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The coordinated regulation of transcriptional networks underpins cellular
identity and developmental progression. RNA polymerase II promoter-
proximal pausing (Pol II pausing) is a prevalent mechanism by which
cells can control and synchronize transcription. Pol II pausing regulates
the productive elongation step of transcription at key genes downstream
of a variety of signalling pathways, such as FGF and Nodal. Recent advances
in our understanding of the Pol II pausing machinery and its role in tran-
scription call for an assessment of these findings within the context of
development. In this review, we discuss our current understanding of the
molecular basis of Pol II pausing and its function during organismal
development. By critically assessing the tools used to study this process
we conclude that combining recently developed genomics approaches
with refined perturbation systems has the potential to expand our under-
standing of Pol II pausing mechanistically and functionally in the context
of development and beyond.

1. Introduction

Multicellular organisms rely on differential gene expression to diversify cell
types with distinct functions [1,2]. A range of mechanisms have therefore
evolved for spatio-temporal regulation of transcription, such as signalling via
extracellular or intracellular ligands [1-3]. These pathways eventually regulate
activity of nuclear-localized transcription factors that bind to specific DNA
cis-regulatory elements and initiate or prohibit recruitment of transcriptional
machinery to target gene promoters [1].

Over the past few decades, our cumulative understanding of the biochemical
basis of transcription has revealed that it does not function as a simple ‘on-off’
switch, but instead involves a sequence of steps that each contribute to the overall
transcription rate [1,4-6]. Broadly, gene transcription requires the assembly of a
pre-initiation complex (PIC), initiation of transcription, induction of productive
elongation, followed by termination. Each of these steps can be regulated by
canonical signalling pathways, while classic examples of such regulation include
alternative splicing and premature termination and degradation [7-10]. Over
the past decade, RNA polymerase II (Pol II) has been shown to accumulate down-
stream of the transcription start site at certain genes in higher metazoans, possibly
to prepare or ‘poise’ promoters for imminent activation [11-13]. This phenom-
enon, referred to as promoter-proximal Pol II pausing (hereafter referred to
simply as ‘Pol II pausing’), is widespread in mammalian transcription, with
some studies estimating that up to 40% of protein-coding genes experience
pausing [14,15].

The molecular mechanisms responsible for establishing and preserving
Pol II pausing have been extensively studied over the last two decades. Genetic
ablation of various components of the Pol II pausing machinery has determined
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that it is required for cell proliferation in vitro, for the
mid-blastula transition (MBT) in fruit flies, hematopoietic
stem cell specification in zebrafish and for early embryo
development in mouse [15-18]. These results highlight the
evolutionary conservation of Pol II pausing across metazoans
[15,19]. Intriguingly, these embryonic phenotypes occur at
critical periods of cell fate specification during development.
Despite the discovery that Pol II pausing has an essential
role in organismal development, mechanistic insight into
its specific function remains unclear due to complex and
confounding phenotypes in loss-of-function models, and tech-
nical difficulties in assessing the primary defects to study the
direct impact of disrupting Pol II pausing [12]. Additionally,
the majority of studies have been carried out using in vitro
cell culture models or invertebrate (Drosophila melanogaster)
embryos, while relatively little is known about the specific
roles of Pol II pausing in mammals.

In a mammalian system, an extensive analysis of the Pol II
landscape in early pre-implantation mouse development was
recently reported, which revealed dynamic pausing at dis-
tinct stages between the zygote and early blastocyst stages
[20]. Pre-implantation development spans the period from
formation of the totipotent fertilized zygote to the blastocyst,
just prior to embryo implantation into the maternal uterine
wall [21-23]. The blastocyst consists of three cell types that
are generated via two binary cell fate decisions [24]. The
first of these segregating the trophectoderm (TE) lineage (an
extraembryonic lineage and precursor of the fetal placenta)
from the inner cell mass (ICM). The second lineage decision
specifies the ICM into the pluripotent embryonic epiblast
(EPI) and the extraembryonic or primitive, endoderm (PrE;
precursor of the yolk sac endoderm). The ability to derive
representative stem cell lines from the three blastocyst
lineages, particularly the EPI, the source of pluripotent
mouse embryonic stem (mES) cells, facilitates study of embryos
at this stage. mES cells present an invaluable model to study
Pol II pausing in a mammalian system, and have led to
several proposed functions of Pol II pausing in mammalian
development, such as regulating inputs from signalling
pathways, activities of key transcription factors and ultimately,
differentiation potential [18,25-27].

In this review, we focus on Pol II pausing from a functional
perspective during embryo development. We start by briefly
discussing our molecular understanding of Pol II pausing
and highlight recent discoveries. We then discuss the estab-
lished roles for Pol II pausing in different developmental
models, with a focus on early mammalian development, and
the current limitations and open questions in the field. Finally,
we discuss how these limitations could be overcome to gain a
deeper understanding of the functional relevance of Pol II
pausing during development.

