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Abstract: Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial
enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity.
Previous models about multi-metallic catalysts, such as cross-linked polymer-supported catalysts,
failed to precisely control the number and location of their active sites, leading to low activity and
selectivity. In recent years, metallopolymers with metals in the sidechain, also named as sidechain
metallopolymers (SMPs), have attracted much attention because of their combination of the catalytic,
magnetic, and electronic properties of metals with desirable mechanical and processing properties of
polymeric backbones. Living and controlled polymerization techniques provide access to SMPs with
precisely controlled structures, for example, controlled degree of polymerization (DP) and molecular
weight dispersity (Ð), which may have excellent performance as multi-metallic catalysts in a variety
of catalytic reactions. This review will cover the recent advances about SMPs, especially on their
synthesis and application in catalysis. These tailor-made SMPs with metallic catalytic centers can
precisely control the number and location of their active sites, exhibiting high catalytic efficiency.

Keywords: multi-metallic catalyst; sidechain; metallopolymer; living and controlled polymerization;
precise control of polymer structure

1. Introduction

Metalloenzymes with metal ions as cofactors account for approximately one-third
of the known enzymes [1]. The properties of catalytic metals in proteins are modulated
by the primary and secondary coordination sphere, which are related to ligands and
active site environment, respectively [2]. Owning to the delicate and diverse structures,
metalloenzymes can catalyze numerous reactions with physiological importance, such as
O2 reduction and N2 fixation, with high reactivity and selectivity [3].

Many researchers have focused on using natural enzymes for industrial applications
in consideration of their amazing properties in nature. However, the application of native
enzymes out of physiological environments faces a great challenge because of their low
operational stability, extreme sensitivity of catalytic activity to environmental conditions,
incompatibility with organic solvents, difficulties in recovery and recycling, and high costs
in preparation and purification [4–6]. Thus, artificial enzymes have been developed for
mimicking the catalytic functions of natural enzymes and, at the same time, overcoming
the limitations of natural ones [7,8]. Although many attempts have been made to reproduce
the structures and functions of enzymes, many more studies are still needed to develop
synthetic materials equivalent to natural enzymes in terms of structure, catalytic efficiency,
specificity, selectivity, etc. [9].

One of the most popular topics for artificial enzymes is the construction of multi-metallic
catalysts, inspired by cooperative multi-metallic activation in enzyme catalysis [10–14]. In
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many enzymes, two or more metal centers in the active site are able to activate both nu-
cleophilic and electrophilic reactants, leading to improved kinetics and higher selectivity.
Researchers have proven that dual/multiple activation catalysts can accomplish higher
efficiencies than conventional monofunctional catalysts in terms of reactivity, substrate
selectivity and, potentially, cost-efficiency [15–19]. For bimetallic or trimetallic catalysts,
well-designed ligands with low molecular weight could fully fulfill the cooperative interac-
tion between metals [20–22]. However, for multi-metallic catalysts with more metal centers,
synthetic polymers as macromolecular ligands are more appropriate because of their high
loading capacity of metals.

Early research about metallic polymeric catalysts focused on metal ions or metal
complexes supported on cross-linked polymers, such as cross-linked polystyrene [23,24],
which are mostly heterogenous. The polymeric catalysts showed excellent recoverability,
higher solvent compatibility, thermal stability, and lower oxygen and moisture sensitivity
compared to homogeneous catalysts [25]. However, it is difficult for these supported
catalysts to precisely control the number and location of their active sites, which made it
difficult to construct multi-metallic catalysts with higher activity and selectivity [26].

Metallopolymers with metals in the sidechains, also named as sidechain metallopoly-
mers (SMPs), have become quite popular during the past few years [27]. The appeal of
these hybrid compounds is attributed to their ability to combine the catalytic, magnetic,
and electronic properties of metals with desirable mechanical and processing properties
of polymeric frameworks [27]. The development of living and controlled polymerization
techniques provides access to linear polymers with precisely controlled structures, which
make it possible for ordered spatial arrangement of metal centers. In many studies, linear
polymers were crosslinked or folded into metal-containing nanoparticles, which offers
many opportunities for the development of artificial enzyme-mimic catalysts, showing both
high catalytic activity and specificity [28,29]. Actually, a polymer chain can be more than a
component of a larger assembly. By carefully engineering at the molecular level, a single
polymer chain can behave as an individual functional object with its own characteristics
and function [30].

This review will cover the recent advances in SMPs as multi-metallic catalysts. We
intend to illustrate several flexible and efficient synthetic methods to construct tailor-made
metallopolymers. The applications of these metallopolymers as catalysts are reviewed in
relation to synthesis for organic compounds and polymers (Scheme 1).
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2. Synthetic Methods of Linear Polymers with Precisely Controlled Structures

Living polymerization is an ideal chain growth process without chain termination and
irreversible chain transfer, which represents an excellent strategy to precisely control the
molecular weight and the molecular weight distribution of linear polymers [31–33].

