moment equations for neural networks can

then be approximated as

_uðtÞ ¼ C½uðtÞ�; ð8Þ

_sðtÞ ¼ sðtÞATðtÞ þ AðtÞsðtÞ þ 2D½xðtÞ�; ð9Þ

Here x and σ(t) represent the mean and variance, respectively. The matrix A is defined as

Aij ¼
@Ci½xðtÞ�
@xjðtÞ

. We consider here only the diagonal element of σ(t) from the mean field approxi-

mation. Then the evolution of probability distribution for each variable can be obtained

through the mean and variance with Gaussian approximation:

Pðu; tÞ ¼
1
ffiffiffiffiffiffi
2p
p

sðtÞ
exp �

½u � �uðtÞ�2

2sðtÞ
; ð10Þ

The total probability is equal to the product of probability for each individual variable from

the mean field splitting approximation. For mono-stable states, we can construct the potential

landscape by: U = −lnPss. However, for the system with oscillations, the mean and variance x(t)

and σ(t) evolve with time. In fact, the mean represents the deterministic oscillatory dynamics.

On the other hand, the variance gives the spread or the width of the fluctuations around the

deterministic oscillatory trajectory. Although the deterministic trajectory is oscillatory, the

corresponding probability does not change with respect to time. In order to obtain the steady

state probability that doesn’t change with time, we quantified the steady state probability distri-

bution by integrating of the probability in time for one period and dividing for that period.

Such method is also used in previous works [31, 34].
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