2. Pol Il pausing: molecular mechanisms
and function

2.1. Pol Il pausing and pause-release

Promoter-proximal RNA polymerase II pausing is defined
as a transcription halt following initiation but prior to
elongation [12,13]. Following the assembly of the PIC at the
transcriptional start site (TSS), transcription is initiated and
the polymerase transcribes approximately 20-60 nucleotides.
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Figure 1. Stepwise activation of mammalian transcription. (a) Illustration of
three steps leading to active gene transcription along with key complexes
involved and example profile of nascent transcription levels along the
gene body. (b) lllustration of pausing index, a commonly used metric to
determine degree of Pol Il pausing at a particular gene.

At a subset of promoters, RNA Pol II pauses at this site before
proceeding into productive elongation (figure 1). Currently, it
remains poorly understood why pausing occurs at certain
promoters, particularly in mammals [28]. Pol II pausing is
mediated by two major complexes—the negative elongation
factor (NELF) and DRB sensitivity inducing factor (DSIF)
[29]. Both complexes are highly conserved across metazoans,
and have been shown to interact directly with RNA Pol II
[30-33]. Recently, these interactions have been visualized at
atomic resolution in cryo-EM structures of the complete
paused Pol II-DSIF-NELF complex, providing key insights
into the mechanism of Pol II pausing [32,33]. Specifically,
the bound multi-protein complex tilts the DNA-RNA
hybrid, thus impairing the addition of new nucleotides,
and preventing the interaction of other pro-elongation factors
on Pol II, which is required for productive elongation [33].
For Pol II to proceed to elongation and transcription of the
remaining gene body, the paused complex must be released.
Paused Pol II is released by an array of general elongation
effectors such as BRD4, TRIM33 and the Mediators which
ultimately recruit the positive transcription elongation factor,
or P-TEFb [12,34-36]. The P-TEFb catalytic subunit CDK9
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can phosphorylate paused Pol II, NELFA, NELFE and DSIE
causing their dissociation and elongation to ensue [29]
(figure 1). The P-TEFb complex is also responsible for phos-
phorylating the serine 2 (52) on the C-terminal domain
(CTD) of Pol II and recruiting additional elongation factors,
such as the super elongation complex (SEC) [37]. In the absence
of pause-release, paused Pol II can result in early termination of
a transcript in a context-dependent manner [38]. It is crucial to
mention that activating a paused gene does not decrease paus-
ing, but rather controls the rate of release by inducing signals
[39]. Given the complex set of interactions between several
protein complexes, it is important to note that genetic ablation
of single factors or inhibiting their functions does not always
provide a straightforward understanding of their impact on
the establishment and / or release of paused Pol II. For example,
CDKO9 is involved in releasing the paused Pol IT and promoting
elongation, and it is challenging to uncouple the impact on
these two processes when inhibiting CDKO [37].

2.2. How prevalent is pausing?

Pol Il pausing was initially discovered on heat shock responsive
genes in Schneider line 2 (S2) cells derived from D. melanogaster
embryos [40]. Paused Pol II was similarly shown to accumulate
at the human HSP70 family of genes as a means to regulate their
expression [41,42]. Thus, heat shock genes in human and Droso-
phila were used to characterize the determinants of, and factors
involved in, Pol II pausing [43,44]. Recent advances in genome-
wide chromatin capture and nascent RNA sequencing tech-
niques have revealed that Pol II pausing occurs more broadly
across the genome. Chromatin immunoprecipitation followed
by next generation sequencing (ChIP-seq) and global, or pre-
cision nuclear run-on sequencing (GRO/PRO-seq) have
facilitated pinpointing the location of transcriptionally engaged
Pol II genome-wide at single base resolution [29,45]. These
approaches have revealed that Pol II pausing, determined as
an accumulation of Pol II signal briefly following the TSS, is
widespread on metazoan genes [46,47], ranging from 30% to
70% of the expressed genome among different studies
[14,15,48]. This variance in the reported prevalence of pausing
can, at least in part, be attributed to the fact that there is no
consensus on how to quantitatively define Pol II pausing.
While most studies deduce a ‘pausing index'—the ratio of
paused to elongating Pol Il—the exact genomic range for a poly-
merase to be considered paused or elongating differs between
studies (figure 1). Still, together these data demonstrate that a
significant portion of assembled Pol II can be captured in a
paused state.

To interrogate the dynamics of Pol II pausing, acute
perturbation of transcription initiation or elongation have
been carried out using chemical inhibitors such as triptolide
and flavopiridol, respectively [49-51]. These small molecules
inhibit transcription kinases, CDK7 (triptolide) and CDK9
(flavopiridol) [37]. In Drosophila Kc167 cells, inhibition of
transcriptional elongation using flavopiridol results in all
active genes accumulating paused polymerases, while inhi-
biting initiation revealed a clear difference in the stability of
paused complexes at individual gene loci (ranging from
minutes to hours) [27,51]. These experiments suggest that
pausing, representing at least a transient step, is present at
most active genes. Thus, transcription at most loci would
start with PIC assembly, followed by a paused complex 20-60
nucleotides downstream, then proceed to elongation [52].

Overall, these studies suggest that Pol II pausing is a universal
step during transcription, yet the rate of pause-release
determines if it is a bottleneck step at a given gene. Therefore,
Pol II pausing may serve as a rate-limiting step of transcrip-
tion that can serve as a significant point of transcriptional
regulation [52].

