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Abstract: This study evaluated the neuroprotective effects and mechanisms of procyanidins (PCs).
In vitro, rat pheochromocytoma cells (PC12 cells) were exposed to PCs (1, 2 or 4 µg/mL) or N-Acetyl-
L-cysteine (NAC) (20 µM) for 24 h, and then incubated with 200 µM of H2O2 for 24 h. Compared
with H2O2 alone, PCs significantly increased antioxidant activities (e.g., glutathione peroxidase
(GSH-Px), superoxide dismutase (SOD), catalase (CAT)), decreased levels of reactive oxygen species
(ROS) and malondialdehyde (MDA), and increased nuclear factor-erythroid 2-related factor 2 (Nrf2)
accumulation and increased the expression of quinone oxidoreductase 1 (NQO1), heme oxygenase 1
(HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic
subunit (GCLC). In vivo, zebrafish larvae (AB strain) 3 days post-fertilization (dpf) were exposed
to NAC (30 µM) or PCs (4, 8 or 16 µg/mL) in the absence or presence of 300 µM of H2O2 for
4 days. Compared with H2O2 alone, PCs enhanced antioxidant activities (e.g., GSH-Px, CAT, and
SOD), decreased levels of ROS and MDA, and enhanced Nrf2/ antioxidant response element (ARE)
activation and raised expression levels of NQO1, HO-1, GCLM, and GCLC. In conclusion, these
results indicated that PCs exerted neuroprotective effects via activating the Nrf2/ARE pathway and
alleviating oxidative damage.
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1. Introduction

Neurodegenerative disease refers to the slow and gradual degeneration of neurons
in the human brain, which leads to a variety of motor and/or cognitive problems and
eventually leads to neuronal death [1]. With the increasing number of elderly people, the
incidence rate of senile neurodegenerative diseases is increasing rapidly [2,3]. Although
the underlying mechanisms of neurodegeneration are still unclear, considerable evidence
shows that oxidative stress caused by overproduction reactive oxygen species (ROS) and/or
impairment of the antioxidant defense system plays a key role in these diseases [4–6].

In the process neurodegeneration, there is an out-off-balance between the production
of intracellular ROS and the ability of the antioxidant defense system to clear ROS and/or
repair ROS-mediated damage [7]. Excessive production of ROS leads to macromolecular
damage. Therefore, the accumulation of cellular macromolecular damage leads to necro-
sis [8,9]. Consequently, supplement of antioxidants to eliminate excess ROS may help to
prevent neurodegenerative diseases. Natural bioactive compounds are safe with little or no
side effects. Therefore, increasing attention has been paid to the discovery of antioxidant
compounds from natural resources.

Procyanidins (PCs) are natural phenolic compounds of flavonoids and contain oligomers
of monomers catechin and epicatechin [10–12]. PCs are natural nutrients and antioxidants,
and their antioxidant effects are stronger than those of vitamin C and vitamin E [13].
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However, the neuroprotective effects and mechanism of PCs regarding oxidative damage
in vivo and in vitro remain unclear.

Zebrafish are freshwater tropical cyprinid fish confined to India. Interestingly, roughly
87% of human disease-related genes are linked to homologous genes in zebrafish [14].
Relative to experimental mouse models, utilization of zebrafish as a model system is
associated with shorter experimental periods, reduced costs, and more amenable gene
manipulations [15]. In terms of in vitro models, rat pheochromocytoma cells (PC12 cells)
are similar to neurons in terms of morphology, structure, and function [16]. Their features
are highly consistent with those of primary cultured neurons, and have experimental
advantages in terms of being easily and stably maintained in culture [17]. Furthermore,
PC12 cells have been widely used as in vitro models for studying nerve cells [18–20].
Hydrogen peroxide (H2O2) is a type of ROS that can permeate through cell membranes
and initiate oxidative stress [21]. Numerous reports have demonstrated that H2O2 can
be used to establish models of oxidative stress [22–24]. In this study, we evaluated the
neuroprotective effects and mechanisms of PCs in PC12 cells and zebrafish.

