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Abstract: In this work, recycled poly(ethylene terephthalate) (PETR) was blended with virgin high-
density polyethylene (HDPE) in an internal mixer in an attempt to obtain a material with im-
proved properties. A compatibilizer (PE-g-MA) and a chain extender (Joncryl) were added to the
PETR/HDPE blend and the rheological and thermal properties of the modified and unmodified
blends as well as those of virgin PET with virgin HDPE (PETV/HDPE). All the blends were charac-
terized by torque rheometry, differential scanning calorimetry (DSC) and thermogravimetric analysis
(TGA). The data obtained indicate that the incorporation of either the chain extender or the compati-
bilizer agent led to increases in torque (and hence in viscosity) of the blend compared to that of the
neat polymers. The joint incorporation of the chain extender and compatibilizer further increased the
viscosity of the systems. Their effect on the crystallinity parameters of HDPE was minimal, but they
reduced the crystallinity and crystallization temperature of virgin and recycled PET in the blends.
The thermal stability of the PETR/HDPE blend was similar to that of the PETV/HDPE blend, and it
was not affected by the incorporation of the chain extender and/or compatibilizer.

Keywords: PET; HDPE; PE-g-MA; joncryl; torque rheometry; thermal properties

1. Introduction

Poly(ethylene terephthalate) (PET), the most common thermoplastic polymer resin
of the polyester family, has become one of the main contributors to post-consumer plastic
waste. Its properties and low cost are responsible for its high production, which in turn
has led to serious environmental problems as most of the products manufactured with this
resin are fast disposal products which growingly accumulate in landfills [1].
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Many efforts are directed towards improving methods for recycling and reusing
plastic components from industrial and municipal waste. However, the costs for processing
recycled polymers are often not competitive with those of virgin products. Blending
post-consumer polymers under suitable conditions can provide an alternative route to the
commercialization of recycled materials with a satisfactory cost/performance ratio and
application potentials in packaging and the household and engineering sectors [2].

PET and polyolefins (PO) such as high-density polyethylene (HDPE), low density
polyethylene (LDPE) and polypropylene (PP) are the most widely used thermoplastics
in packaging applications (bottles, containers, films, etc.) which have a low shelf life [3].
HDPE has high impact strength, while PET has excellent heat resistance, hardness and
chemical stability. It is believed that PET/HDPE blends can be particularly advantageous,
as new materials with promising property combinations can be obtained at relatively low
costs. In addition, these blends can be manufactured with recycled materials, adding value
to the waste.

However, the production of artifacts from PET/HDPE blends is a challenging task,
as they are immiscible and the properties of their non-compatibilized blends are unsatis-
factory [4]. In addition, the presence of impurities such as adhesives, pigments, metals,
as well as different types of incompatible polymer components, affect the properties of
recycled plastic materials. In general, the result is poor dispersion of the components and
low interfacial adhesion, which negatively affect the physical–mechanical properties of
these materials [5].

Several studies on the compatibilization of PET and PO blends have been published [6–10].
The most commonly used reactive agents or functional groups for the compatibilization of
PET with PO are acrylic acid, maleic anhydride and epoxy groups, which react with the
carboxyl or hydroxyl end groups of PET [4,5,11,12]. Uehara et al. [13] studied PET/HDPE
blends from recycled leftover multilayer packaging films compatibilized with maleic an-
hydride (PE-g-MA) and glycidyl methacrylate (PE-GMA) and concluded that PE-g-MA
proved to be the best additive for the compatibilization of that blend. Pracella et al. [14] pub-
lished a review on the properties of PET/PO blends and showed that compatibilization with
various functionalized polyolefins allowed for greater phase dispersion, reduced interfacial
tension and improved interfacial adhesion. Taghavi et al. [15] stated that maleic anhydride
grafted polyethylene (PE-g-MA) provides better bonding between recycled poly(ethylene
terephthalate) and HDPE compared to maleic anhydride grafted ethylene/butylene–styrene
copolymer (SEBS-g-MA). Chen [16] reported that LDPE/PP/PET blend compatibilized
with maleic anhydride grafted polyolefins showed improved thermal stability, increased
elongation at break and decreased tensile strength.

Harth et al. [17] compared Joncryl ADR 4368 and pyromellitic dianhydride (PMDA)
to improve the melt properties, in order to allow film blowing. The study showed that
both modifiers are able to increase the melt strength at low concentrations of 0.1 up to
0.4 wt. % but that Joncryl is more efficient in terms of the generation of long-chain branched
molecules. Wu et al. [18] found five chain extenders with different numbers of epoxy groups
per molecule that were used to mix with discarded PET fibers and improve their viscosity
and quality loss in the recycling process. All PET samples modified by Joncryl ADR-4468
with about 9–15 epoxy groups have been proven to have higher viscosities and better
thermal properties, exhibiting a long-chain branched structure and better crystallization.
Nofar et al. [19] also examined the use of Joncryl in blends of PET/PBT that are miscible in
their amorphous phases, while the miscibility of their crystalline phase varies depending
on the cooling rate. It was verified that Joncryl mainly increased the melt viscosity of
PET and its blend with PBT and, at the low contents, increased the PET’s crystallization
rate. The strain-at-break values of the blends were also increased with the use of only
0.2 wt. % Joncryl.