2.3. Effects of pausing on transcription

While Pol II pausing has been implicated as a key rate-limit-
ing step in transcription, only recently has clear molecular
and causal evidence for such a role been demonstrated, high-
lighted by two key findings. First, by using a combination of
improved ChIP- and nascent RNA-seq approaches to locate
RNA Pol II on the genome and determine nascent transcrip-
tional output, Gressel et al. and Shao ef al. showed that Pol II
pausing inhibits new PIC assembly [49,51]. Cryo-EM struc-
tures of the paused Pol II complex strongly suggest that
this inhibition is mediated directly via steric hindrance [33].
Second, subsequent work has shown that the paused com-
plex is significantly more stable than other transcriptional
steps [50]. Specifically, the PIC is stable for a time scale of
seconds and productive elongation occurs at a rate of
approximately 1 kb min~', while paused Pol II can be stable
for 1-10 min on average, and as long as one hour at some
promoters [51].

Of note, the stability, dynamics and turnover of paused
Pol II at protein-coding genes has been studied by several
groups, albeit with some discrepancy regarding the exact
time estimates [38,50,51,53-55]. These studies used genome-
wide chromatin capture techniques, genome-wide footprint-
ing assays and live imaging at select loci, with or without
small molecule perturbation of initiation using triptolide.
Overall, studies that inhibit initiation, derive longer mean
estimates of turnover rates (approx. 5-10 min) than studies
that do not perturb initiation or use hypertonic shock to pre-
vent Pol II recruitment (1-2 min). These differences could be
attributed to the mechanism of actions and dynamics of trip-
tolide function [55]. Still, the overall estimates of Pol II
stability at the paused position are consistently longer than
the initiation position.

It remains unclear how Pol II pausing can directly influ-
ence overall transcriptional output from a particular locus.
Several loss-of-function experiments of pausing components,
such as the NELF complex, revealed that this can result in
either up- or downregulated expression of highly paused
genes in a variety of model systems [15,56,57]. The direction
of change is likely to be dependent on the surrounding chro-
matin structure, since the presence of a paused complex has
been suggested to maintain an accessible chromatin architec-
ture at some promoters, ultimately resulting in higher overall
transcription than would be possible without paused Pol II
and an inaccessible chromatin [12,56] (figure 2a). However,
since complete depletion of Pol II pausing components
can take days to achieve (as in these studies), it is challenging
to delineate gene loci directly affected by Pol II pausing from
ones affected by secondary or compounding effects of these
perturbations and the time scale of analyses. Still, these con-
clusions provide new and enticing avenues for investigating
the endpoint consequences of perturbing pausing on the tran-
scriptional activity of genes, and the overall transcriptional
state of cells, even though they are limited by the tools
employed, and thus lack direct experimental evidence.
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Figure 2. Paused Pol Il interacts with its environment. (a) Loss of NELF
results in a destabilized paused complex and consequently can lead to the
establishment of a repressive chromatin landscape downstream. (b) Pol Il
pausing can interact with the PIC upstream and the chromatin landscape
downstream through various histone modifiers to maintain or repress gene
expression.

2.4. Recent molecular insights into Pol I pausing

When considering a hypothetical gene, the Pol II pausing
machinery lies near the PIC just upstream, with regulatory
chromatin structure on the gene body downstream. Thus, it
is fair to assume that these complexes might interact with
each other. Upstream, with respect to the PIC, recent work
suggests that the general transcription factor IID (TFIID)
plays an active role in maintaining Pol II pausing via a
direct or indirect interaction with the paused polymerase
complex given their physical proximity (figure 2b). This inter-
action is abrogated when additional bases are added between
the PIC site and pausing site [58,59]. This study used a novel,
factor-defined transcription system to test this model in vitro,
and a degron-based approach to test the hypothesis in cells.
However, validation in cells is complicated by changes in
transcriptional dynamics upon TFIID degradation that may
be intrinsic to PIC assembly and pause-release rather than
pausing. Therefore, the extent to which Pol II pausing
might regulate new PIC assembly remains unclear, and con-
versely, feedback from the PIC itself onto the pausing
machinery is yet to be evaluated. Nevertheless, these data
strongly argue that while Pol II pausing may inhibit new
Pol II initiation, it does not completely inhibit binding of
other general PIC transcription factors which can keep a
promoter ‘marked’ for activation.

It is also plausible that the pausing complex mediates
chromatin accessibility and shapes the histone modification
landscape around the TSS. The histone H3 lysine 4 tri-
methylation (H3K4me3) and lysine 9 acetylation (H3K9ac)
modifications mark active promoters [60]. H3K4me3 is estab-
lished by the methyltransferase activity of SET domain
proteins, which are recruited by serine 5 phosphorylation of
the CTD on paused Pol II [61]. The stability of the paused

Pol I can in turn reinforce H3K4 trimethylation [62]. [ 4 |

Subsequently, H3K4me3 marks facilitate H3K9 acetylation
by recruiting histone acetyltransferases [60]. Thus, paused
Pol II can facilitate the addition of H3K4me3 and H3K9ac
modifications in the promoter region, which in turn enhance
elongation via recruitment of the SEC [60]. On the other hand,
histone deacetylases, such as SIRT6, can remove the H3K9ac
mark, stabilize the paused Pol II complex and ultimately
decrease the expression levels of target genes by controlling
the assembly of P-TEFb and SEC [63] (figure 2b). A recent
study suggests that other unidentified histone deacetylases
may have a similar impact to SIRT6 on Pol II pausing [64].
These studies highlight the complex regulatory interactions
of the pausing complex with other chromatin-associated
factors, and bolster the theory that Pol II pausing can serve as
a major determinant of overall gene transcription in a
context-dependent manner.