Atom transfer radical polymerization (ATRP) and reversible addition-fragmentation
chain transfer (RAFT) polymerization, as controlled radical polymerizations, are widely
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used to prepare well-defined linear polymers with precisely controlled structures. ATRP
is a versatile technique based on the use of a catalytic system consisting of a metal center
complexed by a ligand. This catalytic system is able to abstract a halogen from an alkyl
halide initiator, creating a radical that initiates the polymerization [34]. In terms of the
types of polymerizable monomers, RAFT is currently the most versatile technique for
performing controlled radical polymerization. In contrast to ATRP, this system relies on
the rapid exchange between active and dormant chains. The chain end of a dormant chain
bears a thiocarbonyl-thio moiety, which is a chain transfer active species [35]. Nearly all
monomers applicable to ATRP could be polymerized well by RAFT with narrow molec-
ular weight distribution. Actually, depending on the activating substituents, the whole
gamut of vinyl monomers, including functional ligands [36–39] and functional (metal)
complexes [18,40,41], can be polymerized in a controlled manner by RAFT, leading to
polymers with low dispersity.

Ring-opening metathesis polymerization (ROMP) is also a particularly powerful
method for the synthesis of well-defined linear polymers with precise molecular weight
control and complex polymeric architectures [32,42]. ROMP is a chain-growth polymeriza-
tion process by which cyclic olefins are converted to polymers with an unsaturated main
chain catalyzed by transition metal-alkylidene complex, such as ruthenium (Ru) complex
(Grubbs catalysts) and molybdenum (Mo) complex (Schrock catalysts) [43]. Norbornene is
one of the most common cyclic olefins used in ROMP, which can be readily functionalized
by large and chemically active organic or inorganic moieties. Many functional polynor-
bornenes bearing metal complexes have been generated and further applied in catalysis
and biodetection [44–47]. Polynorbornenes with functional groups in sidechains could be
further connected with other functional molecules, such as metals or metal complexes, by
post-modification [17,48]. In addition, other cyclic olefins, including 1-cyclobutene [49], cy-
clohexene [50], cyclooctene [51] and 1,5-cyclooctadiene [52,53], have also been successfully
used to build functional polymers. The polymerization of norbornene derivatives can also
be performed via addition polymerization (AP), also called vinyl/addition polymerization,
which leads to a saturated structure of main chains [54]. Although AP is more thermo-
dynamically favorable than ROMP, it is more sensitive to substituents in the monomers.
Highly active late transition-metal nickel (Ni)- or palladium (Pd)-catalysts are required for
the polymerization of norbornenes with bulky substituents [55].

Living and controlled polymerizations allow for the preparation of well-defined SMPs
with a predetermined degree of polymerization (DP) and low dispersity (Ð), and further
provide the polymers with controlled architectures and functionalities, which makes it
possible for SMPs to be used as highly efficient catalysts for a series of chemical reactions.

3. Preparation of SMPs

Metals or metal complexes can be prepared as polymerizable monomers, and further
polymerized into SMPs via living and controlled polymerizations, which seems to be
the best method for constructing SMPs for the high loading capacity and efficiency of
metals. However, for catalytic molecules with complicated structures or large molecular
sizes, polymerizations may meet difficulties because of the steric hindrance effect. Post-
modification of side groups in linear polymers is a complementary method to the first
approach, which was suitable for metal-complexes meeting difficulties in the preparation
into polymerizable monomers or metal-complexes with large molecular sizes. In addition,
metals or metal complexes can also act as crosslinkers to induce the folding of linear
polymers to form nanoparticles.

3.1. Polymerization of Metal-Containing or Ligand-Containing Monomers

Well-designed metal-containing vinyl monomers can be polymerized into SMPs by
controlled radical polymerization [56,57]. Tang and coworkers successfully prepared
ruthenocene (Ru)-containing methacrylate polymers by ATRP and RAFT polymeriza-
tion [40]. By using the Ru-containing homopolymer as a macro-RAFT agent and a macroini-
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tiator, diblock copolymers were synthesized via successful chain extension, as shown in
Figure 1. The Ðs of the metallopolymers remained at low values of 1.15–1.21. The calculated
DP of the polymers could reach over 50 and showed a good consistency with the theo-
retical value. The synthesis and characterization of ruthenocene-containing methacrylate
monomer and polymers in this work paved the way to develop a variety of metal-containing
polymers with different functionalities and architectures, which have the promise for new
applications in the field of organometallic polymers.
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Figure 1. Synthesis of ruthenocene-containing homopolymers and diblock copolymers by RAFT and
ATRP. Reprinted from Ref. [40] with permission. Copyright 2013 American Chemical Society.