The molar mass of PET decreases during melt processing due to high temperatures
and hydrolytic degradation, an effect enhanced during processing of recycled PET due to
the presence of contaminants that act as catalysts for hydrolytic degradation [20]. Therefore,
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to minimize this problem and to compensate for thermal, oxidative and/or hydrolytic
degradation during processing, chain extenders are added to PET in order to recover or
to increase its molar mass during processing and to act as a reactive compatibilizer for
polymer blends [19–26]. Duarte et al. [26] studied chain extension during processing and
reprocessing of virgin and recycled PET and showed that levels of 0.5 and 1.0% of the
multifunctional epoxy oligomer (Joncryl ADR 4368) were sufficient to compensate for
sample degradation. Nofar et al. [19] reported that the addition of the commercial chain ex-
tender additive (Joncryl ADR 4468) in poly(butylene) terephthalate/recycled poly(ethylene
terephthalate) blends increased melt viscosity. However, additive contents above 0.8%
delayed recycled poly(ethylene terephthalate) crystallization, while 0.4% content had an
opposite effect, acting as a nucleating agent, increasing the crystallization rate of recycled
poly(ethylene terephthalate).

Considering the above, the need for improvements in recycling processes and their
importance to the environment, it becomes necessary to study and develop new methods
of processing these wastes and to enable new applications. So far, there are reports on the
compatibilization of PET/HDPE blends with chain extenders based on epoxy compounds
(Joncryl) and their joint action with PE-g-Ma. It is important to investigate this system for
the possible reuse of these polymers.

Therefore, the objective of this work is to evaluate the effect of a chain extender
(Joncryl) and its combination with a compatibilizer (PE-g-MA), on the characteristics of
PET/HDPE blends obtained from post-consumer and virgin PET (PETR and PETV) and
virgin HDPE, with respect to their rheological and thermal properties.

2. Methodology
2.1. Materials

The high-density polyethylene (HDPE) JV060U, with 0.957 g/cm3 and MFI of
7.0 g/10 min, was supplied by Braskem (Maceió, Brazil) [27]. DSC data revealed that
it melts between 105 and 140 ◦C, with a peak temperature at 134 ◦C [28].

The virgin poly(ethylene terephthalate) (PETV), brand name Cleartuf Turbo, was
supplied by M&G Polyester (São Paulo, Brazil). According to the manufacturer, this
material has an intrinsic viscosity of 0.8 dL/g, density of 1.39 g/cm3 and melting point of
246 ◦C [29]. The post-consumer recycled PET (PETR) used in this study came from colorless
soft drink containers (bottles) collected in the state of Paraíba and was supplied as flakes
by the company DEPET/PB (Campina Grande, Brazil).

Maleic anhydride grafted polyethylene (PE-g-MA) trade name Polybond 3009 with
1% maleic anhydride, 0.95 g/cm3 density, melt flow index of 5.0 g/10 min and melting
temperature of 127 ◦C [30] was supplied by Chemtura (Rio Claro, Brazil) and used as
a compatibilizer for PETV/PEAD and PETR/PEAD blends. The amount of PET-g-MA
employed in each blend was 10% w/w as suggested in the literature [28].

The multifunctional epoxy additive Polyad PR 002 (a blend of Joncryl 4368 and Joncryl
4370), supplied by BASF (São Paulo, Brazil), was used as a chain extender for PET and,
in this paper, will be called “Joncryl”. With a weight average molar mass of 6800 g/mol,
this additive contains 4 to 10 units of epoxy groups per molecule [31,32]. The amount of
chain extender used in the blends was 1% w/w, an amount sufficient to promote molar
mass recovery [20].

2.2. Experimental Procedures
2.2.1. Blend Processing

PETV and PETR were oven dried before processing at 130 ◦C for 6 h. HDPE, compati-
bilizer and chain extender were used as received. All samples (neat polymers and their
blends with and without the additives) were processed in Thermo Scientific Haake Rheomix
3000 (Thermo Fisher Scientific, São Paulo, Brazil) internal mixer fitted with high-intensity
roller-type rotors operating at 60 rpm (N) for 15 min (tp) and 265 ◦C wall temperature (T0).
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Pure polymers and the neat blends were processed and the average values of three
processing runs are presented here.

Virgin and recycled PET containing 1% w/w Joncryl were coded PETVJ and PETRJ,
respectively. Joncryl was not added to neat HDPE as it is a polyester-specific additive,
which should be inert with polyolefins.