3. RNA Pol Il pausing in development

Faithful development of organisms requires coordinated and
precise regulation of gene expression. Rapid responses
to stimuli—both, extrinsic and intrinsic—dictate specific
spatio-temporal gene expression patterns [65]. The resulting
transcriptional states drive the diversification of cell types,
and produce highly specialized and organized populations
as the basis of organs and organ systems [66,67]. The essential
roles of signalling cascades and transcription factors during
development have been extensively characterized. Given the
frequency of Pol II pausing and its effects on transcription,
it probably also contributes to gene regulation in various
developmental contexts. Indeed, Pol II pausing is required
for development in Drosophila, zebrafish and mouse [16-18].
In this section, we discuss the current evidence of a role for
Pol II pausing in development, particularly in mammals.

3.1. Pol Il pausing in Drosophila melanogaster
development

Drosophila has been the most extensively studied model for
characterizing Pol II pausing [40]. NELF is maternally provided
and its deletion results in failure of transcriptional activation in
embryos and lethality shortly before the MBT and gastrulation
[16]. Subsequent studies identified widespread Pol II pausing
on most promoters during MBT, which coincides with the
onset of zygotic transcription and establishment of the body
plan [68,69]. ChIP-sequencing data revealed that Pol II is
recruited to promoters of developmental genes ‘poised’ for
activation. Additionally, these developmentally paused pro-
moters share certain sequence features, such as the motif
10 element and pause button, suggesting an evolutionary use
of promoter designs for developmental genes in a manner
similar to other cis-regulatory elements that identify specific
sequences. On the other hand, adult tissue-specific genes dis-
play Pol II pausing to a lesser extent, and tend to be driven
by TATA box-containing promoters. The precise purpose of
having these developmental genes paused prior to productive
elongation has only been speculated. Since Pol II pausing
is enriched at developmental and rapid response genes, it
might aid in speed of activation, synchronized and co-
regulated expression and the insulation of promoters from
chromatin compaction [13,29,70].
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3.2. Pol Il pausing in mammalian development

In general, our understanding of Pol II pausing in mammalian
systems lags that in Drosophila. This is due to the more complex
nature of mammalian development and limited accessibility to
large amounts of embryonic material. Nevertheless, loss-of-
function studies in mouse embryos have revealed an essential
role for NELF during early development. Nelf mutant embryos
fail to progress beyond mid-gestation (approx. embryonic day
(E) 8.0-9.0) [15,18], perhaps due to a failure of pluripotent
epiblast cells to successfully differentiate in response to extra-
cellular signals [18]. To characterize the defect in greater
detail, these studies turned to the mES cell system.

mES cells can recapitulate many aspects of embryonic
development, and thus have been used as a tractable and
scalable model to study key developmental processes in
vitro [71]. Pol II pausing has been shown to be prevalent in
mES cells, with more than 40% of expressed genes showing
a pausing index greater than 4 (that is, there are 4 times as
many polymerases in the TSS +150 bases compared to the
following 2 kb of the gene body) [15]. Of note, this quantitat-
ive limit of pausing index, four, is somewhat arbitrary, and
reflects the lack of consensus for defining a specific threshold
to use for deriving a pausing index. However, these studies
still highlight the accumulation of paused Pol II complexes
at a significant proportion of transcribed genes. While Pol II
pausing in Drosophila is enriched at developmental genes,
mES cells do not show a specific enrichment of Pol II pausing
at developmental genes [15]. Human ES cells also show a
similar proportion of paused genes, but it is not clear whether
these gene classes are comparable to those in mES cells [72].

Manipulating Pol II pausing in mES cells via genetic
deletion of Nelfb, a subunit of the NELF complex, revealed
that while developmental and stem cell identity genes are unaf-
fected, the genes which are mis-regulated coordinate responses
to extracellular signals. By contrast to wild-type mES cells,
Nelfb mutant cells are resistant to spontaneous differentiation.
On a molecular level, transcriptional targets of FGF and
WNT signalling pathways are affected, resulting in impaired
downstream responses to these signalling cues [15,18,25].
These two pathways play crucial roles in balancing self-
renewal versus differentiation in mES cells [73-75]. Therefore,
these findings provide valuable insight into a functional role
for Pol II pausing during mammalian development. Still, the
molecular details of this role remain unclear—how does Pol
II pausing regulate gene transcription in the context of cellular
signalling, and the maintenance/disruption of self-renewal?
Does the differentiation phenotype observed in mutant cells
affect certain cell types and not others in vitro? Can the defects
observed in mES cells shed light on the cause of lethality in
embryos? As mentioned previously, interpretation of the
results from studies in mES cells need to be de-coupled from
potentially confounding secondary effects, such as cell cycle
defects, which have been reported in these studies.

