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Background. To investigate microstructural alterations of white matter in retinal vein occlusion (RVO) patients by tract-based
spatial statistics (TBSS) and diffusion tensor imaging (DTI). Material/Methods. DTI was performed on 14 RVO patients and
14 normal controls (HCs). We measured and recorded fractional anisotropy (FA) and radial diffusivity (RD) of white matter
fibers and classified them through the receiver operating characteristic (ROC) curve and correlation analysis, respectively.
Results. The mean FA value of white matter in RVO patients is lower than the HCs, and the mean RD value in RVO patients
increased, especially in the bilateral posterior thalamic, bilateral sagittal stratum, body of corpus callosum, cingulum, and
fornix. The ROC curve of different brain regions showed high accuracy. Moreover, the mean FA and RD values were
significantly correlated with visual and psychological disorders. Conclusion. TBSS could be regarded as an important method to
reveal the alterations of white matter in RVO patients, indicating the underlying neurological mechanism of the RVO.

1. Background

The retinal vein occlusion (RVO) is a kind of second major
retinal vascular disorder, which is characterized by the
expansion and dilation of retinal veins [1]. Meanwhile,
RVO is considered to be an important cause of visual loss,
including central (CRVO) and branch retinal vein occlu-
sions (BRVO) [2, 3]. According to the previous epidemio-
logical studies of world population, about 16 million adults
have RVO, and the estimated prevalence rate of RVO is
5.2% [4]. RVO is closely related to the advancing age, which
leads to its worldwide increase occurrence because of the
increasing longevity of people [5]. RVO generally occurs in

the case of thrombosis in the vascular system or some arte-
rial diseases, which leads to intraluminal stenosis, venous
congestion, and increased venous pressure [6]. This intra-
vascular alteration potentially causes some secondary condi-
tions including macular edema and neovascularization,
which are the leading causes of vision loss in RVO [4, 6,
7]. Until now, there is still no complete and effective cure
for RVO. A DTI study based on white matter suggests that
retinal vascular pathology is related to poorer microstructure
of cerebral white matter [8]. Thus, we speculate that some
functional and microstructural changes may happen in the
brain of patient with RVO. Currently, fundus fluorescein
angiography (FFA) [1] and optical coherence tomography
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(OCT) [9] are often used for imaging diagnosis of the retinal
and choroidal vasculature, but the neuroimaging examina-
tion is still rare. We believe that neuroimaging method
may provide a new direction for revealing RVO-related
brain processes and the potential neuropathological
mechanisms.

DTI is a special form of functional magnetic resonance
imaging (MRI) and is a new way to describe the structure
of the brain in recent years. As a new imaging method based
on diffusion weighted imaging (DWI), DTI can analyze the
dispersion motion of water molecules in the tissue in
three-dimensional space, providing an insight into living
human brain noninvasively, especially white matter anat-
omy. Additionally, it gives quantitative parameters related
to the microstructure of white matter [10, 11]. A number
of measures calculated using DTI measures can provide
quantitative information, including FA, RD, axial diffusivity
(AD), and mean diffusivity (MD) [12, 13]. Many studies suc-
cessfully used DTI to demonstrate intrinsic neural alter-
ations in patients with visual-related diseases. Li et al. [14]
found that FA of optic nerve and optic nerve radiation
decreased significantly, while MD of bundle increased signif-
icantly, suggesting that indicative degeneration and remod-
eling may occur in patients with glaucoma. Besides, Li
et al. [15] applied voxel-wise statistical analysis and reported
that there is a significant decrease FAs in several white mat-
ter tracts and reduced grey matter volume in children with
amblyopia compare to HCs, which revealed that visual
impairment of amblyopia affects normal development of
brain structure. However, the intrinsic changes of white
matter in RVO patients remain unclear. RVO could cause
vision loss, which in turn may lead to mental illness such
as anxiety and depression. Thus, we suspected that the aver-
age FA and RD might be related to anxiety, depression, and
vision.