Pristine, additivated, compatibilized as well as additivated and compatibilized blends
of PET (virgin or recycled)/HDPE with 1:3; 1:1 and 3:1 mass ratios were manufactured.
Additivated compositions had 1 phr Joncryl; compatibilized compositions had 10 phr
PE-g-MA and additivated and compatibilized compositions had 1 phr Joncryl and 10 phr
PE-g-MA.

Pristine blends containing virgin or recycled PET were coded BLV x/y and BLR x/y,
respectively. Compatibilized blends with virgin and recycled PET were coded BLVM x/y
or BLRM x/y. Compatibilized and additivated blends were coded BLVMJ x/y or BLRMJ
x/y, respectively. In all cases, x and y refer to the mass ratio of PET (PETV or PETR) and
HDPE in the blend.

The systems investigated are listed in Table 1.

Table 1. Samples’ compositions and codes.

Code
Mass (g)

Total
PETV PETR HDPE Joncryl PE-g-MA

PETV 301 - - - - 301
PETR - 301 - - - 301
PETVJ 301 - - 3 - 304
PETRJ - 301 - 3 - 304
HDPE - - 207 - - 207

BLV (1:3) 61 - 181 - - 242
BLR (1:3) - 61 181 - - 242
BLV (1:1) 121 - 121 - - 242
BLR (1:1) - 121 121 - - 242
BLV (3:1) 181 - 61 - - 242
BLR (3:1) - 181 61 - - 242

BLVJ (1:3) 61 - 181 2.45 - 245
BLRJ (1:3) - 61 181 2.45 - 245
BLVJ (1:1) 121 - 121 2.45 - 245
BLRJ (1:1) - 121 121 2.45 - 245
BLVJ (3:1) 182 - 61 2.45 - 245
BLRJ (3:1) - 182 61 2.45 - 245

BLVM (1:3) 53 - 187 - 24 266
BLRM (1:3) - 53 187 - 24 266
BLVM (1:1) 119 - 119 - 24 264
BLRM (1:1) - 119 119 - 24 264
BLVM (3:1) 187 - 53 - 24 266
BLRM (3:1) - 187 53 - 24 266

BLVMJ (1:3) 53 - 187 3 24 269
BLRMJ (1:3) - 53 187 3 24 269
BLVMJ (1:1) 119 - 119 3 24 267
BLRMJ (1:1) - 119 119 3 24 267
BLVMJ (3:1) 185 - 53 3 24 267
BLRMJ (3:1) - 185 53 3 24 267

2.2.2. Rheological Characterization

Analysis of temperature T(t) and torque Z(t) as functions of processing time at the last
stages of melt processing allows us to estimate the rheological characteristics (viscosity
dependence on temperature and shear rate) of the processed material and to evaluate
incipient degradation rate during processing [33–37].
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During the last stage of processing of polymeric systems (melt), torque Z is propor-
tional to the melt viscosity that, in turn, depends exponentially on the temperature of the
molten polymer inside the laboratory mixer, as:

η = kexp{−β(T − T∗)} (1)

where T is the melt temperature, T∗ is an arbitrary reference temperature and β is the
viscosity temperature coefficient [35]. Therefore:

Z = kexp{−β(T − T∗)} (2)

or
lnZ = lnk− β(T − T∗) (3)

During processing of molten polymers in the internal mixer, there is predominantly
shear flow. The deformation rate can be associated with shear rate, which depends on rotor
speed (N) and the geometry of the equipment. For a fluid whose rheological characteristics
can be represented by the power law, torque is given by:

Z = k1Nnexp{−β(T − T∗)}, (4)

where k is a constant for tests performed in the same apparatus and processing conditions,
i.e., the same mixer/rotors combination, fill factor and rotor speed; N is the rotation speed,
and n is the pseudoplasticity index.

The temperature effect can be eliminated by setting the adjusted torque Z∗ to the
reference temperature T∗ as follows:

Z∗ = Zexp{+β(T − T∗)}. (5)

For the adjusted torque, Equation (4) takes the form:

Z∗ = k1Nn, (6)

or
lnZ∗ = lnk1 + nlnN. (7)

By using Equations (2) and (6), it is possible to evaluate the rheological parameters β
and n, respectively, from temperature and torque values at the end of processing. This is
accomplished from two series of experiments:

(a) Tests conducted at constant rotor rotation speed (N) and different processing chamber
wall temperatures (T), which allow the determination of β by linear regression of lnZ
versus T − T∗, where Z and T are average torque and temperature values and T∗ an
arbitrary reference temperature, and

(b) Tests conducted at constant processing chamber wall temperature (T) and different ro-
tor rotation speeds (N), which allow calculation of the parameter n by linear regression
of lnZ versus lnN.

Three tests were performed at different processing chamber wall temperatures (265,
280 and 290 ◦C) to obtain the temperature coefficient of viscosity β of the PETV/PEAD
blend (1:1). Three other tests were performed at different rotor speeds (30, 60 and 120 rpm),
keeping the chamber wall at a temperature of 265 ◦C, to obtain the pseudoplasticity index
n for the same samples.