Other studies have also examined Pol II pausing in the
context of regeneration via tissue specific NELF knockout in
mice [76,77]. Mechanisms surrounding tissue regeneration
often parallel developmental programmes, and therefore
serve as surrogate models to study the Pol II pausing in reg-
ulating development. These studies specifically examined the
endometrium and skeletal muscle. Both tissues share the
requirement to frequently regenerate in the adult [76,77]. In
both cases, loss of NELF did not have a significant impact

on tissue homeostasis under steady-state conditions, but “

severely affected transformation/regeneration following
injury. In the skeletal muscle, for example, NELF is required
specifically for expansion of the muscle stem cell pool by
enabling key responses to p53 and pigment-epithelium derived
factor (PEDF) signalling [77]. These studies are in line with a
proposed function for Pol II pausing in mediating response
to signalling, and highlight a requirement for Pol II pausing
during periods of cell identity specification and fate transitions.

3.3. Signalling and Pol Il pausing: mediating a
transcriptional response to stimuli

From the initial identification of the evolutionarily conserved
Pol II pausing at heat-shock responsive genes from Drosophila
to humans, genome-wide studies have highlighted that
immediate-early release genes that respond to signalling
pathways tend to be enriched for paused Pol II complexes
[70,78-80]. This observation holds true for a variety of mam-
malian cell types, including human breast cancer cells (MCF-7),
mouse primary macrophages and ES cells [15,18,79-84].
Recently, this was also observed in zebrafish, where Pol II paus-
ing was shown to regulate hematopoiesis by controlling
transcriptional targets of transforming growth factor beta
(TGFb) signalling [17]. This conservation of enrichment at sig-
nalling-associated genes highlights a potential role for Pol II
pausing in mediating and/or titrating the response to signal-
ling pathways that ultimately guide cell fate decisions during
development.

The role of Pol II pausing in mediating specific responses
to cellular signalling was demonstrated prior to its proposed
function in the context of development. In addition to the
previously discussed signalling pathways, retinoic acid and
oestrogen signalling can also modulate transcription specifi-
cally via control of Pol II pausing in mammalian cells,
while disruption of this control is implicated in disease
states such as cancer [81-85]. Oestrogen receptor alpha
(ERe) directly interacts with NELFB and p-TEFB, and
might mediate their recruitment to Pol II depending on
signalling state (i.e. active or inactive) [81,82]. In mice, wide-
spread NELF recruitment and release controls the
inflammatory response in macrophages [83,84]. In several
human cancer cell lines, stimulation of oestrogen signalling
promotes ERa-mediated recruitment of NELF subunits
specifically to ERo-associated promoters to attenuate signal-
ling. By contrast, in MCF-7 cells ERa recruits P-TEFb to the
MYB gene to drive transcription beyond the regulatory
SL-dT region—a Pol II pausing site approximately 1.7 kb
downstream of the TSS [82]. This dual function of pausing
and pause-release emphasizes the crosstalk between
signalling and Pol II pausing (figure 3a).

An alternative mechanism by which signalling may regu-
late Pol II pausing and pause-release is by controlling the
activity of specific transcription factors. c-MYC, a pioneering
transcription factor implicated in development and disease
and controlled directly via the LIF/JAK/STAT signalling
pathway, can regulate downstream gene expression primarily
through pause-release and promoting active elongation in
mES cells [27,86]. c-MYC directly recruits P-TEFb and other
elongation factors to mediate pause-release [87]. Other tran-
scription factors may associate with intermediate proteins
to recruit P-TEFb. A similar example of such a mechanism
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has been noted in zebrafish, where the erythroid-specific
TRIM33 transcription cofactor enables pause-release [36]. Of
note, other transcriptional cofactors can also stabilize the
paused Pol II and decrease overall expression, which has
been shown to be the case for TRIM28 in human and mES
cells [44]. It is yet to be determined if other transcription
factors operating downstream of FGE WNT and TGFb
signalling might regulate Pol II pausing in a similar manner.

3.4. A case for Pol Il pausing in early mammalian
development

Until recently, the genomic landscape of Pol II binding during
early mammalian development in vivo could not be examined
due to limited biological material. By leveraging a transpo-
sase-coupled antibody assay with low input (approx. 500
cells), Liu et al. were able to map Pol II occupancy in pre-
implantation mouse embryos [20]. They profiled the Pol II
landscape from oocytes until the early blastocyst stage. The
one-cell (zygote) and two-cell stages showed extensive Pol
II pausing at active and inactive promoters, prior to zygotic
genome activation (ZGA). This observation is reminiscent
of Pol II pausing observed in early Drosophila embryos
during the pre-MBT stage, which also coincides with ZGA
[19,69]. Notably, Pol II pausing at inactive developmental
genes becomes dramatically reduced between the two-cell
stage (E1.5) and the blastocyst (E3.5), but is re-established
soon after as observed in mES cells [20].

Altogether, these studies suggest that Pol II pausing may
be required at distinct times in early mammalian develop-
ment including two key stages—ZGA and EPI maturation
and differentiation. The functional role of Pol II pausing
during mammalian ZGA has not yet been assessed. By con-
trast, the requirement for Nelfb in early post-implantation
development and mES cell differentiation are consistent
with a role in the re-establishment of pervasive Pol II pausing
at active and inactive promoters after the emergence of plur-
ipotency in the blastocyst (i.e. specification of the EPI lineage
~E3.5) [15,18].