Similarly, metal-containing norbornene-based monomers can be polymerized into
SMPs by ROMP or AP. Sleiman and coworkers used ROMP to generate a series of iridium-
containing block copolymers with the goal of using their self-assembled micelles as lumi-
nescent markers in biodetection assays [46,47,58]. Norbornene-based ROMP monomers 1,
2 and 3 with different functions were designed and prepared (Figure 2a). Monomer 1 as the
hydrophobic block was used to induce the self-assembly and to comprise the micelle core.
Monomer 2 contained iridium (Ir)(III) complex as luminescent moiety, which was the core
functional part for the further application in biodetection assays. Monomer 3 contained
poly(ethylene glycol) (PEG) as a water-soluble block to form the corona of the micelle and
as well as a biotin molecule as a biorecognition element that was able to bind to target
groups. Block copolymer was synthesized by sequential polymerization of monomers 1–3,
respectively, using ROMP with the third generation ruthenium-based Grubbs catalyst [47].
In another work, vinyl-type polynorbornene copolymers containing sidechain iridium moi-
eties were prepared by copolymerization of norbornene monomers bearing triarylborane
and an iridium emitter catalyzed by a cationic Pd(II) catalyst (Figure 2b) [59].
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Porphyrins are widely used as photosensitizers in photodynamic therapy (PDT)
and efficient catalysts in enzymatic reactions as well as in polymer synthesis when co-
ordinated with metals [60,61]. Well-designed porphyrin-based vinyl monomers can be
polymerized into homopolymers or block copolymers by RAFT polymerization. Zhang
and coworkers prepared amphiphilic PNIPAM-b-PTPPC6MA block copolymers from
porphyrin-containing monomers using RAFT polymerization, as shown in Figure 3 [62].
The DP of the porphyrin monomer ranged from 5 to 37 in the block copolymers, which
had a narrow Ð of 1.12–1.23, indicating a good control of the polymerization. The block
copolymers could further self-assemble into a variety of morphologies ranging from mi-
celles to vesicles, which exhibited a high singlet oxygen quantum yield and had potential
application for PDT.
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Sidechain polymers prepared from ligand-containing monomers, such as porphyrin-
based monomers [18] or salen-based monomers [63], could be further coordinated with
metals and used as catalysts with excellent performance.

3.2. Post-Modification of Side Groups

Post-modification of side groups in linear polymers is also widely used in the prepa-
ration of SMPs. Metal complexes were combined with the side groups of the polymers
by reactions with high efficiency, for example, “click” reactions, including alkyne-azide
reaction and amino-yne reaction, Michael addition reaction, and carboxyl-amine reac-
tion. In Figure 4a, a norbornene derivative functionalized with a secondary amine group
was polymerized by ROMP using the 3rd generation of Grubbs catalyst, followed by hy-
droamination of ethynyl cobalticenium, yielding the cobalticenium-enamine-functionalized
norbornene polymer with the yield of 97% [64]. In another work, as shown in Figure 4b,
n-vinyl carbazole or styrene was copolymerized with para-(chloromethyl)styrene by rad-
ical polymerization, and then the chloromethylated copolymers were converted to the
corresponding azides in 90–95% yields. Alkyne-functionalized iridium further reacted with
the copolymers via “click” chemistry to yield the desired functionalized copolymers, with
complete conversion of the azide groups to the 1,4-disubstituted 1,2,3-triazoles supported
by NMR spectra [65].
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Compared with metallopolymers prepared from metal-containing or ligand-containing
monomers, post-modification of linear polymers appears to be more operable to prepare
polymers carrying more than one kind of ligand or functional molecule. Meijer and cowork-
ers developed a general post-modification strategy of poly (pentafluorophenyl acrylate)
(pPFPA) as a versatile method to rapidly access functional polymers [66], as shown in
Figure 5. The piperidine-containing polymers were further connected with a different ratio
of carboxyl acid functionalized porphyrin derivative and alkyne-functionalized coumarin
derivative, forming functional polymers with photosensitizing properties.
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3.3. Metals as Cross-Linkers