Degradation and recovery during processing.
Polymers may either thermally degrade or crosslink during processing, which changes

their viscosity, and hence torque, during processing. Melt temperature also varies with
composition and processing conditions and since torque and viscosity are strongly tem-
perature dependent, in order to compare results, it is necessary to eliminate the effect
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of temperature on torque, so that only the effects of molar mass variation over time are
observed. In order to do this, torque data is adjusted to a common reference temperature
T∗ using the temperature coefficient (β) previously calculated. The adjusted torque Z∗ is
then obtained as

Z∗ = Zexp{+β(T − T∗)}. (8)

The expressions above assume stable polymeric resins, that is, that do not degrade and
whose molar masses do not change during processing. However, most polymers gradually
degrade during processing at moderately high temperatures, resulting in a drop in their
average molar mass. It is demonstrated that, for a fluid whose rheological characteristics
can be represented by the power law, the “constant” k of Equation (2) is a function of the
weight average molar mass Mw [38], and then:

k ≈ k′M2.5+n
w . (9)

Taking into account the definition of adjusted torque, Equation (9), we obtain:

Z∗ ≈ k′M2.5+n
w . (10)

Therefore, the relative rate of change of the adjusted torque at the final stage of
processing will be given by:

RZ =
1

Z∗
dZ∗

dt′
(11)

which is a measure of the rate of degradation (RZ < 1) or chain length increase (RZ > 1).
The value of RZ × 100 represents the percentage of torque variation per unit of time

at the final stage of processing under a given set of experimental conditions (T, rpm, rotor
geometry and chamber temperature).

RZ was determined for different samples using the β value estimated for the PET/HDPE
blend (50/50) and the adjusted torque Z∗(t) estimated in a small time interval at the final
stage of processing. The mean value of Z∗ was determined and then dZ∗/dt was estimated
by linear regression of Z∗ versus time.

If the pseudoplasticity index n is known, the rate of change of the weight average
molar mass can be estimated as follows:

RM =
1

Mw

dMw

dt
=

1
2.5 + n

RZ. (12)

2.2.3. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) analyses were performed on a Mettler Toledo
DSC-1 instrument (Barueri, Brazil) using a standard aluminum crucible with a volume
of 40 µL. The tests were carried out under nitrogen flow rate of 50 mL/min and 5 to
7 mg samples. PET and PET/HDPE blend samples were investigated using a three-stage
thermal program: heating from 20 to 280 ◦C, cooling to 20 ◦C and reheating to 280 ◦C. The
HDPE samples were analyzed using a similar thermal program but with the maximum
temperature set at 200 ◦C. The heating/cooling ratio for all samples was 10 ◦C/min.

The latent heat of crystallization/melting per unit mass of the crystallizable polymer
was determined as:

∆H =
E0

wPm′S
(13)

where mS is the sample mass and wP is the mass fraction of the polymer under analysis.
The change in crystallinity during the event is given by:

∆X =
∆H

∆H0
m ′

(14)
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where ∆H0
m is the latent heat of melting of the 100% crystalline polymer. ∆H0

m values of
293 J/g and 145 J/g for HDPE and PET, respectively, are provided in the literature [36,37]. In
this work, it was assumed that both the HDPE and the compatiblizer (PE-g-MA) crystallize
and melt at the same temperature, and that their limit latent heats are equal; therefore, in
the compatibilized blends, the weight fraction wP in Equation (13) was considered to be
the sum of the fractions of HDPE and PE-g-MA.

2.2.4. Thermogravimetry

Thermogravimetric analyses (TGA) were performed on a Shimadzu DTG-60H instru-
ment, using alumina crucible under nitrogen atmosphere, with sample mass between 10
and 12 mg. Samples were heated at a rate φ = 10 ◦C/min from 30 ◦C to 700 ◦C under
inert atmosphere (100 mL/min nitrogen gas). Samples of all PET/HDPE blends and the
components HDPE, PETV and PETR, as well as the compatibilizer (PE-g-MA) and the
additive (Joncryl) were analyzed.

3. Results and Discussion
3.1. Rheological Characterization

Figure 1 shows torque and temperature versus time for neat HDPE and PETR as
well as for the additivated and the additivated and compatibilized blends. The pure and
additivated PETV and PETV/HDPE systems showed a similar behavior.

Melting of PETV, HDPE and the blends with PETV occurred in approximately 3 min
of processing causing a decrease in torque. The melting time for PETR and its blends was
6 min, probably due to the larger volume (lower bulk density) of the PETR flakes, which
made it difficult to fill the processing chamber.

In the last 3 min of processing (12–15 min), the temperature—around 268 to 270 ◦C—
is nearly independent of composition. Torque, which is proportional to melt viscosity,
varies significantly with composition, being almost triple for HDPE (10 Nm) than for
PET (3.5 Nm). Torque for the PET/HDPE blend with 75% HDPE is equivalent to that of
neat HDPE, whereas the torque for the blend with 75% PET is similar to that of neat PET,
reaching an intermediate value (5.5 Nm) in the blend with 50% of each component. No
significant differences were observed between the blends with PETV and PETR.