2. Results
2.1. Effects of PCs on H2O2-Treated Damage of PC12 Cells

PC12 cells were exposed to 200 µM H2O2 for 24 h, and the cell viability decreased to
56.5% (Figure 1a). Pretreatment of cells with PCs alone at 1, 2, or 4 µg/mL had no effect on
cell viability, whereas 1, 2, and 4 µg/mL PCs treatment significantly protected PC12 cells
from H2O2-treated cytotoxicity by ameliorating cell viability (Figure 1b,c, p < 0.05 versus
H2O2-treated group). However, PCs treatment alone at 8 µg/mL decreased cell viability
(Figure 1b). N-Acetyl-L-cysteine (NAC), which is known to protect against H2O2-induced
oxidative damage, was used as a positive control.
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Figure 1. Effects of PCs on H2O2-treated cytotoxicity of PC12 cells. Cell viability was detected by CCK-8 assays. (a) Cyto-
toxic effects of H2O2 at different concentrations in PC12 cells; (b) cytotoxic effects of PCs at different concentrations in PC12 
cells; (c) PCs attenuated H2O2-induced decreases in cell viability. Data are expressed as the mean ± SD. All experiments 
were conducted six times. Values with different letters above each bar represent significant differences (p < 0.05, one-way 
ANOVA). 

2.2. Effects of PCs on Oxidative Stress of PC12 Cells Treated with H2O2 
ROS and malondialdehyde (MDA) levels indicate the severity of oxidative damage. 

PC12 cells exposed to 200 μM H2O2 for 24 h raised the levels of ROS and MDA, and 2 and 
4 μg/mL PCs pretreatment inhibited the levels of ROS and MDA (Figure 2a–c, p < 0.05 
versus H2O2-induced group). To further evaluate the antioxidant effects of PCs in H2O2-
induced PC12 cells, we measured glutathione peroxidase (GSH-Px), catalase (CAT), and 
superoxide dismutase (SOD) activities, and observed that H2O2 treatment suppressed 
GSH-Px, CAT, and SOD activities. However, H2O2-induced effects were rescued by pre-
treatment with PCs at 2 and 4 μg/mL (Figure 2d–f, p < 0.05 versus H2O2-treated group). 
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Figure 1. Effects of PCs on H2O2-treated cytotoxicity of PC12 cells. Cell viability was detected by CCK-8 assays. (a) Cytotoxic
effects of H2O2 at different concentrations in PC12 cells; (b) cytotoxic effects of PCs at different concentrations in PC12
cells; (c) PCs attenuated H2O2-induced decreases in cell viability. Data are expressed as the mean ± SD. All experiments
were conducted six times. Values with different letters above each bar represent significant differences (p < 0.05, one-
way ANOVA).

2.2. Effects of PCs on Oxidative Stress of PC12 Cells Treated with H2O2

ROS and malondialdehyde (MDA) levels indicate the severity of oxidative damage.
PC12 cells exposed to 200 µM H2O2 for 24 h raised the levels of ROS and MDA, and 2 and
4 µg/mL PCs pretreatment inhibited the levels of ROS and MDA (Figure 2a–c, p < 0.05
versus H2O2-induced group). To further evaluate the antioxidant effects of PCs in H2O2-
induced PC12 cells, we measured glutathione peroxidase (GSH-Px), catalase (CAT), and
superoxide dismutase (SOD) activities, and observed that H2O2 treatment suppressed GSH-
Px, CAT, and SOD activities. However, H2O2-induced effects were rescued by pretreatment
with PCs at 2 and 4 µg/mL (Figure 2d–f, p < 0.05 versus H2O2-treated group).
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Figure 2. PCs attenuate H2O2-treated oxidative stress and increase antioxidant activities in PC12 cells. (a) Representative
fluorescence photomicrographs of PC12 cells; (b) ROS levels were measured by software; (c) MDA levels; (d) GSH-Px
activity; (e) CAT activity; (f) SOD activity. Data are expressed as the mean ± SD. All experiments were conducted three
times. Values with different letters above are significantly different (p < 0.05, one-way ANOVA).
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2.3. Effects of PCs on the Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2)/ARE Pathway in
H2O2-Treated PC12 Cells

We found that the level of Nrf2 was upregulated and the expression of Keap1 was
downregulated following PCs (2 and 4 µg/mL) pretreatment prior to H2O2 treatment, as
compared to these levels in the H2O2-induced group (Figure 3a–c, p < 0.05 versus H2O2-
induced group). Furthermore, PCs (4 µg/mL) facilitated nuclear localization of Nrf2 under
H2O2-lesioning conditions (Figure 3d–f, p < 0.05 versus H2O2-induced group). Addition-
ally, Western blotting showed that heme oxygenase 1 (HO-1), quinone oxidoreductase
1 (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine
ligase modifier subunit (GCLM) levels were upregulated following PCs (2 and 4 µg/mL)
treatment compared with H2O2 alone (Figure 3g–k, p < 0.05 versus H2O2-induced group).
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2.4. Nrf2/ARE Signaling is Responsible for PCs-Mediated Antioxidative Effects 
As shown in Figure 4a,b, Nrf2 siRNA inhibited the expression of Nrf2. Meanwhile, 