Metals or metal complexes can act as cross-linkers to induce the folding of linear
polymers under highly diluted conditions via intra-chain interactions, either non-covalent
or covalent intra-chain interactions, which leads to nanoparticles, also called single-chain
nanoparticles [28,67,68]. Recently, Cu(II)-mediated intramolecular cross-linking of poly-
mers has attracted much attentions [36,69–72]. Pomposo and coworkers prepared metallo-
folded nanoparticles based on copolymers containing methyl methacrylate (MMA) and
2-(acetoacetoxy) ethyl methacrylate (AEMA), which were prepared by RAFT polymeriza-
tion and were further folded by the intrachain interaction between β-ketoester of AEMA
and Cu(II), as shown in Figure 6 [71]. The nanoparticles were formed under mild condi-
tions, in tetrahydrofuran (THF) at room temperature by using Cu(OAc)2 as reagent at high
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dilution conditions (polymer concentration 1 mg/mL). This work also paved the way for
the easy and efficient construction of other metallo-folded polymers (based on Pd, Ni, Co,
Fe, Mn, or Mo) approaching the substrate specificity of natural enzymes for a variety of
organic reactions. Other copper-crosslinking polymers with different types of polymers
such as aspartate-containing polyolefins [72] and poly(imidazole)s [36] were also prepared,
which could be used as catalysts for “click” chemistry.
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4. Applications of SMPs in Catalysis

SMPs with precisely controlled structures offer many possibilities for the development
of multi-metallic catalytic systems from the following aspects: (i) precise control of the
number and location of catalytic sites; (ii) improved stability and processability of metals
on the polymer chains; (iii) high catalyst concentration in confined space; (iv) cooperative
effect of multi-site catalytic groups. Two types of reactions are reviewed here: synthesis of
organic compounds and polymers, as shown in Table 1.

Table 1. Reaction types catalyzed by different SMPs.

No. Reaction Reaction Type Catalytic System Preparation Method Refs.

1 oxidation of sulfide
synthesis of organic

compounds

poly(POM)s PMM 1 [45,73–75]
2 hydroformylation of alkene Rh-SMPs post-modification [76]
3 CuAAC Cu-Nanoparticles metals as crosslinkers [36,69,72]
4 reduction of nitrophenol Ag-SMPs post-modification [77]
5 HKR of epichlorohydrin Co-SMPs PLM 2 [63]

6 olefin polymerization
synthesis of polymers

Ti/Zr-SMPs post-modification [17,78,79]

7 CO2/epoxide
copolymerization Al-SMPs PLM [18,80,81]

8 ATRP Co-SMPs PMM [82]

1 PMM: Polymerization from metal-containing monomer. 2 PLM: Polymerization from ligand-containing
monomer.

4.1. Synthesis of Organic Compounds
4.1.1. Oxidation of Sulfide

Polyoxometalates (POMs), as a class of anionic clusters of early-transition metals
in their highest oxidation states, have been extensively investigated as photocatalysts
or electrocatalysts, mainly involved in acid and oxidation catalysis [83,84]. Wang and
coworkers integrated POMs into polymer matrices to create novel POM-containing poly-
mers possessing the unique properties of POM clusters and the favorable processability
of polymers [45,73–75]. Poly(POM)s were synthesized from POM-containing norbornene
monomers by ROMP in the presence of a Grubbs catalyst under mild conditions with yields
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of nearly 100% in a living and controllable manner, as shown in Figure 7a [45]. The Ðs of
the poly(POM)s were between 1.07 and 1.15, indicating well-controlled polymerization
characteristics (Table 2). This work further indicated that the special chemical activity and
steric hindrance of the POM cluster do not impede polymerization of the POM-containing
monomer or lead to undesirable side reactions. Unlike pure POM clusters, poly(POM)s
can be processed from solutions to form thin films, which was contributed to the organic
polynorbornene backbone. The poly(POM)s were further used to catalyze the oxidation
of the sulfide, tetrahydrothiophene (THT), which exhibited better catalytic reactivity than
POM monomers, as shown in Figure 7b. Over 95% THT was converted to THTO in 90 min
and no sulfone was observed. The catalytic reactivity decreased when the DP was increased
above 10, probably due to the polymer chain coils in the dilute solution.
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Table 2. Molar ratios, molecular weights, and Ðs of the monomer and hybrid polymers. Reprinted
from Ref. [45] with permission. Copyright 2014 American Chemical Society.

Catalysts [M]/[G3] Mn, Theo (kDa) Mw, SEC (kDa) Ð

Mono-POM 5.8 5.5 1.16
L-Poly(POM)10 10/1 58.3 59.4 1.09
L-Poly(POM)20 20/1 116.7 116.7 1.07
L-Poly(POM)50 50/1 291.6 270.9 1.15
L-Poly(POM)100 100/1 583.3 774.9 1.15