Reproducibility results on the final processing stage on torque and temperature (12
to 15 min) of PETV/HDPE and PETR/HDPE blends showed that the temperature is
reproducible in the range ±1 ◦C to ±2 ◦C and the torque up to 5 to 15% of the measured
value. These are the limits of the accuracy of the results obtained in the present work. In
general, there was good reproducibility of the data, and the differences between the torque
curves were very small.

Figure 2 shows that the incorporation of both 1 phr Joncryl (chain extender) and 10%
PE-g-MA (compatibilizer) resulted in an increase in melt temperature (5–7 ◦C). The effect
of adding solely the compatibilizer is minimal (approximately 1 ◦C average temperature
increase in the last 3 min of processing). However, the addition of the chain extender
moderately affects the temperature (3 to 4 ◦C) in the final stage of processing. This behavior
was attributed to the recovery of the system’s molar mass, as the melting temperature in
polymers represents the breaking of secondary bonds between the chains and, the longer
the chains, the more thermal energy needs to be supplied [20].

Viscosity is a material parameter that is very sensitive to both temperature and weight
average molar mass. As mentioned previously, in order to eliminate the dependence of vis-
cosity, and hence torque, on temperature, the adjusted torque Z∗ is defined (Equation (5)).
Figure 3 shows the effect of additivation and compatibilization on the average adjusted
torque Z∗ in the last 3 min of processing (12 to 15 min) evaluated at the reference tempera-
ture T∗ = 265◦ and a temperature coefficient β = 0.030 ◦C−1 obtained through Equation (2),
as well as its difference with the average adjusted torque of the pristine blends ∆Z∗.
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The results obtained show the strong effect of both additivation and/or compatibiliza-
tion on the adjusted torque of the blends.

The addition of the compatibilizing agent (10% PE-g-MA) (BLM blends) was found to
moderately increase the adjusted torque when compared to additivated and additivated
and compatibilized blends. Increases in the range of 30% to 75% relative to the non-
compatibilized blends are observed. These increases are practically independent of the
blend’s composition (the PET/HDPE ratio and the kind of PET (virgin or recycled)) used.

The incorporation of a small quantity of chain extender (1 phr Joncryl) (BLJ blends) led
to torque increases between 50% and 500% compared to the pristine blend. The increases
depended on the composition of the blend and increased with PET content, indicating
that the additive (chain extender) acts on the polyester and not on the polyolefin, as
expected [39]. The effect of the additive was significantly greater in compositions prepared
with PETV than in those containing PETR. We believe this difference in behavior to be
associated with the lower molecular weight of PETR, as the presence of contaminants in
the recycled product should enhance its degradation. Besides, moisture in PETR flakes is
higher than in PETV pellets and this should also enhance degradation during processing.

The joint incorporation of compatibilizer and chain extender (BLMJ blends) further
increased the viscosity of the system: 125% to 950% compared to the pristine blends. This
increase was greater than the sum of the independent effects of the compatibilizer and
additive, revealing the synergistic effect between the two. However, the joint effect was
greater in the blends with PETR than in those containing PETV. These results clearly show
the efficiency of the compatibilizer and the additive in PET/HDPE blends and fully justify
the present work.

Figure 4 shows a hypothetical model of the interaction between the surface of the
chain extender (Joncryl) and the compatibilizer (PE-g-MA), revealing that there can be a
chemical reaction between the two components and proving their synergism.
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Degradation and Recuperation during Processing

In addition to the average temperature inside the mixing chamber (◦C) and the average
set torque (Nm), the rate of change of the set torque (Nm/min) was evaluated by linear
regression of Z∗(t) versus t in the last 3 min of processing. The relative rate of change of the
adjusted torque RZ (%/min) and the relative rate of change of the weight average molar
mass RM (%/min) were evaluated using the pseudoplasticity index n = 0.8, calculated
using Equation (5).

It is worth noting that negative rates correspond to the decrease in viscosity (Rz) and
molar mass (RM) with time, i.e., they are measures of the incipient degradation rate of the
polymers during the last processing stage. On the other hand, positive rates correspond
to the increase in viscosity and molar mass with time and reveal the recovery of physical
properties of the melt possibly due to chain extension, branching and/or cross-linking
of the polymer chains. Experience indicates that only values of |RM| > 1 %/min can be
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considered positive experimental evidence of degradation or recovery, and smaller values
can be included in the uncertainty [36].