Because of the advantages of voxel and trajectory analy-
sis, trajectory-based spatial statistics (TBSS) is not only
widely used in various neurological system diseases but also
has become a popular tool to evaluate DTI data. TBSS pro-
jects volumetric data onto a WM skeleton without data
smoothing, resolving the defect caused by alignment inaccu-
racies [16, 17]. Previous studies have applied TBSS to assess
the neural alterations in patients with visual-related diseases.
A TBSS analysis of patients with concomitant exotropia
showed that FA increased and RD decreased in the relevant
areas [18]. TBSS was applied to investigate the white matter
integrity of patients with congenital and terminal blind and
monocular blindness and found the different mechanisms
of structural changes in white matter [19, 20]. Therefore,
our purpose here is to use TBSS analysis to research the
alterations and to explore the diffusivities of fiber bundles
in RVO patients.

2. Methods

2.1. Subjects. We recruited 14 RVO patients from the First
Affiliated Hospital of Nanchang University Hospital. The
inclusion criteria for this study included the following: [1]
ophthalmoscopy showed RVO signs; [2] OCT revealed mac-

ular oedema; and [3] FFA showed occlusion of retinal vein
(Figure 1 and Table 1). The exclusion criteria for RVO were
as follows: [1] a history of intraocular or extraocular surgery;
[2] combined with other ocular diseases; and [3] mental dis-
ease, cardiovascular diseases, and other systematic diseases.

At the same time, 14 healthy controls (HCs) were
included with the following inclusion criteria: [1] no history
of ocular disease; [2] no brain abnormalities; [3] no mental
and cardiovascular diseases; [4] no drugs or alcohol abuse;
and [5] have MRI examination ability. The age and gender
background of all HCs and RVO were matched. This study
was conducted in strict accordance with the guidelines and
regulations of the Human Research Ethics Committee of
the First Affiliated Hospital of Nanchang University on the
basis of approval. All patients included in this study were
informed and signed a consent form.

2.2. Data Acquisition and Preprocessing. The data in this
study was collected by 3.0T MRI scanner (Siemens,
Erlangen, Germany). The parameters of these sequences
are referenced in previous studies [18]. FMRIB Software
Library (FSL) was used for all MRI data. We performed
these data as previously described [18]. All original data
were extracted, corrected eddy current distortion and head
motion artifacts, and then a brain mask was made.

2.3. TBSS Procedures. Similar to the previous TBSS method
[16], we used the following analytical methods to explore
the characteristics of white matter diffusion. All FA images
were aligned with the standard space of a Montreal Neuro-
logical Institute 152 (MNI152) through nonlinear registra-
tion. Firstly, the mean FA maps of all participants were
projected onto the fMRIB 58 skeleton. Then, after maximum
alignment of the common skeleton, the data was presented
as a four-dimensional image. We used the FSL view and
FSL cluster tool to visualize and select the statistically signif-
icant FA and RD voxel clusters, respectively, and simplified
the visualization of the actual analytical representation
through the script TBSS_fill.

2.4. Evaluation of Anxiety, Depression, and Visual quality.
The Hospital Anxiety and Depression Scale (HADS)
designed in 1983 was used to investigate anxiety and depres-
sion [21]. The Chinese version of National Eye Institute 25-
Item Visual Function Questionnaire (NEI-VFQ25) was used
to measure the quality score of life [22].

2.5. Receiver Operating Characteristic Curve (ROC). We ana-
lyzed the average values of FA and RD through the ROC
methods as previously described [20]. The area under the
curve (AUC) represented the diagnostic rate. The AUC
value of 0.7~0.9 and 0.5~0.7 represented lower and higher
accuracy, respectively.

2.6. Statistical Analysis. The clinical and demographic vari-
ables were analyzed by two-independent-sample t-tests of
SPSS 23.0 (IBM Corp., USA). Threshold-free cluster
enhancement option in the FSL randomize tool was used
to synchronously implement the nonparametric method
based on permutation. P < 0:05 indicated that the results
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were statistically significant through multiple complete cor-
rected comparisons.