Once pluripotency is established in the embryo, it is quickly
disassembled as development proceeds. The pluripotency
‘continuum’ transitions from a ‘naive’ state in the blastocyst
toward a ‘formative’ state in the newly implanted embryo
before acquiring a ‘primed’ state as cells prepare for germ
layer differentiation during gastrulation [88,89]. During this

dynamic process, the cells of the pluripotent EPI lineage
undergo a re-wiring of the transcriptional and enhancer circui-
try to reflect this departure from the naive state [90-93].
Cellular signalling plays a major role in coordinating this tran-
sition as FGE BMP, WNT and Nodal signalling pathways
orchestrate pluripotency progression and gastrulation in the
embryo [94,95]. FGF/ERK signalling is required in the mouse
blastocyst for EPI maturation and exit from naive pluripotency
[96-99]. This is generally achieved by attenuation of naive
factor expression, such as Nanog and KIf2 in the embryo as
well as in mES cells, and genomic priming of formative mar-
kers, such as Pou3fl, Lefl and Fgf5, for efficient progression
away from the naive state [90,100-103]. Similarly, careful regu-
lation of the WNT and Nodal signalling pathways is also
required to prepare the EPI for lineage priming and specifica-
tion. While activation of WNT signalling promotes naive
pluripotency in vitro by alleviating TCF3 (Tcf/11) repression
of naive pluripotent markers, its inhibition is required to main-
tain the primed state of pluripotency [75,104-109]. Activation
of WNT signalling in this established primed pluripotent
state induces further differentiation toward the mesoderm
and endoderm lineages in the presence of Nodal signalling
activity [110,111]. Timely regulation of Nodal signalling as
pluripotency progresses is also required for efficient differen-
tiation of mES cells into neural or ectodermal lineage versus
mesendodermal lineages [89].

Considering that the establishment of pluripotency in the
mouse embryo through to the initiation of gastrulation encom-
passes just three days of development, the reorganization of
transcriptional networks and careful coordination of multiple
signalling inputs in space and time must require a fine-tuned
system of gene activation and repression. Since Pol II pausing
has been reported in other mammalian and invertebrate sys-
tems as mediating rapid and coordinated transcriptional
responses to signalling inputs, it may also function in a similar
capacity during pluripotency progression and gastrulation.
Loss of Pol II pausing in Nelfb mutant embryos results in
embryonic lethality around the time of gastrulation and
mutant mES cells display an attenuated response to differen-
tiation cues, thus supporting such a proposed role for Pol II
pausing during development [15,18,20]. Moreover, recent evi-
dence that FGF/ERK signalling can mediate promoter and
enhancer priming of loci associated with pluripotency tran-
sition in the naive state, and regulate Pol II binding at
genomic loci further supports a probable function for pausing
at these embryonic stages [92,103].
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4. Potential roles for Pol Il pausing in
mammalian development

4.1. Rate of induction and/or repression of active
elongation

There is evidence that Pol II pausing facilitates rapid induc-
tion of gene transcription, leading to the hypothesis that
such genes might be primarily regulated at the level of
pause-release with an inducing factor—a transcription
factor or signalling effector—responsible for recruiting factors
to release paused Pol II [28,29]. This mechanism of gene
regulation seems plausible given that many transcriptio-
nal responses occur within minutes of signal induction
[112,113]. Some of these genes, such as the heat shock res-
ponsive genes and some FGF/ERK targets, have already
been shown to retain paused Pol II complexes in the absence
of the inducing signal, and appear to be inefficiently
expressed when pausing is destabilized [15,114]. However,
the fact that NELF depletion in human DLD-1 cells does
not affect the rate of induction of heat shock genes argues
against this mode of action [115,116]. Furthermore, recent
data show that Pol II recruitment occurs de novo at many
rapidly induced FGF/ERK targets in mES cells upon
signal induction [103]. These findings are yet to be expan-
ded to other systems and inducing signals for further
validation. However, the regulation of rapid gene expres-
sion is likely to be dependent on the cohorts of genes being
considered, the cell state in question, the specific induc-
tion signal, as well as the types of promoter motifs present
and epigenetic landscape surrounding the gene loci
being activated.

