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Introduction
As metabolomics continues to emerge as a powerful platform for profiling small mol-
ecules in various areas of research [1–3], interpretation of the results of such stud-
ies remains of paramount importance. This is particularly critical in untargeted 
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experiments, in which as many metabolites as possible are assayed in order to build a 
comprehensive metabolic profile of the phenotype under study [4]. Such a study does 
not usually begin with a specific hypothesis, but seeks to develop and refine hypotheses 
through downstream analysis of the data. A typical metabolomics analysis workflow usu-
ally involves identifying a subset of metabolites of interest in relation to the study objec-
tive, which can be achieved in various ways not limited to statistical association testing, 
multivariate statistical approaches, and machine learning (classification and regression) 
[5]. Once metabolites of interest are identified, the next step often involves placing these 
in a biological context. Pathway analysis (PA) is perhaps the most well-known computa-
tional approach for doing so, typically providing users with a list of pathways considered 
enriched in the condition of interest (e.g. disease vs. healthy) [6–9]. These pathways are 
curated using both manual and computational approaches and deposited in databases, 
representing sets of biochemical reactions that collectively perform a specific function 
[10].

Conventional PA approaches widely used across omics data types (genomics, tran-
scriptomics, proteomics, and metabolomics, etc.) commonly focus on a two-group 
analysis, seeking to identify significantly impacted pathways between the study groups. 
These methods can be broadly classified into three main categories: over-representation 
analysis (ORA) [11], functional class scoring approaches such as GSEA [12], and net-
work topology-based approaches [13]. While there exists a wealth of literature describ-
ing and evaluating these approaches in transcriptomics [6, 9, 13], the development and 
application of these methods is only at the early exploration phase in the metabolomics 
context [14–16]. Despite the popularity and success of these methods, there are several 
use cases in which they are unsuitable: i) studies in which there is more than a single 
contrast (or continuous outcome) to be analysed, and ii) when the aim is to estimate the 
importance of a pathway at an individual sample level, rather than across experimental 
groups as a whole.

Single-sample PA (ssPA) refers to methods used to compute a score representing the 
enrichment level of each pathway for each individual sample in a study [17]. Another 
way to conceptualise ssPA is that it can be used to transform individual molecular-level 
data to the pathway level (Fig. 1a). For example, the metabolite abundance matrix Xn×m , 
with n rows representing samples and m columns representing metabolites, could be 
transformed to the matrix Yn×p with rows representing identical samples but columns 
instead representing pathways (Fig.  1b). This metabolite to pathway-level transforma-
tion is achieved using ssPA algorithms, which utilise existing knowledge from pathway 
databases [18–21] to combine metabolite-level measurements into pathway scores. This 
principle of transforming a data matrix from the individual molecular measurements to 
the pathway space is generalisable to any type of omics data, including metabolomics. By 
calculating pathway scores for each sample within a dataset, the concept of ssPA over-
comes the limitations of conventional PA methods, allowing for multi-group PA and 
enabling PA at the individual sample level.

Current ssPA methods can be broadly categorised into three main groups: dimen-
sionality reduction (DR)-based [22, 23], GSEA-based [24, 25], and z-score-based 
[26]. The earliest example of ssPA can be attributed to Tomfohr et  al. [22], who 
developed the PLAGE method for calculating pathway scores using singular value 
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decomposition (SVD). ssGSEA and GSVA are two similar ssPA methods based on the 
Kolmogorov–Smirnov like random walk statistic proposed by Subramanian et al. [12] 
for conventional GSEA. The z-score method developed by Lee et  al. [26] calculates 
pathway scores based on a normalised z-score across all molecules in a pathway. Full 
details of these methods can be found in the original articles [22, 24–26].

By generating sample-wise pathway scores, ssPA enables numerous downstream 
analyses to be performed that cannot be achieved using conventional PA approaches. 