Nrf2 siRNA treatment eliminated the protective effects of PCs against H2O2-treated oxi-
dative damage, as evidenced by the reduced cell viability in the Nrf2-siRNA-transfected 
group (Figure 4c). Simultaneously, the actions of PCs on MDA content and SOD activity 
were reversed by Nrf2 knockdown under H2O2-lesioning conditions (Figure 4d,e). 
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Figure 3. Effects of PCs on the Nrf2/ARE pathway in H2O2-treated PC12 cells. (a) Protein levels of Nrf2 and Keap1, as
determined by Western blotting; (b) Nrf2/GAPDH protein relative expression (ratio to control); (c) Keap1/GAPDH protein
relative expression (ratio to control); (d) protein expression levels of nuclear Nrf2 and cytoplasmic Nrf2, as determined by
Western blotting; (e) nuclear Nrf2/LaminB protein relative expression (ratio to control); (f) cytoplasmic Nrf2/GAPDH protein
relative expression (ratio to control); (g) protein levels of HO-1, NQO1, glutamate-cysteine ligase catalytic subunit (GCLC), and
GCLM, as determined by Western blotting; (h) HO-1/GAPDH protein relative expression (ratio to control); (i) NQO1/GAPDH
protein relative expression (ratio to control); (j) GCLC/GAPDH protein relative expression (ratio to control); (k) GCLM/GAPDH
protein relative expression (ratio to control). Data are expressed as the mean ± SD. All experiments were conducted three times.
Values with different letters above are significantly different (p < 0.05, one-way ANOVA).

2.4. Nrf2/ARE Signaling Is Responsible for PCs-Mediated Antioxidative Effects

As shown in Figure 4a,b, Nrf2 siRNA inhibited the expression of Nrf2. Meanwhile,
Nrf2 siRNA treatment eliminated the protective effects of PCs against H2O2-treated ox-
idative damage, as evidenced by the reduced cell viability in the Nrf2-siRNA-transfected
group (Figure 4c). Simultaneously, the actions of PCs on MDA content and SOD activity
were reversed by Nrf2 knockdown under H2O2-lesioning conditions (Figure 4d,e).
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Figure 4. Nrf2/ARE signaling is responsible for PCs-mediated antioxidative actions in H2O2-treated PC12 cells. (a) Knock-
out efficiency was detected by determination of Nrf2 protein expression using Western blotting; (b) Nrf2/GAPDH protein
relative expression (ratio to control); (c) cell viability; (d) MDA levels; (e) SOD activity. Data are expressed as the mean ± SD.
All experiments were conducted three times. Values with different letters above are significantly different, (p < 0.05,
** p < 0.01 relative to control group, one-way ANOVA).

2.5. Effects of PCs on Motility of Zebrafish Larvae Following H2O2 Treatment

H2O2-induced oxidative damage decreased the total swimming distance of zebrafish
larvae. PCs treatment (4, 8, and 16 µg/mL) rescued H2O2-induced locomotor deficits,
as evidenced by an increased movement distance relative to that of the H2O2 group
(Figure 5a,b, p < 0.05 versus H2O2-treated group). NAC, which is known to protect against
H2O2-induced oxidative damage, was used as a positive control. Moreover, PCs (16 µg/mL)
or NAC (30 µM) alone did not affect locomotor behavior of normal zebrafish larvae.
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Figure 5. Effects of PCs on motility of H2O2-treated zebrafish larvae. (a) Typical patterns of swimming traces of zebrafish
larvae in each group; (b) average total distance of zebrafish larvae in each group. Data are shown as the mean ± SD.
All experiments were repeated three times. Values with different letters above are significantly different (p < 0.05, one-
way ANOVA).