4.1.2. Hydroformylation of Alkene

The hydroformylation reaction, starting from alkenes, dihydrogen and carbon monox-
ide to yield n-aldehydes, as well as the corresponding regioisomers, is one of the most
important industrial processes, with a global production of several million tons [85,86].
Rh-based catalysts are the preferred catalytic systems for their high performance at low
temperatures [87]. Buchmeiser, Blechert and coworkers reported an amphiphilic block
copolymer modified by a Rh-N,N-dipyrid-2-ylacetamide-based catalyst on the sidechain
and its application in hydroformylation reactions [76]. The amphiphilic block copolymer
poly(M1-b-M2) was prepared from two norbornene-based monomers M1 and M2 using a
Schrock catalyst. M1 contains a chelating ligand and M2 contains a quaternary ammonium
moiety. The polymer was further loaded with Rh(I) via reaction with (RhCl(COD))2 (COD
= cycloocta-1,5-diene) to yield poly(M1-b-M2)-Rh, with 12% of the dipyrid-2-ylamide lig-
ands involved in complex formation (Figure 8). Poly(M1-b-M2)-Rh and the homogeneous
analogue C1 [86] were further used as catalysts for the hydroformylation of 1-octene. The
n:iso ratio of the catalytic reaction catalyzed by poly(M1-b-M2)-Rh was higher than the
one obtained with C1 in toluene, i.e., 1.5 vs. 0.9 (Table 3), which showed that the micellar
catalyst favored the formation of the n-aldehyde. This enhanced selectivity was attributed
to the large percentage (88%) of free dipyrid-2-ylamide ligands, as well as to the high
concentration of reactants within the micelle, apparently suppressing β-elimination in the
alkyl-metal species. Compared with the homogeneous catalysts, the micellar catalysts
were more easily separated from the products, leading to lower metal contamination of the
products, as well as to the possibility of reuse.
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Table 3. Results for the hydroformylation of 1-octene 1. Reprinted from Ref. [76] with permission.

No. Catalyst Solvent TON 2 TOF n:iso

1 poly(M1-b-M2)-Rh water 3800 1200 1.5
2 C1 toluene 4500 2700 0.9

1 catalyst:substrate ratio = 1:5000, t = 4 h, T = 70 ◦C. 2 based on the aldehydes formed.

4.1.3. Copper-Catalyzed Azide-Alkyne Cycloaddition

Copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the most common “click”
reaction that allows researchers to link together two organic, bioorganic, or other func-
tional molecular fragments [88,89]. The large quantity of metal catalyst used in CuAAC
“click” reaction and its difficulty of complete removal remain the main problems to
be solved [90]. Zimmerman and coworkers prepared copper-containing metal-organic
nanoparticles (MONPs) via Cu(II)-mediated intramolecular cross-linking of aspartate-
containing polyolefins, as shown in Figure 9, which served as highly efficient catalysts for
alkyne-azide “click” reactions, yielding the desired 1,4-adducts at low parts per million
catalyst levels [69]. The catalytic activity of Cu-ONPs was tested in the Cu(I)-catalyzed
reaction between phenylacetylene and benzyl azide, as shown in Table 4. 1.0–10 ppm of
Cu-ONPs were employed with respect to benzyl azide and using sodium ascorbate to
reduce Cu(II) to Cu(I) in the MONPs in situ. In the presence of 2.5–10 ppm Cu-MONPs,
with respect to benzyl azide at 50 ◦C, reactions achieved completion in 24 h, with the
1,4-triazole as the only product. In the absence of Cu(I) or in the presence of CuSO4, only
a low conversion of the starting material to product was observed, with a mixture of 1,4-
and 1,5-triazoles, indicative of an uncatalyzed reaction. Indeed, the nanoparticles have low
toxicity and low metal loadings, making them convenient, green catalysts for alkyne-azide
“click” reactions in water.
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Figure 9. Synthetic route of copper-containing metal-organic nanoparticles (Cu-MONPs). Reprinted
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Table 4. Results for “Click” reactions of benzyl azide and phenylacetylene with Cu-MONPs or CuSO4.
Reprinted from Ref. [69] with permission. Copyright 2016 American Chemical Society.

Cu-MONP Level (ppm) Cu Level (ppm) NaAsc t (h) T (◦C) Yield (%)

1.0 10 + 24 50 58
2.5 25 + 24 50 >99
5.0 50 + 24 50 >99
10 100 + 24 50 >99
2.5 25 + 72 25 >99
0 25 1 + 336 25 9 2

2.5 25 − 336 25 9 2

0 0 − 24 50 9 2

0 25 + 24 50 9 2

1 The corresponding copper level was reached by adding CuSO4 solution. 2 Yield of the 1,4-isomer. The crude
product also contained approximately the same amount of the 1,5-isomer for these entries.
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4.1.4. Reduction of Nitrophenol