Fig. 1  Schematic representation of single sample pathway analysis. a Transformation of omics data from 
the metabolite space (left) to the pathway space (right). Data point colours represent sample groups. b Left 
represents original omics data matrix (metabolomics) Xn×m , and right represents ssPA-transformed pathway 
level omics data matrix Yn×p . Both matrices contain rows representing the same samples, but ssPA transforms 
the columns of the original matrix representing individual molecular measurements (in this example 
metabolites) into pathways. An ssPA algorithm is used to perform the pathway transformation, taking the 
input metabolomics matrix (left) alongside a set of pathways as input. Pathway logos shown correspond to 
KEGG, Reactome, and MetaCyc databases, which are examples of where pathway sets can be obtained
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At the most basic level, multi-group comparisons can be made using the pathway 
scores, for example using statistical association testing to determine pathways which 
differ significantly between groups [25]. This can be useful in studies where there are 
more than two treatment groups or disease subtypes. Another prominent example 
of the utility of ssPA methods is that they enable application of machine learning or 
multivariate statistical methods to pathway level data [27]. Patients can be classified 
based on their pathway scores, rather than metabolite-level measurements, which in 
some cases has been demonstrated to improve classification performance [26]. Pre-
dictive models built in the pathway space have also shown to be more robust to noise 
than those constructed from individual molecular measurements [28]. Pathway scores 
further enable a number of pathway-based visualisation options, such as plotting the 
scores of two pathways against each other to discriminate between disease subtypes 
[29], or using them to generate hierarchical clustering heatmaps [22]. An emerging 
use-case of ssPA is in multi-omics data integration, in which pathway scores calcu-
lated for each omics layer can be combined and analysed concurrently [30].

Although most ssPA methods are applicable to most omics datatypes, this will not 
necessarily equate to their consistent performance across omics. Indeed, the most 
well-known ssPA methods have all been developed for transcriptomic data analysis. 
Other omics datatypes such as metabolomics differ greatly in composition and sta-
tistical properties from transcriptomic data. The most obvious difference lies in the 
number of metabolites versus the number of genes/transcripts profiled in metabo-
lomics and transcriptomics respectively, which has a direct effect on pathway cover-
age (the proportion of entities in a given pathway that have been assayed). Another 
key difference is the uncertainty in metabolite identification in metabolomics which 
remains one of the field’s greatest challenges [31], an issue that is far less prominent 
in transcriptomics and proteomics. There is a growing body of literature focused on 
benchmarking PA methods across various omics datatypes [13, 15, 17, 32–37], but to 
date there have been no studies investigating the efficacy of ssPA methods applied to 
metabolomics datasets.

The purpose of the present research, therefore, is twofold: we begin by perform-
ing a benchmark of widely used and established ssPA methods using semi-synthetic 
metabolomics datasets, after which we demonstrate how ssPA methods can aid in the 
interpretation of metabolomics data by performing an application case study using 
publicly available inflammatory bowel disease (IBD) data. Specifically, in the bench-
marking portion of this manuscript, we compare the performance of four well-known 
ssPA methods, namely SVD (PLAGE) [22], ssGSEA [24], GSVA [25], and z-score[26] 
as well as two ssPA methods we propose, based on k-means clustering (ssClustPA) 
and kernel principal component analysis (kPCA). We also introduce the sspa Python 
package which provides user-friendly implementations of all methods benchmarked, 
alongside a tutorial, specifically designed for application to metabolomics data. In 
the second part of this manuscript we demonstrate using experimental IBD data how 
ssPA generates pathway scores which can be used to cluster and discriminate samples 
based on their IBD subtype, facilitating interpretation of the data at the pathway-level. 
To summarise, this is the first study to benchmark ssPA methods on metabolomics 
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data, offering important insights into their suitability and potential applications in 
metabolomics research.

Methods
Datasets used

In the benchmarking section of this work, the Su et  al. [38] COVID19 metabolomics 
mass spectrometry (MS) dataset has been used, serving as a basis for semi-synthetic 
simulated data creation. This data is part of a multi-omics study of COVID severity, and 
contains patients from two groups: COVID (of varying levels of severity) (n = 130) and 
non-COVID (n = 133), from which blood plasma samples were obtained during the first 
week of infection after diagnosis.