3. Results

The demographic and clinicopathological factors of patients
are shown in Table 1. The average ages of RVO patients and
HCs were 52:22 ± 5:95 and 52:12 ± 5:01, respectively. The
average weights of RVO patients and HCs were 51:23 ±
9:11 and 52:35 ± 10:09, respectively.

The comparison of voxel clusters between two groups in
FA and RD presented a notably difference. The declining
mean FA value of total cerebrum in RVO group was
detected (Table 2). Additionally, the mean RD value of total
cerebrum in RVO patients was higher than that in HCs
(Table 3). The patients showed significantly lower FA values
and higher RD values in five clusters: the bilateral posterior
thalamic radiation, bilateral sagittal stratum, body of corpus
callosum, cingulum, and fornix (Figures 2 and 3).

3.1. ROC Curve. The areas under the ROC curve for the FA
values were as follows: the body of corpus callosum (CC),
0.862 (p < 0:001; 95% CI: 0.719–1.000); the right posterior
thalamic radiation (RPTR), 0.883 (p < 0:001; 95% CI:
0.759–1.000); the left posterior thalamic radiation (LPTR),
0.959 (p < 0:001; 95% CI: 0.896–1.000); the right sagittal
stratum (RSS), 0.770 (p < 0:001; 95% CI: 0.595–0.946); the
left sagittal stratum (LSS), 0.837 (p < 0:001; 95% CI: 0.667–
1.000); the right cingulum (RC), 0.893 (p < 0:001; 95% CI:
0.773–1.000); and the left fornix/stria terminalis (LF/ST),
0.796 (p < 0:001; 95% CI: 0.620–0.971) (Figure 4(a)).

The areas under the ROC curve for the RD values were
as follows: the body of CC, 0.923 (p < 0:001; 95% CI:
0.816–1.000); the RPTR, 0.918 (p < 0:001; 95% CI: 0.817–
1.000); the LPTR, 0.969 (p < 0:001; 95% CI: 0.917–1.000);
the RSS, 0.959 (p < 0:001; 95% CI: 0.896–1.000); the LSS,
0.908 (p < 0:001; 95% CI: 0.792–1.000); the RC, 0.847
(p < 0:001; 95% CI: 0.685–1.000); the LF/ST, 0.908
(p < 0:001; 95% CI: 0.792–1.000) (Figure 4(b)).

3.2. Correlation Analysis. The average FA value of the whole
brain was positively correlated with the NEI-VFQ25 score
(r = 0:769, p = 0:001) and negatively correlated with the
HADS score (r = −0:863, p < 0:0001) in RVO patients. The
mean RD value of the total cerebrum negatively correlated
with the NEI-VFQ25 score (r = −0:866, p < 0:0001) and posi-
tively correlated with the HADS score (r = 0:898, p < 0:0001)
(Figure 5).

4. Discussion

This study is the first TBSS analysis of RVO patients. We
adopted DTI scanning and TBSS analysis to probe the fiber
bundle architecture differences between the objective group
and the HCs. To be brief, our findings were that there were

(a) (b)

Figure 1: Example of RVO seen on FC and FFA. (a) RVO observed using a FC which was characterized by massive flame-like hemorrhage
(red arrow) in the retina. (b) RVO seen on FFA which was characterized by petal-shaped fluorescein leakage (red arrow) in the retina. RV:
retinal vein occlusion. FC: fundus camera. FFA: fluorescence fundus angiography.

Table 1: Demographics and clinical measurements of RVO and
HC groups.

Characteristic RVO HC

Male/female 8/6 8/6

Age (years) 52:22 ± 5:95 52:12 ± 5:01
Weight (kg) 51:23 ± 9:11 52:35 ± 10:09
Handedness 14R 14R

RVO: retinal vein occlusion. HC: healthy control. N/A: not applicable. R:
right. L: left.