ERK activity in the mouse blastocyst is also known to be
dynamic with subtle but specific differences between cell
lineages driving the specification and later priming of the
pluripotent EPI and mES cells [117,118]. Therefore, the
question remains as to how such small differences elicit diver-
gent responses in transcription and ultimately cell fate, and
how transcription might keep up with the dynamic input
of extracellular signalling. One might speculate that Pol II
pausing can ‘poise’ genes downstream of ERK and other
signalling pathways during pluripotency transitions. This
priming could be established by known unphosphoryla-
ted ERK or other undefined intermediate factors. Such
priming would allow at least a subset of ERK targets to be
induced immediately coincident with a wave of ERK phos-
phorylation by favouring pause-release. Additionally, and
perhaps more importantly, absence of pERK would result
in re-enforcement of the paused Pol II, resulting in an
immediate inhibition of active elongation. The well-studied
heat shock response has been shown to display similar
dynamics [115]. This level of control would enable cells to
respond rapidly to dynamic signalling activity in both
directions (on and off) and allow for fine-tuning of transcript
dosage and transcriptional activity (figure 4). Eventually,
the cumulative ERK dynamics, particularly the strength
and duration of signal, will drive phased and specific
transcriptional states that drive certain stages of pluripo-
tency transitions. Molecularly, it is possible that pERK may
drive immediate targets via repression of pausing factors
such as NELE or modulating the turnover rate of paused
polymerases via release or termination.
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Figure 4. Proposed model showing how dynamic signalling activity can feed
into paused Pol Il to encode distinct cell fates. In models where a progenitor
is specified to either cell fate A or cell fate B by different levels and/or
dynamics of signalling activity, pausing can ‘prime’ the cell fate A gene net-
work. A short temporal pulse of signalling can thus lead to pause-release and
activation of gene network A and cell fate A specification. Mutual inhibition
of opposing cell fate gene networks allows gene network A to repress cell
fate B. Sustained signalling activity is required for sufficient induction of
gene network B and establishment of cell fate B.

4.2. Synchronous and tightly controlled induction
of genes

In mammalian cells, synchronous induction of genes may be of
particular importance for developmental signalling pathways
that have several negative feedback loops, such as FGF/ERK
and Nodal/Smad2 signalling, which can be induced rapidly
to maintain specific levels of pathway activity and induce
tissue morphogenesis [93,119,120]. In such pathways, negative
feedback loops are established following the initial wave of sig-
nalling and induction of immediate targets. Disruption of the
transcriptional dynamics of negative feedback-associated
gene expression with respect to other target genes can amplify
or attenuate signalling responses [121,122].

Synchronous gene induction not only requires paused
transcription, but also strict regulation of Pol II pausing to
prevent aberrant expression. Thus, Pol II pausing serves as
a second ‘checkpoint’, along with Pol II recruitment, in a
two-step control system to ensure robust induction without
low or basal transcriptional activity (figure 5). The first step
gives a signalling effector or transcription factor control
over Pol II recruitment and PIC formation, while a second
additional factor controls pause-release [13,70]. One example
to support such a model comes from evidence, as previously
discussed, that c-MYC primarily functions in controlling
pause-release to activate genes in mES cells, while other plur-
ipotency-associated factors have been shown to initiate
transcription [27]. In mouse development, while FGF/ERK
is required for specification of EPI and PrE lineages, other
pathways, such as NODAL and NOTCH are active and
have been shown to reinforce pluripotency in vitro and facili-
tate EPI maturation in vivo [89,123,124]. Certainly, it remains
to be determined at which of the sequential steps of transcrip-
tion these signalling pathways exercise control. It is plausible
that these pathways could work with FGF/ERK to control



(@) Ipaused, direct targets | ®) I non-paused, direct targets
< <
Z Z
~ ~
- -
=] =
Q [
. 9 3]
no signal & ]
=] 5]

> e

TSS position from TSS TSS position from TSS
< <
Z Z
~ ~
= =
= =
Q [
¢ o 3]
signal & 2
] e

I T =

TSS position from TSS TSS position from TSS

Figure 5. A model for synchronous induction of gene expression downstream of a signal mediated by Pol Il pausing. Paused Pol Il complexes at direct signalling
target genes synchronously progress to productive elongation upon the inducing signal. Target genes lacking paused Pol Il may have varying dynamics of tran-
scriptional activation due to differences in chromatin accessibility and requirement of PIC assembly resulting in asynchronous induction. Different colours of nascent

RNA tracks represent different target genes.

recruitment of RNA Pol II and pause-release separately,
particularly as the EPI matures and progresses from a naive
pluripotent state toward the formative and primed states in
preparation for gastrulation [74,125].

4.3. Marking active genes and enabling enhancer
plasticity

Pol II pausing may also play a passive role in development
simply as a function of its physical presence and kinetic
stability relative to other components of the transcriptional
machinery. In the mouse blastocyst, as EPI and PrE cells
are specified and subsequently mature, their overall chroma-
tin structures transition to a more compact, inactive state
[126,127]. It would be necessary during these changes to
keep promoters of active genes accessible for transcription.
As discussed previously, depleting NELF to disrupt pausing
can result in repressed transcription due to increased nucleo-
some occupancy in the vicinity of promoters [56]. Thus,
paused Pol II possibly serves as a physical marker to keep
active promoters vacant and protected from nucleosome
occupancy (figure 3b).

Recently, widespread Pol II pausing was also detected at
actively transcribed enhancers in Drosophila S2 and mES cells
[47]. It is yet to be determined whether the protein complexes
responsible for Pol II pausing at enhancers are the same as
those near gene promoters, and whether Pol II pausing
at enhancers and associated gene targets are coordinated.
However, given that the residence time of transcription fac-
tors on enhancer DNA is estimated to be on a time scale of
milliseconds to seconds [128-130], having polymerases
paused for longer time scales (order of minutes) could
drastically increase the stability of enhancer function by
ensuring enhancer transcriptional activity irrespective of the
rapid binding-dissociation dynamics of transcription factors.
Furthermore, Pol II pausing may have a key role at minimally
expressed enhancers or genes by serving as a molecular ‘tab’
between sparse TF binding events to extend the plasticity of
these loci and ultimately direct cell fate. These proposed
roles for Pol II pausing are in accordance with recent
data showing that naive pluripotency factors can remain

bound to enhancers hours after the cells are induced to exit
pluripotency, and after the associated target genes are
downregulated [103] (figure 6).