Figure 5 shows the relative rate of change of the weight average molar mass in the last
minutes of processing in the internal mixer, for the pure components and for the pristine
(BL), additivated (BLJ), compatibilized (BLM) and for the additivated and compatibilized
(BLMJ) blends.
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Figure 5 shows a moderate degradation of the neat blends (BL) with higher PET
content and the absence of degradation in the blends with higher HDPE content. Regarding
the type of PET (virgin versus recycled), no major differences were observed, except for
the blend with 50% of each component, which presents an exceptional character: higher
viscosity in the blend with PETV and degradation during processing in the blend with
PETR. The reason for this behavior is not clear at the moment and might be associated with
differences in the moisture content of these blends or to differences in morphology. Further
in-depth studies need to be performed in order to address this issue and to explain this
phenomenon very clearly.

A comparison of the blends containing Joncryl (Figure 3), indicates a significant in-
crease in viscosity—almost double—and a slight decrease in the degradation rate during
processing (Figure 5) in PET and blends containing 75% PET, thus proving the efficiency
of this additive towards PET. Guclu [40] investigated the effect of using a multifunctional
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epoxide chain extender (Joncryl® ADR 4468) on the thermal stabilization and rheological
properties of recycled polyethylene terephthalate and its blends with polybutylene tereph-
thalate, and the reactivity of Joncryl was more noticeable in blends with higher recycled
polyethylene terephthalate contents due to the higher available internal reactive sites of
much shorter recycled polyethylene terephthalate molecules.

Comparison of the compatibilized blends with pristine blends yields a significant
increase in viscosity (30% to 100%) with compatibilization and no significant variation in
degradation during processing. A similar result was obtained by Jarukumjorn et al. [41]
when they studied the rheological behavior of recycled HDPE blends with virgin PET using
a capillary rheometer. The authors observed that the viscosities of the blends decreased
as the HDPE component in the blends decreased. The viscosities of the PE-g-MA com-
patibilized blends (2, 5, 7, 10 phr) were higher than the non-compatibilized blends and
increased with the amount of compatibilizer. The increase in viscosities is attributed to
greater interaction between the components of the blends.

Both additivation and compatibilization result in quite significant increases in the
viscosity of the blends, as already indicated (Figure 3). The simultaneous incorporation of
Joncryl and PE-g-MA appears to have a synergistic effect on viscosity, leading to increases
greater than those expected from an additive behavior. No significant variations in degra-
dation were observed during the processing of the blends that can be attributed to the joint
effect of the additive and the compatibilizer.

Comparison of all available results reveals that, with regard to incipient degradation
during processing, only PET and PET-rich blends show significant values, -RM > 1 %/min,
as shown in Table 2. Degradation during processing is rather moderate in all cases. Both
additive and compatibilizer incorporation decrease degradation discretely and recycled
PET is more sensitive to degradation than virgin PET.

Table 2. Parameter: RM (%/min).

Composition PETV PETR BLV (3:1) BLR (3:1) BLR (1:1)

Pristine — 1.8 2.9 2.6 2.0
Additivated (Joncryl) 1.6 3.1 1.2 1.4 —

Compatibilized (PE-g-MA) — 1.8 2.3 1.5 2.3
Additivated + Compatatibilized

(Joncryl + PE-g-MA) 1.6 3.1 1.7 1.5 —

—: did not have significant degradation (RM < 1%).

Some authors [20,26] have suggested two explanations for the observed behavior:
(a) that the chain extender (Joncryl) added to the blends acted as a lubricant and that more
severe processing conditions would be needed to fully disperse this additive in the blend
and (b) that PETR degrades more during processing than PETV.

3.2. DSC Thermal Analysis: Melt Crystallization

Crystallization from the melt during cooling are reported as heat flux (J) versus
time (t). Separate peaks for the crystallization of each component were observed in the
blends, as illustrated in Figure 6, for PET/HDPE blends with virgin or recycled PET at
various concentrations and additivated with Joncryl or with a combination of Joncryl
and compatibilizer.

In Figure 6, the phase change events are coded as shown below: C1: PET crystallization
during cooling; C2: HDPE crystallization during cooling.

As with torque rheometry, the influence of introducing the recycled material into the
mixtures, virgin PET samples were compared with the corresponding recycled materials.
No cold crystallization events were observed during heating, indicating that the PET
completely crystallized in the processed samples.
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(b) blends with 1:3, 3:3, 3:1 ratios, additivated (J) and compatibilized and additivated (MJ), crystallized
from the melt with crystallization peaks (C), identified for PET (1) and HDPE (2).

On the other hand, it was observed that HDPE crystallized rapidly at around 115 ◦C
exhibiting a crystallinity of 60% and that PET crystallized more slowly at around 205 ◦C
exhibiting a crystallinity of 25 to 30%. No significant differences in crystallization were
observed between virgin and recycled PET. The incorporation of 1 phr Joncryl hindered PET
crystallization, which crystallized at 22 ◦C (PETV) and 14 ◦C (PETR) lower temperatures
than the pure polymer and also exhibited a 4 to 5% lower crystallinity. This may have
occurred due to the interaction of the additive with PET and to a lower activation energy of
the system.