2.6. Effects of PCs on Oxidative Stress of Zebrafish Larvae Treated with H2O2

Treatment of PCs (4, 8, and 16 µg/mL) to zebrafish larvae reduced H2O2-induced
increases in intracellular ROS formation (Figure 6a,b, p < 0.05 versus H2O2-treated group).
Lipid peroxidation assays also indicated that PCs (4, 8, and 16 µg/mL) dose-dependently
blocked H2O2-induced increases in MDA levels in zebrafish larvae (Figure 6c, p < 0.05
versus H2O2-induced group). Furthermore, GSH-Px activity was reversed by PCs (4, 8, and
16 µg/mL) treatment (Figure 6d, p < 0.05 versus H2O2-treated group). Additionally, PCs (8
and 16 µg/mL) increased H2O2-induced reductions in CAT and SOD activities (Figure 6e,f,
p < 0.05 versus H2O2-induced group).
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Figure 6. Effects of PCs on oxidative stress in H2O2-treated zebrafish larvae. (a) Representative fluorescence photomi-
crographs of zebrafish larvae; (b) ROS levels were measured via imaging software; (c) MDA levels; (d) GSH-Px activity;
(e) CAT activity; (f) SOD activity. Data are expressed as the mean ± SD. All experiments were conducted three times. Values
with different letters above are significantly different (p < 0.05, one-way ANOVA).
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2.7. Effects of PCs on Nrf2/ARE Pathways in H2O2-Treated Zebrafish Larvae

The protective effects of PCs treatment in H2O2-treated zebrafish larvae suggested that
Nrf2/ARE pathways may have been involved. The expression levels of Nrf2, HO-1, NQO1,
GCLC, and GCLM (Figure 7a–e, p < 0.05 versus H2O2-induced group) were up-regulated
following PCs (16 µg/mL) treatment compared to levels after H2O2 treatment alone.
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3. Discussion

Numerous studies have shown that PCs exhibit strong radical-scavenging and an-
tioxidant activities [25–27], and that oxidative stress caused via the excessive production
of ROS and/or impairment of the antioxidant defense system plays a critical role in neu-
rodegenerative diseases [4–6,28,29]. However, the neuroprotective effects and mechanisms
of PCs regarding oxidative damage are still unclear. Therefore, this study researched the
effects and mechanisms of PCs in neuroprotection.

In the present study, the appropriate concentrations of PCs improved the levels of
antioxidant enzymes, including GSH-Px, CAT, and SOD, but decreased the levels of ROS
and MDA in models of oxidative damage compared with measurements using H2O2 alone.
These present findings were consistent with previous studies which suggested that a low
PCs supplement via diet can improve the activities of GSH-Px, CAT, and SOD in weaned
piglets [30]. Another study also suggested that PCs significantly increased CAT and SOD
activities and decreased MDA content, thus improving the quality of goat sperm [31].

The Nrf2/ARE pathway is a significant antioxidant pathway [32–34]. Normally, Nrf2
resides in the cytoplasm, where it is bound to the inhibitory protein, Keap1 [35,36]. Upon
H2O2 stimulation, Nrf2 dissociates from Keap1, initiates the endogenous antioxidant
defense system, and subsequently translocates into the nucleus [34,37,38]. It then interacts
with ARE to activate a series of cell-protective and antioxidant genes, including GCLC,
GCLM, NQO1, and HO-1 [39,40]. In response to oxidative stress, similar to changes
seen during H2O2 stimulation, Nrf2 dissociates from Keap1 in the cytosol and is then
translocated into the nucleus, binding to the ARE sequence to activate transcription of
cryoprotective genes [41,42]. We observed that the appropriate concentrations of PCs
facilitated nuclear localization of Nrf2 under H2O2-lesioning conditions in PC12 cells.
Moreover, the appropriate concentrations of PCs markedly up-regulated the expression
levels of NQO1, HO-1, GCLM, and GCLC, all of which can directly act to eliminate free
radicals and oxidative molecules [43]. Hence, these results showed that the appropriate
concentrations of PCs increased levels of the Nrf2/ARE pathway. Next, Nfr2 gene silencing
via Nrf2 siRNA was used to further assess the role of Nrf2/ARE activation in PCs-mediated
neuroprotection against H2O2-induced oxidative damage. Nrf2-siRNA-transfected cells
indicated a marked decrease in Nrf2 expression. Simultaneously, we found that Nrf2
knockout abolished PCs-mediated protection against H2O2-treated impairments in cell
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viability, and Nrf2 knockout also abolished the antioxidant effects of PCs. These findings
were accordant with previous study which suggested that improving activation of the
Nrf2/ARE pathway contributes to neuroprotection [44]. Therefore, the present results
indicate that the Nrf2/ARE pathway may represent a pharmacological target of PCs for
the prevention of neurodegeneration.