For the application section, we used inflammatory bowel disease (IBD) MS metabo-
lomics data from Lloyd-Price et  al. [39]. This data derives from a longitudinal multi-
omics study of IBD, where metabolomics analysis was performed on stool samples 
collected over a 1-year period. We used samples obtained across all timepoints (weeks 
0–52). The study contains two experimental groups: IBD (Crohn’s disease (CD, n = 265) 
and ulcerative colitis (UC, n = 146)) and non-IBD (n = 135).

Both datasets are publicly available (see Availability of data and materials for reposi-
tory identifiers) and are derived from untargeted mass spectrometry, see Table 1 for fur-
ther details. Datasets were post-processed in the same manner: missing value imputation 
using iterative SVD [40], probabilistic quotient normalisation, log2 transformation, and 
standardisation of each variable ( µ = 0 and σ = 1 ). Metabolite names were mapped to 
ChEBI identifiers using the MetaboAnalyst [41] identifier conversion tool (https://​www.​
metab​oanal​yst.​ca/​Metab​oAnal​yst/​upload/​Conve​rtView.​xhtml).

Pathway definitions and non‑redundant pathway set

Reactome pathways (release 76) were downloaded from https://​react​ome.​org/​downl​
oad-​data. The ChEBI2Reactome_All_Levels.txt file was used and filtered for Homo sapi-
ens pathways only. The metabolite coverage of the Reactome human pathways using the 
COVID dataset ranged from 2 to 39 metabolites per pathway. KEGG human pathways 

Table 1  Summary of datasets used

a Number of Reactome pathways accessible corresponds to the number of pathways in each dataset which contained at 
least two metabolites assayed in the metabolomics data

Dataset Samples Sample source Assay Number of 
metabolites 
mapping to 
ChEBI

Number of 
Reactome 
pathways 
accessiblea

Su et al. [38] COVID19
(n = 130),
Non-COVID19
(n = 133)

Blood plasma UHPLC/MS/MS 
(Metabolon)

335 255

Lloyd-Price et al. 
[39]

CD (n = 265),
UC (n = 146),
Non-IBD
(n = 135)

Stool LC–MS HILIC-pos, 
LC–MS HILIC-neg, 
LC–MS C18-neg, 
LC–MS C8-pos

329 228

https://www.metaboanalyst.ca/MetaboAnalyst/upload/ConvertView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/upload/ConvertView.xhtml
https://reactome.org/download-data
https://reactome.org/download-data
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(release 101) were downloaded using the KEGG REST API (https://​www.​kegg.​jp/​kegg/​
rest/​kegga​pi.​html).

We describe a pathway by the set of metabolites annotated to it: p = {m1,m2, . . .mL} 
for a pathway of size L. As part of the benchmarking procedure a non-redundant set of 
Reactome pathways N = {p1, p2, ..., pN } was created along with the associated set of all 
metabolites in these pathways M = {m1,m2, ...mM} = p1 ∪ p2 ∪ ... ∪ pN . N  and M were 
obtained by iterating through the list of pathways P ( k= 255 with at least 2 metabolites 
present profiled in the COVID dataset, in original order) and adding pathway pi to N  if 
there was no overlap with the current non-redundant set, |pi ∩M| = 0 . The resulting set 
contained a total of 18 pathways with no overlapping metabolites, with coverage ranging 
from 2 to 6 metabolites per pathway. We note that other non-redundant pathway sets 
are possible but do not expect results to be strongly dependent on the exact set used.

Creation of semi‑synthetic metabolomics data

The simulations in this work are based on semi-synthetic datasets created using the 
COVID dataset. The use of a “permutation and spike" procedure allows the original 
signal in the dataset to be erased and replaced with known pathway signals, while pre-
serving the underlying distributions (both joint and marginal) and heterogeneity of the 
experimental data. This is advantageous compared to generating fully synthetic data 
such as by random sampling from a Gaussian distribution, as it preserves the complex 
biological relationships occurring in omics data, which will influence method perfor-
mance. A limitation of our approach is that the underlying distribution of a particular 
dataset may differ from that of other datasets. Despite this limitation, we believe this 
approach reflects more accurately the level of complexity found in real data compared to 
fully-synthetic simulation approaches.