While Pol II pausing may keep promoters and enhancers
protected from nucleosomes and accumulation of repressive
histone marks, the molecular mechanisms for how this is
accomplished have yet to be characterized. It is possible that
the pausing complex prevents promoters from being closed
between ‘transcriptional bursts’” when Pol II complexes are
not actively transcribing. These bursts are a well-documented
phenomenon of mammalian transcription, occurring minutes
to hours apart—a time scale that allows for some chromatin
modifications and rearrangements [4,131,132]. This means
that while transcriptional bursts involve rapid pause-release,
maintaining some paused Pol II would be essential to keep a
promoter open and active between bursts, particularly at pro-
moters with low bursting frequency [133,134]. This model is
supported by the finding that developmental enhancer loops
are mostly stable across tissues and developmental stages in
Drosophila, and remain associated with paused polymerases
at target gene promoters [135]. Alternatively, the pausing com-
plex may recruit additional factors to maintain chromatin
accessibility and transcriptional activity by promoting the
formation or maintenance of transcriptional condensates near
promoters [1,136,137].

Addressing these possible roles for Pol II pausing in the
context of mammalian development would improve our
understanding of transcriptional regulation and successful
establishment of resulting cellular states. Moreover, it may help
explain how cells translate extrinsic or intrinsic stimuli for
rapid and coordinated transcriptional responses driving key
differentiation and morphogenetic processes that constitute
developmental progression.

5. Technical limitations and new avenues

It is important to discuss the experimental approaches that
have been used to make the conclusions discussed so far.
Studying global transcription dynamics has been facilitated
by advances in nascent RNA sequencing techniques allowing
detailed identification of sites of Pol II pausing and kinetics
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of expression.

[12,13]. By contrast, directly manipulating Pol II pausing has
been achieved primarily using classical genetic approaches,
such as knockout of the NELF complex subunits. Small
molecule inhibitors can also be used to target transcription
initiation and elongation [12,13,29]. Although these inhibitors
have been valuable in studying the dynamics and kinetics of
pausing, drawing conclusions about the specific function of
pausing from these manipulations can be problematic due
to non-specific effects on factors aside from those within the
pausing complex [37,138]. Meanwhile, genetic approaches
to specifically target Pol II pausing factors can also be
limiting because of their inherent time scale of action. For
example, effective knockout or knockdown using CRISPR-
Cas9 or RNAi requires a time scale of hours to days to achieve
between inducing the change and assaying the loss-of-
function phenotype [15,18,56,57]. While this is not necessarily
an impediment, for contexts where cell survival or prolifer-
ation are affected, it can result in confounding secondary
effects that mask the immediate function of paused Pol II in
regulating gene expression. Indeed, upon NELF depletion
via conditional knockout or RNAI, several mammalian cell
lines including mES cells, mouse embryonic fibroblasts and
the human DLD-1 cancer cells cease to proliferate within a
few days, making it challenging to interpret the functional
phenotypes reported in these studies [15,18,139,140].

More importantly, transcription is a process that proceeds
on a time scale of seconds to minutes [50,51]. To test the func-
tion of Pol II pausing and couple molecular mechanisms with
specific phenotypes, one must be able to assess the impact of
destabilizing Pol II pausing acutely, within a similar
time scale of transcription itself. It is challenging to rapidly
modulate protein levels with tools that manipulate expression
at the level of DNA or RNA. Fortunately, these limitations
can be circumvented using novel tools for rapid protein
degradation [141-144]. These approaches involve tagging
endogenous proteins with short peptides which, in the
presence of a small molecule, induce ubiquitination and pro-
teasomal degradation. These techniques can achieve acute

depletion of target proteins, usually within minutes to
hours, and have already been used to refine the molecular
functions of NELF and Spt5 in human DLD-1 cells
[116,145,146]. Combining such tools with the high resolution
of nascent RNA-seq techniques to study the functional rel-
evance of pausing in contexts such as response to
developmental signals could reveal hitherto uncharacterized
roles of Pol II pausing on transcription and cellular states.

RNA Pol II pausing has emerged as a widespread
phenomenon in metazoans, and a potential node for gene
regulation in mammalian systems. There is a growing list of
molecular interactions and functions of the pausing complex,
yet it has been challenging to attribute cellular phenotypes to
molecular perturbations of Pol II pausing. In particular, Pol II
pausing is critical to organismal development from Drosophila
to mice, with increasing evidence that it provides a crucial
link between cellular signalling inputs and transcriptional
outputs during a variety of cellular state transition events.
With recent high-resolution analyses of Pol II pausing in
early mammalian development and tools for rapid pertur-
bations, the door is open to dissect the specific functions of
Pol II pausing in mammalian development.
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