4. Materials and Methods
4.1. Chemicals and Reagents

H2O2 was purchased from HUSHI (HUSHI, Shanghai, China). CCK-8, NAC were
purchased from Beyotime (Beyotime, Shanghai, China). PCs, 2′,7′-dichlorofluorescin diac-
etate, MDA, GSH-Px, SOD diagnostic kits, and CAT diagnostic kits were purchased from
Solarbio (Solarbio, Beijing, China). RNAiso Plus, PrimeScript RT reagent Kit with gDNA
Eraser, and SYBR Premix Ex Taq II were purchased from Takara (Takara, Shiga, Japan).
Nrf2-siRNA, control-siRNA, and lipofectamine 2000 were obtained from GenePharma
(GenePharma, Shanghai, China). The following primary antibodies and corresponding
secondary antibodies were obtained from Proteintech (Proteintech, Wuhan, China): Nrf2,
HO-1, GCLC, GCLM, NAD(P)H: NQO1, lamin B, and GAPDH.

4.2. Cell Culture

PC12 cells were obtained from the National Collection of Authenticated Cell Cultures.
The cells were maintained in DMEM medium supplemented with 10% fetal bovine serum
and penicillin-streptomycin (100 U/mL; 100 µg/mL) in a humidified incubator at 37 ◦C
with 5% CO2.

4.3. Cell Viability Assays

PC12 cells were seeded into 96-well plates at a density of 1 × 104 cells/well. The cells
were exposed to different concentrations of PCs or NAC (20 µM) for 24 h, after which they
were incubated with 200 µM of H2O2 for 24 h. Next, 10 µL of CCK-8 solution was added
into each well and incubated for 1 h, after which the absorbance was measured at 450 nm.

4.4. Fish Maintenance

Ethical approval for animal use was granted by the Animal Conservation and Use
Committee of the Experimental Animal Center at Zhejiang University (ZJU20200125).
Adult zebrafish (Danio rerio, AB strain) were obtained from the laboratory animal center of
Zhejiang University and maintained at 28 ± 1 ◦C under a 14/10-h light/dark cycle [21].
The fish were fed Artemia nauplii twice daily. To produce embryos, adult zebrafish were
placed overnight in breeding tanks at a 1:1, male:female ratio. Spawning was triggered
within 2 h after the lights were turned on the next morning. Embryos were raised in
embryo water at 28 ◦C [45].

4.5. ROS Measurements

To measure ROS production in vivo, zebrafish larvae (AB strain), 3 days post-fertilization
(dpf) were exposed to NAC (30 µM) or various concentrations of PCs in the absence or
presence of 300 µM of H2O2 for 4 days. Subsequently, at 7 dpf, the different treatment groups
were transferred to a 24-well plate (10 zebrafish larvae per group) treated with 20 µM of
2′,7′-dichlorofluorescin diacetate solution, and were incubated for 60 min in the dark at
28.5 ◦C [46]. Next, the larvae were washed three times with embryo medium to remove excess
2′,7′-dichlorofluorescin diacetate. The stained larvae were then observed and imaged under
an Olympus laser-scanning confocal microscope. The fluorescent intensity of each individual
larva was quantified via ImageJ software.

To measure ROS production In vitro, PC12 cells were seeded into 6-well plates at a
density of 2 × 104 cells/well. The cells were exposed to different concentrations of PCs or
NAC (20 µM) for 24 h and were then incubated with 200 µM of H2O2 for 24 h. The cells
were incubated with 10 µM of 2′,7′-dichlorofluorescin diacetate solution in the dark for
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30 min; thereafter, the dye solution was removed, and the cells were washed three times in
phosphate-buffered saline. The cells were then observed and imaged under an Olympus
laser-scanning confocal microscope. The fluorescent intensities of the cells were quantified
via ImageJ software.

4.6. Assessment of MDA, GSH-Px, SOD, and CAT

Zebrafish larvae (AB strain) at 3 dpf were exposed to NAC (30 µM) or various concen-
trations of PCs in the absence or presence of 300 µM H2O2 for 4 days. The 7 dpf zebrafish
were anesthetized with tetracaine and homogenized after euthanasia on ice. MDA, GSH-Px,
CAT, and SOD were analyzed simultaneously, according to the manufacturer’s instructions.
Each experiment contained 20 larvae, and each measured index was repeated in triplicate.