4-aminophenol (4-AP) is a potent intermediate for manufacturing many analgesic
and antipyretic drugs. 4-AP could be prepared by hydrogenation of 4-nitrophenol (4-NP),
which is also an efficient method for the removal of nitrophenols from wastewater and
contaminated aquifers [91]. Metal nanoparticles as catalysts for reduction of 4-NP to 4-
AP with high-performance have long been developed [92–94]. The limited stability and
aggregation for colloidal nanoparticles are typically the major issues in catalysis. Liu,
Huang and coworkers reported a highly efficient polystyrene-based nano-silver-containing
polymer (PS-AgNPs) as a catalyst for the reduction of 4-NP [77]. The soluble PS-AgNPs
were synthesized based on post-modification of AgNPs in the polymer sidechains, as
shown in Figure 10a. Entanglements of polystyrene chains restricted the aggregation of
AgNPs in the polymer sidechains and made it possible to form stable nano-silver domain
sizes. The linear relationship between rate constant kapp and Ag concentrations in PS-
AgNPs with low Ag content (L-PS-AgNPs) supported that AgNPs in L-PS-AgNPs were
evenly distributed and exhibited excellent dispersion stability (Figure 10b). The catalytic
performance of PS-AgNPs with high Ag content (H-PS-AgNPs) was comparable to the
microreactor, including the core of AgNPs/SiO2 and polymer shell, as shown in Table 5.
PS-AgNPs provided a new strategy to confine the size domain of metal nanoparticles
immobilized on polymers, which was relatively simple compared to microreactors with
core/shell designs.
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Table 5. Different AgNP-based catalysts with equivalent Ag content and their corresponding apparent
rate constants.

Catalyst Solvent
Ag

Concentration
(mg mL−1)

kapp (min−1) Ref.

AgNPs/SiO2
THF/water 9/1

(v/v)

5.4 × 10−4 0.0382
[95]

MC(AgNPs/SiO2) 1 5.1 × 10−4 0.2089
L-PS-AgNPs 5.8 × 10−4 0.0797

[77]
H-PS-AgNPs 5.0 × 10−4 0.3880

1 microcapsule denoted as MC.

4.1.5. Hydrolytic Kinetic Resolution of Epichlorohydrin

Chiral salen complexes are a family of catalysts for a series of important asym-
metric organic transformations, including the epoxidation of olefins, the hydrolytic ki-
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netic resolution (HKR) of epoxides, hetero Diels–Alder reactions and conjugate addition
reactions [96–99]. Weck, Jones and coworkers prepared a series of polymer-supported
salen catalysts formed by free radical polymerizations of an unsymmetrical monostyryl-
substituted salen monomer, as shown in Figure 11 [63]. The salen moieties were attached
to the polymer chain in a flexible, pendant fashion and, hence, possessed a high degree
of flexibility and accessibility. The copolymer-supported Co-salen complexes showed a
better catalytic performance (>99% enatiomeric excess of the remaining epichlorohydrin,
54% conversion) compared to the homopolymeric analogues and the small molecule Co-
salen complex, as shown in Table 6. The better catalytic performance of the copolymer
was attributed to the greater Co-salen complex mobility compared with homopolymer,
which made the catalytic sites more accessible to the reactants. In addition, the copolymers
with more flexible polymer backbones would increase the possibility of intramolecular
cooperation between cobalt catalytic sites. The soluble poly(styrene)-supported catalysts
could be easily recovered by precipitation after the catalytic reactions; the reaction rates
were slightly reduced after three round cycles.
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Table 6. Results of the hydrolytic kinetic resolution of epichlorohydrin. Reprinted from Ref. [63]
with permission.

No. Catalyst t (h) Conv. (%) ee 1 (%)

1 1a 1.0 49 93
2 4a 1.0 47 81
3 4b 1.0 48 83
4 4c 1.0 50 90
5 4d 1.0 54 99
6 4e 1.0 54 99

1 ee refered to the enatiomeric excess of the remaining epichlorohydrin.

4.2. Synthesis of Polymers
4.2.1. Olefin Polymerization

In the field of catalytic olefin polymerization, it is assumed that proximate metal
centers would significantly influence the monomer enchainment and the chain transfer
kinetics, which, in turn, leads to unique catalytic consequences, such as higher activity,
enhanced branching, higher olefin incorporation, and increased molecular weight as com-
pared to their mononuclear analogues [78,100,101]. Thus, in the past two decades, great
efforts have been devoted to design binuclear or multinuclear complexes for coopera-
tive olefin polymerization [100,102,103]. It is shown that conjugated or adjacent metal
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active centers can mutually influence the electron density of the metal centers as well as
protection of the active centers, thus, enhancing monomer trapping and illustrating the
positive consequences.