The semi-synthetic metabolomics data generation process is illustrated schematically 
in Fig. 2 and outlined as follows.

Let Xi,j denote the original log2-transformed data matrix composed of n samples and 
m metabolites. X contains two groups of samples, i ∈ A , representing the control group 
and i ∈ B , representing the disease group. For simplicity we have simulated a two-group 
design, but this simulation setup can be extended to multiple groups, continuous out-
comes or more complex experimental designs. To remove the original signal in the data, 
the class labels of each sample A or B were randomly shuffled at each realisation of the 
simulated data (Fig. 2a).

A pathway collection is required, consisting of P = {p1, p2, ..., pi} Reactome 
or KEGG pathways and the associated set of all metabolites in these pathways 

Fig. 2  Schematic outlining the benchmarking process used in this work. a Sample group labels are 
randomly permuted. b An artificial signal is added (α) to all metabolites in Mk (set of all metabolites within 
the k = 3 randomly selected pathways (E)) only to samples in group B. c Single-sample pathway analysis is 
performed on the semi-synthetic data matrix generated in step b) using the various methods benchmarked. 
d Independent two-sample t-tests are performed for each pathway (p) analysed using ssPA, to provide 
p-values for the significance of the different in pathway score means between samples in group A and group 
B. e Benjamini–Hochberg adjusted q-values for each pathway p are used to compute performance metrics, 
taking account of the level of overlap between the pathway p and Mk, as well as whether p is a member of 
the set E (enriched pathways). Considering the q-value and overlap threshold, each pathway can be classed 
as a true positive, false positive, false negative, or true negative, and used to compute the performance 
metrics: precision, recall, and area under the curve (AUC)

(See figure on next page.)

https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
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M = {m1,m2, ...mM} = p1 ∪ p2 ∪ ... ∪ pi . Following the sample class label permutation, 
k = 3 pathways E = {p1, p2, ..., pk} were chosen at random from P to be “enriched", cor-
responding to metabolites Mk = p1 ∪ p2 ∪ ... ∪ pk . The abundance values samples in 

Fig. 2  (See legend on previous page.)
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group B were altered (by adding a constant α to the original log space values) for metab-
olites in set Mk (Fig. 2b). Note this represents a multiplicative (fold change) effect in the 
original non-log space. The values for group A were left unchanged. The value of α repre-
sents the strength of the enrichment of the metabolites within pi . In our experiments we 
enriched k = 3 pathways. The simulated data matrix Y can thus be expressed as:

where j ∈ Mk and α ∈ [0, 1].

ssPA implementation details

Details of the Python/R packages used for each of the methods benchmarked in this 
work are given in Additional file 1: Table S1. The ssPA package is available to download 
from the Python Package Index at https://​pypi.​org/​proje​ct/​sspa/, and the source code is 
freely available at https://​github.​com/​cwied​er/​py-​ssPA.

ssClustPA method

Additional file  1: Fig. S1 shows an overview of ssClustPA and kPCA methods. The 
ssClustPA method is appropriate when we expect two clusters in the data (e.g. case and 
control). ssClustPA projects each sample onto the vector separating the two clusters, 
and is outlined as follows:

1.	 For each of the P pathways pk = {m1,m2, ...,mp} , create a pathway matrix Zk com-
posed of the abundance data corresponding to the pathway, Zijk = Xij where mj ∈ pk . 
Here there are Mk metabolites in pathway k.

2.	 On each pathway matrix Zk , perform k-means clustering based on Euclidean dis-
tance with k = 2 clusters.

3.	 Obtain the coordinates of the cluster centroids c1&c2 in the m-dimensional space 
defined by Zk.

4.	 For each pathway obtain the unit column vector between the two cluster centroids 
u = c1 − c2 . The dimension of u will correspond to the number of metabolites in the 
dataset mapping to that pathway, Mk.