Table 2: Clusters showing significant differences in FA between
RVO patients and HCs.

Variable Comparison
TFCE

corrected
p

Cluster
number

MNI
coordinates

T
values

FA

RVO<HCs

<0.01

X Y Z

BCC 1 81 96 96 −6.254
RPTR 2 58 83 89 −5.185
LPTR 3 119 62 90 −6.025
RSS 4 53 71 67 −4.187
LSS 5 130 89 61 −5.029
RC 6 79 79 97 −5.162
LF 7 116 96 68 −4.587

RVO: retinal vein occlusion. HC: healthy control. BCC: body of corpus
callosum. RPCR: right posterior corona radiata. LPTR: left posterior
thalamic radiation. RSS: right sagittal stratum. LSS: left sagittal stratum.
RC: right cingulum. LF: left fornix.
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significant differences in voxel clusters, and RVO patients
showed lower FA values than the other group, whereas
higher RD values were presented.

Until now, the TBSS approach for DTI analysis has been
widely used in neuroimaging studies. Compared to the sta-
tistical parametric mapping–based approach, TBSS averts
the insufficiency about registration and smoothing of diffu-
sion data. Furthermore, in TBSS, we can investigate the
brain globally rather than specified certain tracts [16, 23].

In this study, DTI and TBSS were applied in RVO
patients and we found reduced FA and increased RD in
the B.PTR (involve the optic radiation) which is relevant
for the connection between the thalamus and the visual cor-
tex [24]. Previous voxel-based morphometry showed that
reduced gray matter density in the occipital lobe has been
demonstrated in patients with diabetic retinopathy [25].
Malania et al. [26] have found significant diffusion abnor-
malities along the visual pathways in patients with macular
degeneration. Additionally, low FA in optic tract was espe-

cially detected in patients with retinitis pigmentosa in a pre-
vious study [27]. As the transmission of visual information
involves the whole visual system. It is assumed that the dam-
age at retina could trigger microstructural changes in brain.
FA value is influenced by various neurostructural factors and
a decrease in FA was interpreted as structural damage in
nerve bundle [28]. Consistent with the above results, the
decreased FA in our study indicated that the integrity of
tracts was impaired in RVO patients. An increase in RD
indicated the destruction of cell structure and myelin dam-
age [29, 30]. We further infer that an increase in RD suggests
that some pathologic alterations in PTR, representing the
underlying neuropathologic mechanism. Consequently, we
further deduce that this alteration might lead to visual dam-
age in RVO patients.

The sagittal stratum, a large sagittal structure, consists of
inferior longitudinal fasciculus (ILF), inferior fronto-
occipital fasciculus (IFO), and other projection fibers [24,
31]. ILF and IFO are closely related to visual information

Table 3: Clusters showing significant differences in RD between RVO patients and HCs.

Variable
Comparison

TFCE corrected p
Cluster number MNI coordinates

T valuesPatients > HCs X Y Z

RD

BCC

<0.01

1 80 96 96 5.256

RPTR 2 58 65 72 4.298

LPTR 3 117 63 87 6.248

RSS 4 51 91 68 3.284

LSS 5 130 89 61 4.096

RC 6 82 96 103 5.267

LF 7 121 100 66 5.019

RVO: retinal vein occlusion. HC: healthy control. BCC: body of corpus callosum. RPCR: right posterior corona radiata. LPTR: left posterior thalamic
radiation. RSS: right sagittal stratum. LSS: left sagittal stratum. RC: right cingulum. LF: left fornix.