Taniike and coworkers prepared a series of polynorbornene (PNB)-supported half-
titanocene catalysts bearing different numbers of Ti centers per PNB chain [17,78]. Monodis-
persed PNB chains bearing a predefined number of ancillary donor ligands at the sidechain
was synthesized by ROMP and, further, grafted half-titanocene complexes to afford struc-
turally well-defined supported catalysts, as shown in Figure 12a. This synthetic route
enabled precise control of the number of Ti centers per PNB chain, as shown in Figure 12b,
which made it possible for the systematic investigation of the synergistic effect among
multiple active centers. On activation with a sterically less frustrated borate system, the
PNB-supported catalysts exhibited higher activity than that of the corresponding molec-
ular analogues. The activity increased with the increase in the number of Ti centers per
chain of the catalysts. The highest activity was observed for 1d bearing 65 Ti centers,
which was nearly twice the activity of the molecular catalyst 2, as shown in Table 7 [17].
The catalysts 1a and 1b bearing a smaller number of Ti centers produced PE with higher
molecular weight, probably due to the suppression of chain transfer reactions under low
activity conditions.
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Table 7. Ethylene polymerization results using PNB-supported half-titanocene catalysts and the molecu-
lar catalyst under the same polymerization condition. Reprinted from Ref. [17] with permission.

No. Catalyst Activity ((kg of PE)/((mol of Ti) h)) Mw × 10−5 Ð

1 2 16,400 ± 390 5.7 2.5
2 1a 22,100 ± 50 6.5 2.9
3 1b 22,800 ± 100 6.2 2.9
4 1c 28,600 ± 110 4.9 2.3
5 1d 29,800 ± 200 5.8 2.6

A molecular bottlebrush (MB), composed of a linear backbone grafted with polymeric
sidechains, was also used as the catalyst support for ethylene polymerization. Com-
pared with conventional linear polymers, MBs display many unique features, such as
the nanoscale size, higher persistent length of the single chain, and reduced overlap of
neighboring chains [104]. Chen and coworkers reported a poly(norbornene-graft-styrene)
(PNB-g-PS)-supported mono(phenoxy-imine) metal complex for ethylene polymerization,
as shown in Figure 13a [79]. PNB-g-PS-Br was prepared via grafting-through ROMP of
the norbornenyl macromonomer, which was readily prepared by ATRP. Post-modification
reactions of PNB-g-PS-Br were performed to incorporate phenoxy-imine type ligands in PS
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sidechains, which were then coordinated with early transition metals to generate a series
of MB-supported mono(phenoxy-imine) catalysts. Four types of phenoxy-imine ligands
and two metals (Ti and Zr) were used for the catalysts, as shown in Figure 13b. Improved
catalytic activities were observed for the catalysts bearing bulky substituents orthogonal
to the phenolic oxygen in the ligands. The highest values are 369 and 461 kg PE mol−1

h−1 for the Ti and Zr catalysts, with a cumyl group, as shown in Table 8. The obtained
polyethylenes (PEs) have high crystallinities and tunable molecular weights ranging from
80 to 2000 kDa.
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Table 8. Ethylene polymerization using the molecular and the MB-supported catalysts. Reprinted
from Ref. [79] with permission. Copyright 2021 American Chemical Society.

No. Catalysts wm (%) 1 Activity 2 Mw (kDa) Ð

1 A-Ti-1 9 2295 1.69
2 B-Ti-1 11 1704 2.88
3 MB-Ti-1 0.97 41 2051 3.35
4 MB-Ti-2 0.99 100 298 3.41
5 MB-Ti-3 0.85 50 568 1.76
6 MB-Ti-4 0.78 369 83 2.20
7 A-Zr-1 15 1309 2.88
8 B-Zr-1 23 4095 1.52
9 MB-Zr-1 2.50 16 260 4.24
10 MB-Zr-2 3.00 22 188 13.20
11 MB-Zr-3 2.53 460 372 6.72
12 MB-Zr-4 2.63 461 496 4.84

1 Metal weight percentage (wm) in the supported catalysts analyzed by ICP-MS. 2 Activity in unit of kg PE mol−1 h−1.

4.2.2. CO2/Epoxides Copolymerization

Most epoxide ring-opening reactions follow a cooperative pathway, in which one metal
serves as a Lewis acid for epoxide activation and another as a counterion for nucleophilic
attack. Enhanced activities and enantioselectivities have been observed for bimetallic
complexes compared with their monometallic counterparts [105–107]. It is supposed that
building a multi-metallic catalyst composed of molecularly well-defined active centers will
increase the local catalyst concentration and amplify the metal-metal cooperativity to a
larger extent than bimetallic catalysts.