5.	 Project the pathway matrix Zk (dimension n × Mk) onto u (dimension Mk × 1). The 
projected values can be used as pathway scores Ak (Eq. (3)).

6.	 Repeat steps 4–5 for each pathway matrix Zk and concatenate the resulting vectors 
Ak horizontally to produce the pathway score matrix An×P.

The projection of each pathway matrix Zk onto the vector u will capture the alignment 
of the samples with the clustering in the pathway space with more accuracy than sim-
ply using Euclidean distances to a single cluster centroid. The latter would be unable to 
distinguish a sample datapoint’s proximity to the first cluster centroid relative to the sec-
ond centroid. The vector u represents the direction between the two cluster centroids, 

(1)Yi,j = Xi,j , i ∈ A

(2)Yi,j = Xi,j + α, i ∈ B

(3)Ak = Zku

https://pypi.org/project/sspa/
https://github.com/cwieder/py-ssPA
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capturing the main difference between the two clusters. By projecting the pathway 
matrix onto u we capture variation related to the difference between clusters, and ignore 
variation which is orthogonal (uncorrelated) to this difference, thus providing a score 
which is more relevant to the contrast studied.

kPCA method

The kPCA method is outlined as follows:

1.	 For each of the P pathways pk = {m1,m2, ...,mp} , create a pathway matrix Zk com-
posed of the abundance data corresponding to the pathway, Zijk = Xij where mj ∈ pk

.
2.	 For each pathway matrix Zk , perform kernel PCA [42] with a radial basis function 

(RBF) kernel. The kernel width parameter γ is set to a default of 1n.
3.	 The scores of the first principal component (PC1) can directly be used as scores Ak.
4.	 Repeat step 2 for each pathway matrix Zk and concatenate the resulting vectors Ak 

horizontally to produce the pathway score matrix An×P.

Benchmarking details

Pathway overlap

Overlap between pathway metabolites was calculated using the Szymkiewicz-Simpson 
Overlap Coefficient (OC) (Eq. 4). An OC of 0 indicates there is no overlap between set A 
and set B, whereas an overlap of 1 indicates that the smaller set is a subset of the larger 
set.

We used the OC as an alternative to the Jaccard Index (JI) as it is more sensitive to 
overlapping metabolites, i.e., the OC will return a value of 1 when the metabolites in a 
pathway are all present in a larger pathway (irrespective of the size of the larger path-
way), whereas the JI will only equal 1 if two sets are identical.

Performance metrics

As outlined in the section ‘Creation of semi-synthetic metabolomics data’, in each of the 
simulations in this work, k=3 randomly selected pathways E = {p1, p2, p3} were defined 
as enriched (Fig. 2b). In the effect size simulations, all metabolites Mk in the set E had a 
constant α ∈ [0, 1] added to the value of those metabolites in group B, representing the 
disease class. Adding a constant of 1 to a metabolite in the log space changes its abun-
dance value by a fold change (FC) of 2 ( log2FC = 1 ). In the signal strength simulation, 
varying percentages s ∈ [0, 100] of randomly selected metabolites in E had a constant 
α = 1 added to them, again only in group B.

Pathway scoring using ssPA was performed on the simulated data abundance matrix 
(Fig. 2c), and a series of independent two-sample t-tests between simulated disease and 
control groups were used to determine the significance of each pathway (Fig. 2d). The 
Benjamini Hochberg false discovery rate correction was applied and pathways with q ≤ 

(4)OC(A,B) =
|A ∩ B|

min(|A|, |B|)
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0.05 were considered significantly enriched. Of these pathways, those that were mem-
bers of E or those with an OC ≥ θ between a pathway pi and the set Mk (the set of all 
metabolites in E) were considered positives (Fig.  2e, Eq.  5). We use the OC to define 
positives, as pathways sufficiently overlapping with the artificially enriched ones can also 
be considered to be truly enriched. We tested two OC thresholds of θ ∈ {0.25, 0.5} . Path-
ways with q > 0.05 were considered true negatives if the pathway is not a member of E 
and has OC < θ (Eq. 5). Those pathways with q > 0.05 that are members of E or have OC 
≥ θ are considered false negatives (Eq. 5).