HCs > Patients

Figure 2: Results of whole-brain tract-based spatial statistics analysis comparing fractional anisotropy between RVO patients and HCss. The
skeleton image (green = RD > 0:2) was overlaid by the mean fractional anisotropy image. And the red areas indicate all tracts with
significantly decreased RD values in the RVO patients, which may reflect abnormal white matter integrity (p < 0:05). Significantly lower
fractional anisotropy values were shown in the body of corpus callosum, right posterior thalamic radiation, left posterior thalamic
radiation, right sagittal stratum, left sagittal stratum, right cingulum, left fornix/stria terminalis. RVO: retinal vein occlusion. HCs:
healthy controls.
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processing. The ILF provides pivotal connections between
occipital and anterior temporal regions and also is closely
associated with the optic radiations. A study focusing on
functional anatomy of the ILF suggested that it mediated

process of visual memory and recognition of visual informa-
tion [32, 33]. The IFO was considered to connect with differ-
ent cortical regions within the frontal, occipital, and
temporal lobes. Study have once showed that IFO have a

HCs < Patients

Figure 3: Comparison of radial diffusivity in RVO patients and HCs. The skeleton image (green = RD > 0:2) was overlaid by the mean
fractional anisotropy image. And the red areas indicate all tracts with significantly increased RD values in the RVO patients, which may
reflect abnormal white matter integrity (p < 0:05). The statistically significant clusters are presented at different coordinates in these six
parts. These clusters include body of corpus callosum, right posterior thalamic radiation, left posterior thalamic radiation, right sagittal
stratum, left sagittal stratum, right cingulum, left fornix/stria terminalis. RVO: retinal vein occlusion. HCs: healthy controls.
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Figure 4: ROC curve analysis of the mean FA and RD values for altered brain regions. (a) The areas under the ROC curve for the FA values
were as follows: the body of corpus callosum (CC), 0.862 (p < 0:001; 95% CI: 0.719–1.000); the right posterior thalamic radiation (RPTR),
0.883 (p < 0:001; 95% CI: 0.759–1.000); the left posterior thalamic radiation (LPTR), 0.959 (p < 0:001; 95% CI: 0.896–1.000); the right sagittal
stratum (RSS), 0.770 (p < 0:001; 95% CI: 0.595–0.946); the left sagittal stratum (LSS), 0.837 (p < 0:001; 95% CI: 0.667–1.000); the right
cingulum (RC), 0.893 (p < 0:001; 95% CI: 0.773–1.000); the left fornix/stria terminalis (LF/ST), 0.796 (p < 0:001; 95% CI: 0.620–0.971).
(b) The areas under the ROC curve for the RD values were as follows: the body of CC, 0.923 (p < 0:001; 95% CI: 0.816–1.000); the
RPTR, 0.918 (p < 0:001; 95% CI: 0.817–1.000); the LPTR, 0.969 (p < 0:001; 95% CI: 0.917–1.000); the RSS, 0.959 (p < 0:001; 95% CI:
0.896–1.000); the LSS, 0.908 (p < 0:001; 95% CI: 0.792–1.000); the RC, 0.847 (p < 0:001; 95% CI: 0.685–1.000); the LF/ST, 0.908
(p < 0:001; 95% CI: 0.792–1.000). AUC: area under the curve, FA: fractional anisotropy, RD: radial diffusivity, ROC: receiver operating
characteristic, CC: corpus callosum, RPTR: right posterior thalamic radiation, LPTR: left posterior thalamic radiation, RSS: right sagittal
stratum, LSS: left sagittal stratum, RC: right cingulum, LF/ST: left fornix/stria terminalis.
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critical meaning in visual processing and reading [34, 35]. In
similar visual neuroscience studies, Li et al. [15] used DTI
method and indicated significant decreases in FA values in
left ILF/IFO in children with anisometropic amblyopia. Li
D. et al. [18] found an increased FA values in ILF and IFO
in patients with comitant exotropia. Furthermore, Cheng
et al. [36] reported that dyslexia may related to visual per-
ception deficits. In current study, changed FA and RD values
of SS suggested that relevant nerve tract was damaged in
RVO patients, indicating visual information processing dis-
order and visual dysfunction. On the other hand, it was
affirmed that the higher order visual processing systems of
normal individuals is hierarchically organized into two func-
tionally systems, the dorsal and ventral visual pathway [37].
The ventral stream consists of the IFO and the ILF princi-
pally, which is relevant to object recognition [38]. A DTI
study has shown that the microstructure of the ventral
stream changed in blind patients [39]. Therefore, the alter-
ations in FA and RD values of sagittal stratum might clarify
the visual impairment in RVO patients.