The crystallization parameters from the melt presented in Table 3 for the neat, additi-
vated and additivated and compatibilized blends suggest that the differences in morphol-
ogy did not affect HDPE crystallization but rather PET crystallization—particularly in the
case where the PET content (virgin or recycled) was the smallest (25%).
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Table 3. Crystallization parameters of the neat, additivated, compatibilized and additivated and
compatibilized blends.

Composition
(HDPE/PET)

Blends with PETV Blends with PETR

Tc1
(◦C)

Tc2
(◦C)

∆Hc1
(J/g)

∆Hc2
(J/g)

∆Xc1
(%)

∆Xc2
(%)

Tc1
(◦C)

Tc2
(◦C)

∆Hc1
(J/g)

∆Hc2
(J/g)

∆Xc1
(%)

∆Xc2
(%)

Pure
1:3 207.1 107.8 41.6 159.1 29.7 54.3 205.4 106.4 41.8 164.7 29.9 56.2
1:1 202.6 116.8 39.2 164.6 28.0 56.2 197.2 118.2 26.3 166.6 18.8 56.9
3:1 150.7 117.6 24.9 172.6 36.1 58.9 165.0 117.5 2.9 168.5 2.0 59.0

1% Joncryl
1:3 153.5 107.8 7.1 165.7 5.1 56.6 194.6 117.0 37.6 168.4 26.8 57.5
1:1 170.6 117.2 17.2 163.6 12.2 55.8 188.6 117.8 31.5 168.9 22.5 57.6
3:1 151.1 118.1 1.8 164.6 1.3 56.2 195.1 117.3 112.4 52.9 80.1 18.7

10% Pe-g-
MA

1:3 198.7 106.0 43.9 244.3 31.4 83.4 198.9 105.6 42.2 224.7 30.2 76.7
1:1 — 117.7 — 180.4 — 61.6 188.4 118.0 21.8 188.5 15.6 64.3
3:1 — 117.8 — 188.2 — 64.2 — 118.4 — 174.1 — 59.4

Joncryl+
Pe-g-
MA

1:3 187.6 118.0 34.6 229.0 24.7 78.2 181.0 117.1 26.6 228.8 19.0 78.1
1:1 — 118.2 — 199.7 — 68.2 188.7 118.4 25.4 205.2 18.2 70.0
3:1 — 118.9 — 196.5 — 67.1 — 119.1 — 186.4 — 63.6

The HDPE in the blends crystallizes as a sharp and moderately asymmetric peak
(event C2). The type of PET (V or R) or the incorporation of the additive (Joncryl) or of
the additive and compatibilizer (Joncryl + PE-g-MA) did not significantly affect HDPE
crystallization. HDPE crystallization temperature decreases from 118 ◦C (neat HDPE) to
108 ◦C (blend with 75% PETV) or 106 ◦C (blend with 75% PETR): a significant drop of 10
to 12 ◦C. The degree of HDPE crystallinity in the blend was not significantly affected by
the presence of PET or chain-extending additive (Joncryl). However, the incorporation
of compatibilizer (PE-g-Ma) clearly increased the crystallinity and this effect was more
significant on the 1:3 blends, i.e., those with 75% HDPE.

PET in the blends crystallizes in a wider and more symmetrical peak than HDPE
(event C2) at temperatures around 200 ◦C when the HDPE content is 0 to 50%, dropping
to 150 ◦C in the blends with 25% PETV and 165 ◦C in the blends with 25% PETR: a very
significant 35 to 50 ◦C drop. The crystallinity remains around 30% in the blends with
PETV but suffers a significant and progressive decrease with increasing HDPE content
in the blends with PETR, reaching 2% crystallinity in the blends with 75% HDPE. These
discrepancies in crystallization behavior between PET and PETR are well-known in the
literature, being attributed to the different origins of these materials; in the case of PETR
there is the presence of different crystalline phases resulting from the contamination of this
waste [7,42–44].

The additivation (1 phr Joncryl) greatly affects the crystallization of PET (event C1).
In samples prepared with virgin PET, decreases in peak crystallization temperature of
between 20 and 50 ◦C for the different blends were observed while the degree of crystallinity
decreased, reaching values of 15 to 35%, which can be attributed to a significant chain
extension reaction with the products hindering PET crystallization. In the samples prepared
with recycled PET, a similar effect is observed but of less intensity: the peak temperature
decreases by 10 ◦C and crystallinity by 5%, approximately.

The incorporation of Joncryl into the HDPE/PET blend promotes an increase in
molecular weight and the formation of cross-linking points increases the difficulty of
organization and aggregation of the PET chains. Thus, a higher activation free energy is
required for the formation of the crystalline phase as well as the diffusion of PET chains
toward the crystal surface during cooling, and this will actually decrease the nucleation
rate of PET. As a result, the crystallization peak corresponding to PET shifts to a lower
temperature, and the crystallization of PET decreases in the presence of the chain extender
additive. A similar result was observed by Zhang et al. when a polymeric methylene
diphenyl diisocyanate PMDI was added to R-PET/LLDPE/SEBS-g-MA blends [45].