The sklearn.metrics functions were used to calculate recall, precision, and area under 
the receiver-operating curve (AUC). All simulations were repeated 200 times, with ran-
domly selected enriched pathways and semi-synthetic data randomly permuted at each 
realisation.

Method runtime profiling

Runtime profiling was repeated 10 times for each method and average results are 
reported. The Python libraries cProfiler and line-profiler were used to determine the 
wall time of each method.

IBD application

The kPCA method was used to demonstrate ssPA applied to the IBD metabolomics 
dataset.

Hierarchical clustering

kPCA pathway scores were standardised prior to clustering ( µ = 0 and σ = 1 ). Hierar-
chical clustering was performed using the scipy cluster.hierarchy function with Euclid-
ean distance and Ward linkage parameters. The maxclust parameter was set to 2 in order 
to cut the tree at a depth of 2 branches. The adjusted Rand index [43]was calculated 
using the metrics.adjusted_rand_score function, with the original and predicted cluster 
sample labels as input.

Pathway score correlation network

kPCA pathway scores derived from the IBD dataset were ranked by t-test p-values (test-
ing for differences between IBD and non-IBD groups) and the top 50 pathways were 
used to produce a hierarchical clustering as detailed above. Pathway IDs from the result-
ing clusters were extracted and used to build the network. A Spearman rank correlation 
matrix was produced from the pathway scores. The NetworkX Python package was used 
to create a pathway-pathway network, with nodes representing pathways and edges rep-
resenting correlation between the pathway scores. Cytoscape was used to visualise the 
network using an edge-weighted spring embedded layout.

(5)

For a given pathway p :

p is a true positive (TP) if[p ∈ E orOC(Mk , p) ≥ θ ], and q ≤ 0.05
p is a true negative (TN) if[p /∈ E andOC(Mk , p) < θ], and q > 0.05
p is a false positive (FP) if[p /∈ E andOC(Mk , p) < θ], and q ≤ 0.05
p is a false negative (FN) if[p ∈ E orOC(Mk , p) ≥ θ ], and q > 0.05
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The COVID pathway correlation network was created in the same way as the IBD net-
work, using the top 30 pathways (ranked by t-test p-values) for visual clarity. Each node 
is coloured by the average pathway score of samples in each COVID WHO severity level 
(0, 1–2, 3–4, 5–7).

Results
Performance evaluation of ssPA methods

We first carried out a comprehensive benchmarking of ssPA methods applied to semi-
synthetic metabolomics datasets generated based on the Su et al. COVID dataset [38], 
see Methods. The Reactome pathway database was used as the main source of path-
ways throughout this work, with key simulations reproduced using the KEGG database. 
Where applicable, we also compared ssPA results to those obtainable using conventional 
PA methods ORA and GSEA.

Outline of simulation procedure

In order to calculate various performance metrics (i.e. precision and recall), it is essential 
to know the identity of truly perturbed “enriched" pathways. Here we use the terms “pos-
itively enriched" or “negatively enriched" to refer to pathways that are significantly per-
turbed with respect to the control group, depending on the directionality of the effect. 
In experimental datasets it remains challenging to distinguish between true and false 
positive enriched pathways, so instead we used semi-synthetic data to accomplish this 
task. As detailed in the methods, we removed the original signal from an experimen-
tal untargeted metabolomics dataset of COVID patients and replaced it with artificial 
known pathway signals (enriched pathways) in one of two study groups. Using this simu-
lation procedure, we can vary the strength of the enrichment of a pathway, the number 
of differentially abundant metabolites in the pathway, and the coverage level.

ssClustPA and kPCA: pathway scoring approaches based on unsupervised learning

We propose two novel ssPA methods based on unsupervised machine learning concepts 
for generating pathway scores (see Methods for further details). ssClustPA makes use of 
k-means clustering and for each pathway projects the original datapoints onto the unit 
vector between two cluster centroids to yield pathway scores. ssClustPA is best suited to 
two-group study designs due to the two-cluster centroid constraint; for designs with two 
or more study groups, we developed the kPCA ssPA method. The kPCA ssPA method 
uses kernel PCA [42] with a radial basis function kernel to model the distribution of data 
for the pathway and is particularly advantageous when the underlying manifold of the 
data is non-linear. The first principal component scores are used as pathway scores. Both 
methods are applicable to any omics datatype.