The corpus callosum is located at the base of the longitu-
dinal fissure of the cerebral hemisphere. As the largest bun-
dle of connective fibers in the human brain, it connects
cortical regions of both hemispheres [40]. The major func-

tion of CC is to integrate information such as motor sensa-
tion and cognitive activity between two cerebral
hemispheres [41]. Reports in the literature indicated that
the CC has an intimate connection to the visual cortex.
The well connectivity of the callosal fibers is influenced by
alterations of visual input [42]. Kwinta et al. detected low
FA values of the CC in premature infants with abnormal ste-
reoscopic vision and visual perception [43]. Consistent with
previous researches, we speculated that the decrease of FA
and increase of RD indicated the integrity of inner structure
of the CC was damaged and potential pathologic changes or
degeneration may occur in the callosal fibers in RVO
patients, which may leads to inability to integrate visual
information and further cause visual deprivation.

Interestingly, in addition to vision-related regions, we
also found changed FA and RD values in extravisual-
related regions including cingulum and fornix. As one of
the most distinctive fiber tracts in the brain, cingulum con-
nects frontal, parietal, and temporal sites. The largest effer-
ent pathway in the hippocampus is the fornix, which is the
critical component of the limbic system of brain [44, 45].
According to previous studies, significantly decreased FA
value of cingulum was discovered in depression patients
[44]. McCarthy-Jones et al. [46] found reduced integrity of
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Figure 5: Correlation between the average FA and RD values of the whole brain in RVO patients and anxiety, depression and NEI-VFQ25
scores. (a) The average FA value of the whole brain was positively correlated with the NEI-VFQ25 score (r = 0:769, p = 0:001). (b) The
average FA value of the whole brain was negatively correlations with the HADS score (r = −0:863, p < 0:0001). (c) The average RD value
of the whole brain displayed negatively correlated with the NEI-VFQ25 score (r = −0:866, p < 0:0001). (d) The average RD value of the
whole brain displayed positively correlations with the HADS score (r = 0:898, p < 0:0001). RVO: retinal vein occlusion. FA: fractional
anisotropy. RD: radial diffusivity.
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fornix in the process of childhood adversity. Therefore, the
limbic system plays an important role in regulating sensory
information in the central nervous system. Previous studies
have confirmed that patients with visual field and acuity loss
have psychological and emotional disorders [47, 48]. On the
basis of the above studies, the decrease of FA value in RVO
patients may reflect the injury of nerve tracts related to emo-
tion management. Moreover, Schafer et al. [48] have discov-
ered that the autistic neurons grow faster and have more
complex branches. We speculate that the increased RD
values in correlative tracts may clarify the neuropathologic
mechanism of RVO, which tries to repair nerve tract damage
by enhancing neuronal branching to improve their function.
Hence, visual impairment defects increase the psychological
disorders of RVO patients. Our findings may contribute to
illustrate the causes of negative emotions in RVO patients.
In addition to treatment at the disease itself, focusing more
on the psychotherapy may improve the prognosis of RVO
patients.

Our current research has some boundedness. First, the
sample capacity of RVO subjects is relatively small. We need
larger samples for further study. Secondly, there are many
aetiological causes of RVO, which may cause individual dif-
ferences and lead to imprecise results of TBSS measure-
ments. Additionally, we merely analyze the diffusivities
separately and we believe it is necessary to investigate the
interaction between FA and RD values.

5. Conclusion

It was shown that some structural alterations of correlative
tracts developed, which may reveal the neuropathologic
mechanism and may be responsible for the visual impair-
ment in RVO patients. Overall, DTI with the TBSS method
is an available tool to indicate the potential intracephalic
tract involvement in RVO patients.
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