Wang and coworkers reported a series of oligomer catalysts flexibly bearing aluminum
(Al)(III) porphyrin complexes in the sidechains as multi-metallic catalysts for epoxide ring-
opening reactions to obtain CO2-based polymers [18,80,81]. Oligomerization of porphyrin
methacrylate was carried out by RAFT polymerization with precisely controlled DP and
narrow Ð, as shown in Figure 14 [18]. Homopolymerization of PO catalyzed by the oligoAl
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series and monoAl were firstly investigated. In combination with PPNCl as a cocatalyst,
the oligoAl catalysts showed much higher rates than monoAl, and the turnover frequency
(TOF) value continuously increased as more Al centers were anchored in one catalyst chain,
as shown in Figure 15a. For copolymerization of PO and CO2, similar tendencies in the
relationship among the activity, the number of anchored Al centers, and the ratio of added
cocatalyst, were observed, as shown in Figure 15b. In addition, the oligoAl series catalysts
exhibited preeminent enhancement at extremely low loadings, high polymer selectivity
at high temperature, and the capability to produce high-molecular-weight CO2-based
polycarbonate, owing to the multisite cooperativity in the “confined transfer” chain growth
scenario and 100% utilization of Al sites in homogeneous catalytic behavior.
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For bimetallic catalysts used in CO2/epoxides copolymerization, researchers have
proven that the metal distance was closely related to polymer selectivity (polycarbon-
ate/polyether) [108] and catalytic activity [109]. The influence of metal distance on catalytic
performance is also worth exploration for multi-metallic catalysts. The metal distance in
SMPs can be regulated by designing main-chains with different lengths. However, for
living and controlled polymerizations (ATRP, RAFT, ROMP, etc.), the main-chains are
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usually singles forms, which are difficult to regulate. Thus, new polymerization methods
that can produce SMPs with diverse main-chain structures are needed for deep exploration
about the catalytic mechanism of multi-metallic catalysts.

4.2.3. ATRP

Previously, Wang and coworkers reported an exo-substituted η4-cyclopentadiene
CpCo(I) complex that could be used as a homogenous molecular catalyst in Co(I)-mediated
ATRP [110]. The molecular catalyst was soluble in either monomer or solvent, which
resulted in polymers contaminated with a color from the catalyst. Tang and coworkers
reported a sidechain polymer containing cyclopentadienyl-cobalt(I)-1,3-cyclopentadiene as
a heterogeneous macromolecular catalyst for ATRP, which could obtain polymers without
color from the catalyst [82]. The macromolecular catalyst was prepared from an 18-e
cobalt(I)-containing norbornene (monomer 1) by ROMP using the 3rd generation of Grubbs
catalyst, as shown in Figure 16a. The obtained polymer 2 was soluble in organic solvents
such as dichloromethane (DCM), chloroform, and tetrahydrofuran (THF), but was insoluble
in monomers (i.e., MMA, styrene) and the solvent (i.e., toluene) involved in ATRP. The
living characteristic of the polymerization was confirmed by the linear semilogarithmic
plot, and the polymerization rate was comparable to those of molecular catalysts reported
in the literature (Figure 16b). The catalyst could be easily removed from the products by
filtration because of its heterogeneity in the reaction media. Different from the light green
color of the products obtained using monomer 1 as the catalyst, the obtained PMMA and
polystyrene do not have any color from the catalyst.
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5. Conclusions and Outlooks

In this review, we discuss sidechain metallopolymers (SMPs) from preparation meth-
ods to applications in catalysis. Inspired by the structures of natural metalloenzymes,
polymers are used to function as scaffolds for metals, just like the role of polypeptides in
enzymes. SMPs with ordered structures and diverse functional groups can be prepared
by various living and controlled polymerization techniques, and metal complexes can be
connected to the polymers either before or after polymerizations. The obtained SMPs can
be successfully applied as effective multi-metallic catalysts for both organic compound
synthesis and polymer synthesis. Therefore, SMPs have proven to be excellent models for
multi-metallic catalysts for their precise control of the number and location of catalytic
sites. There are still some important issues about SMPs deserving further explorations,
for example, the influence of the sidechain properties, especially the chain length and the
chemical structure, on the catalytic performance of SMPs. Polymers with the same main
chain and various sidechains should be prepared and studied as the base for SMPs.

Although great efforts have been made to construct metallopolymers with precise
structures as multi-metallic catalysts, there is still a long way to go for endowing a linear
polymer chain with special functions as natural enzymes. In peptides, the repeat unit
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sequence is well-defined, although as many as 20 amino acid comonomers are involved in
the polymerization [111]. For copolymers prepared by radical polymerization, the positions
and sequences of these functionalities are totally random and not uniform among polymer
chains [30]. Thus, the sequence of polymers is recognized as the next structural factor that
can be controlled precisely in polymerizations to express advanced functions of polymers as
observed in nature [111–115]. Many efforts have been made to construct sequence-ordered
polymers, for example, sequence-regulated radical polymerization with a metal-templated
monomer to achieve polymers with AB [116] or ABA [111] alternating sequences. These
sequence-ordered polymers bring more possibilities for multi-metallic catalysts carrying
more than one kind of metals, which could be available for constructing metallic catalysts
with alternating metals to achieve unexpected catalytic performance. More challenging
works about sequence-ordered polymers prepared by sequence-regulated polymerizations
are urgently needed and are expected to enrich the multi-metallic catalyst system and
artificial enzymes.
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