PE-g-MA compatibilization resulted in the absence of PET crystallization (C1) in the
blends (1:3) and (1:1) PETV/HDPE and in PETR/HDPE (1:3) blends. The simultaneous
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effect of additivation and compatibilization in the blends resulted in a crystallization
behavior similar to that observed for the compatibilized blends. Bae et al. [46] reported that
the disappearance of the PET peak in the crystallization during cooling suggests that the
temperature of PET crystallization coincided with the usual TC of PP, due to the chemical
bonding product between the dispersed PET phase and the functionalized polyolefin. In
fact, it is possible that the grafted copolymer located at the interface may act as a polymeric
diluent to retard PET crystallization. Matias et al. [47] obtained similar results for the
mixture of recycled PET and PP and reported that the presence of compatibilizer affects
PET crystallization.

Tariq et al. [48] found similar results when studying the properties of blends of
polyethylene terephthalate (PET) and polypropylene (PP) compatibilized with PP func-
tionalized with maleic anhydride (PP-g-MAH). The authors reported that PET crystallinity
was low due to the impediment created to the formation of crystals by the interactions
generated between PP and PET after the addition compatibilizer.

3.3. TGA Thermal Analysis

The thermal stability of the neat components, HDPE, PETV and PETR, the additive Jon-
cryl and the compatibilizer PE-g-MA, as well as that of the PETV/HDPE and PETR/HDPE
blends, with and without the incorporation of the additive or both the additive and com-
patibilizer were investigated by TGA. The TGA and DTG curves for the additivated and
additivated and compatibilized (MJ) blends are presented in Figure 7.
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In all cases, between the temperatures of 100 ◦C and 200 ◦C there was a small initial
mass loss (1 to 2%) attributable to the moisture present in the samples. PETV and PETR
samples showed similar results, with 85% mass loss between 365 and 480 ◦C and with total
(extrapolated) loss between 750 and 850 ◦C. HDPE and PE-g-MA showed similar results,
with 95% mass loss between 404 and 480 ◦C and total mass loss at 600 ◦C. Joncryl, the
oligomer, lost 90% of mass between 230 ◦C and 460 ◦C, with total mass loss observed at
600 ◦C.

Replacing virgin PET with recycled PET did not cause significant changes in the degra-
dation profile of the PET/HDPE blends. Simultaneous compatibilization and additivation
also did not change the stability of the blends.

From the DTG profiles, a broad peak corresponding to a single degradation process
is observed for maximum mass loss for all PET/HDPE blends. Chen et al. [49] also
observed only one peak in the DTG curve at 446 ◦C for the recycled HDPE/PET blend. The
authors suggested that the blend is composed of a series of interconnected monomers, thus
allowing a temperature increase to promote random chain scission by thermal degradation
and depolymerization occurring at weak sites in the polymer chains.

The higher amount of residual mass found in samples containing PETR is consis-
tent with the presence of inorganic filler, an additive currently used in the processing of
commercial-grade polymers [50]. This is a strong indication that the replacement of virgin
material with residual polymeric residue should not impair the thermal degradation of
HDPE/ PET blends.

4. Conclusions

The present work follows the current trend on the study and analysis of post-consumer
plastic waste, aiming to improve its properties from a technological point of view and
favoring its wider use. The data obtained indicates that the incorporation of 1% of a chain
extender additive (Joncryl) and 10% of a compatibilizer (PE-g-MA) promoted a considerable
increase in the melt viscosity (and hence torque) of PETV, and this increase was even higher
for PETR, especially in the presence of the chain extender. This increase occurred for both
blends, regardless of the composition and kind of PET used. PE-g-MA compatibilized
blends also showed a considerable elevation in torque which increased with the amount of
HDPE in their composition, regardless of the kind of PET (virgin or recycled) used. Torque
was considerably higher for the blends additivated and compatibilized when compared
with those that were only compatibilized or only additivated, proving that there is an
interaction between the additive and the compatibilizer. Although blend degradation
rate during processing increases with PET content, it is smaller in PETR/HDPE blends
compared to PETV/HDPE blends. Joncryl incorporation hinders the crystallization of
both PET and PET/HDPE blends but does not affect the crystallization of HDPE. The
addition of PE-g-MA minimally affects the crystallization of HDPE in the blend; however,
it significantly alters the crystallization of PET. The combined incorporation of the additive
(Joncryl) and compatibilizer (PE-g-MA) only affects PET crystallization. The thermal
stability of the blends is similar to that of neat PET. Incorporation of both additive and
compatibilizer does not alter the thermal stability of the blends.

Our data indicates that it is possible to develop polyolefin (HDPE)/ polyester (PET)
blends and to promote increases in melt strength and torque recovery with proper addi-
tivation. The efficiency of PE-g-MA and Joncryl in the compatibilization of this mixture
was proven.
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