PC12 cells were seeded into 6-well plates at a density of 2 × 104 cells/well. The cells
were exposed to different concentrations of PCs or NAC (20 µM) for 24 h and were then
incubated with 200 µM of H2O2 for 24 h. PC12 cells were next collected and incubated with
lysis buffer. MDA, GSH-Px, SOD, and CAT activities were measured using corresponding
assay kits, according to each manufacturer’s protocols. Each measured index was repeated
in triplicates.

4.7. Total RNA Extraction, Reverse Transcription, and Quantitative Real-Time Polymerase
Chain Reaction

Zebrafish larvae (AB strain) at 3 dpf were exposed to NAC (30 µM) or various concen-
trations of PCs in the absence or presence of 300 µM of H2O2 for 4 days. After treatments,
RNA was extracted using RNAiso, following the manufacturer’s instructions. RNA was
reverse transcribed using a PrimeScript RT Kit with gDNA eraser, following the manufac-
turer’s instructions (Takara, Shiga, Japan). Quantitative real-time PCR was performed with
an Applied Biosystems Vii-7 Real-Time PCR system using SYBR Premix Ex Taq II. β-actin
was used as a reference gene, and relative gene expression was calculated using the 2−∆∆Ct

method. The primer sequences utilized are listed in Table 1.

Table 1. Sequence of primers for quantitative real-time PCR.

Genes Forward Primer Reverse Primer

β-Actin CACTGAGGCTCCCCTGAATC GGGTCACACCATCACCAGAG
Nrf2 CTGCTGTCACTCCCAGAGTT GCCGTAGTTTTGGGTTGGTG
HO-1 AAGAGCTGGACAGAAACGCA AGAAGTGCTCCAAGTCCTGC
GCLC CTCCTCACAGTCACGGCATT TGAATGGAGACGGGGTGTTG
GCLM AAGCCAGACACTGACACACC ATCTGGAGGCATCACACAGC
NQO1 AAGCCTCTGTCCTTTGCTCC TGCTGTGGTAATGCCGTAGG

4.8. Nrf2 siRNA Transfection

Nrf2-siRNA was used to knockdown Nrf2. PC12 cells were seeded in 6-well cul-
ture plates and were then transfected with Nrf2-siRNA (80 nM) or control-siRNA using
Lipofectamine 2000, according to the manufacturer’s instructions.

4.9. Preparation of Whole Cell, Cytoplasmic, and Nuclear Protein

For whole cell protein extraction, cells were collected and incubated with RIPA lysis
buffer containing 1% PMSF and 1% protease inhibitor cocktail for 30 min on ice. Cell
lysates were centrifuged, and the supernatant was collected and stored. For subcellular
fractionation preparation, cell samples were processed using the nuclear and cytoplasmic
protein extraction kit. The protein content was assayed using the BCA assay.

4.10. Western Blotting

Aliquoted protein samples were resolved by SDS-PAGE and transferred to polyvinyl
idene-difluoride membranes. The blots were then incubated with the following primary
antibodies: Nrf2, Keap1, HO-1, NQO1, GCLC, GCLM, Lamin B, or GAPDH. The membrane
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was then washed with TBST for 5 min; this was repeated 5 times. Thereafter, blots were
incubated in peroxidase-conjugated secondary antibodies. Finally, protein bands were
visualized using an ECL-plus Western blotting detection reagent.

4.11. Locomotor Behavioral Assay

Zebrafish larvae (AB strain) at 3 dpf were exposed to NAC (30 µM) or various con-
centrations of PCs in the absence or presence of 300 µM of H2O2 for 4 days. Thereafter, at
7 dpf, these treated larvae were placed into 24-well plates (one fish per well and 12 larvae
per group). We used Any-maze 4.73 to measure the locomotor behavior of zebrafish larvae,
and calculated the total distance traveled in 10 min [47].

4.12. Statistical Analysis

Data are shown as the mean ± standard deviation (SD) of at least three independent
experiments. One-way analysis of variance (ANOVA) and Duncan’s multiple range tests
were used to determine statistical significance, and differences were considered significant
when p < 0.05. Statistical analyses were performed via SPSS, version 20.0.

5. Conclusions

In conclusion, the present findings indicate that PCs exert neuroprotective effects via ac-
tivating the Nrf2/ARE pathway and its downstream detoxification enzymes and antioxidant
enzymes. Taken together, PCs may have protective effect on neurodegenerative disorders.
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