The importance of pathway overlap in method evaluation

Biological pathways represented as lists of molecules can be seen as an arbitrary way of 
partitioning a network and defining precise pathway boundaries remains a challenge in 
pathway curation. It is therefore expected that all pathway databases will contain some 
degree of redundancy, meaning that not all molecules will be unique to a single path-
way. If a pathway p is significantly enriched, it is likely that other pathways that contain 
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overlapping molecules with p will also be considered enriched to varying degrees. When 
performing benchmarking on redundant pathway sets, one must therefore decide the 
level of pathway overlap that constitutes a true positive pathway.

A simple example of the effect of pathway overlap is demonstrated in Fig. 2. Here we 
performed a simulation in which a single randomly selected pathway “R-HSA-1483206" 
(Glycerophospholipid biosynthesis) was enriched at effect size α = 1 . Using the pathway 
scores derived from each ssPA method, a series of independent two-sided t-tests were 
performed for each of the 255 Reactome pathways, testing for significant differences in 
mean pathway scores between the two study groups. The resulting pathway p-values 
are compared to the overlap coefficient (OC) of each pathway with pathway R-HSA-
1483206 in Fig. 3. We observe that regardless of the ssPA method, there is a clear corre-
lation between pathway overlap and p-value, with pathways with higher overlap tending 
to have lower p-values. Importantly, if an arbitrary p-value threshold e.g. p ≤ 0.05 was 
used to select significant pathways in this manner, R-HSA-1483206 and a number of 
additional pathways would be considered enriched. It is important to note this effect is 
not only observed with ssPA methods, but also in conventional methods such as GSEA 
(Fig. 3).

Due to this overlap effect, and to simplify the procedure, we first performed bench-
marking on a small subset of non-redundant pathways from the Reactome pathway 
database ( k=18). The key motivation for using this non-redundant pathway set was to 
introduce readers to our benchmarking strategy prior to taking into account the effect 
of pathway overlap. Furthermore, the utility of non-redundant pathway sets has been 
previously demonstrated [44, 45] and the results of benchmarking on such sets may be 
of interest in themselves to some readers. We then repeated the performance evaluation 

Fig. 3  The relationship between pathway overlap and significance. The artificially enriched pathway 
(R-HSA-1483206) is represented by a red cross. Overlap coefficient values of each pathway with 
R-HSA-1483206 are shown on the x-axis. t-test p-values of pathway scores (testing for significant difference in 
mean pathway score between disease and control group) for each pathway are shown on the y-axis (-log10 
scale). Note, for GSEA the p-values are calculated using the original GSEA permutation procedure, and for 
ORA, p-values are calculated using the Fisher’s exact test. A LOWESS regression line is shown in black. Point 
size corresponds to the coverage of each pathway (i.e. the number of metabolites in the pathway which were 
present in the dataset)
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on the full set of redundant Reactome pathways ( k=255 with sufficient coverage in the 
COVID dataset), which although containing overlapping pathways, is a more realistic 
and complex scenario. To summarise, we make use of the level of overlap between the 
enriched pathways and the rest of the pathways to define the set of true positive enriched 
pathways (see Methods for formal definition), which aims to take into account the arbi-
trary separation of the metabolic network into pathway sets.

Performance evaluation of ssPA methods

In this section we evaluated the performance of the SVD (PLAGE), ssGSEA, GSVA, 
z-score, ssClustPA, and kPCA methods using semi-synthetic data. These are categorised 
as GSEA-based (ssGSEA and GSVA) and dimensionality reduction (DR)/clustering-
based (SVD, ssClustPA, and kPCA). We also included comparison to non-ssPA methods 
ORA and GSEA where possible.

Beginning with the non-redundant pathway set, in which each of the pathways con-
tains unique metabolites, three random pathways were artificially enriched, and perfor-
mance metrics were computed and averaged over 200 iterations (Fig. 4) across a range 
of increasing effect sizes. The GSEA-based methods GSVA and ssGSEA appear to out-
perform the other methods in terms of recall and AUC at low to moderate effect sizes 
(0.2–0.6). At higher effect sizes of 0.8–1 (corresponding to FC ≈ 2), all methods appear 
to perform equally well with average recall, precision and AUC values > 0.9.

We then used the full set of 255 Reactome pathways (containing redundancy) with 
the same simulation setup to evaluate performance (Fig. 5). Again, three random path-
ways are artificially enriched. As mentioned previously, when calculating performance 
metrics using overlapping pathways, one must define a threshold for true positive path-
ways. In this case, we pooled all metabolites from the simulated enriched pathways 
together and calculated an OC between this set and each pathway tested. Figure  5a 
shows the performance metrics where a positive corresponds to OC θ ≥ 0.25, whereas 
Fig. 5b shows the performance metrics where a positive corresponds to OC θ ≥ 0.5. For 

Fig. 4  Performance of ssPA methods using a non-redundant pathway set based on 3 randomly selected 
enriched pathways. For each panel Recall, Precision, and AUC, the x-axis represents the effect size of 
the simulated pathway enrichment. Points represent the mean performance metric over 200 iterations. 
Note for AUC, y-axis values range from 0.5 to 1. Shaded intervals indicate the standard error of the mean. 
Dotted lines represent conventional pathway analysis methods, and dashed lines represent clustering/
dimensionality-reduction based methods
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all effect sizes in Fig, 5, we computed pairwise Mann–Whitney U tests across methods 
(Bonferroni corrected) to determine the statistical significance of the differences in per-
formance metrics (Additional file 2). In both Figs. 5a and 5b, the GSEA-based methods 
(ssGSEA and GSVA) and z-score have the highest recall across all effect sizes (p < 0.05). 
In terms of precision, regardless of the overlap threshold, conventional pathway analy-
sis methods ORA and GSEA outperform ssPA methods at moderate-high effect sizes 
(0.6–1.0) (p < 0.05). Following this, DR/clustering-based methods (kPCA, ssClustPA, 
and SVD respectively) provide the highest precision values amongst the ssPA methods, 
with GSEA-based methods ssGSEA and GSVA as well as the z-score yielding the low-
est precision values (p < 0.05 at effect sizes 0.8–1 for OC θ > 0.25, p < 0.05 at effect sizes 
0.4–1 for OC θ > 0.5). Similar observations can be made in terms of AUC at an over-
lap threshold of ≥ 0.5 (Fig. 5b). The GSEA-based methods and z-score yield the highest 
AUC at lower effect sizes (0.2–0.4), but at higher effect sizes (0.8–1), ORA and GSEA 

Fig. 5  Performance of ssPA methods on the full pathway set (including redundancy) based on 3 randomly 
enriched pathways. a Top panel OC ≥ 0.25, b bottom panel OC ≥ 0.5. All metabolites in enriched pathways 
have identical effect size. Points show performance metrics averaged across 200 iterations. Shaded intervals 
represent average SEM. Dotted lines represent conventional pathway analysis methods, and dashed lines 
represent clustering/dimensionality-reduction based methods
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outperform all ssPA methods, followed by the clustering/DR-based methods, and finally 
GSEA/z-score-based methods which have the lowest AUC values (p < 0.05). At an over-
lap threshold ≥ 0.25 (Fig. 5a), these trends are more subtle in terms of AUC, but as effect 
sizes become larger there is a shift in performance from GSEA-based/z-score methods 
to clustering/DR-based methods.

GSEA-based methods, as well as the z-score, are the poorest performers in terms of 
precision. The drop in precision from effect size 0.2 onwards is likely due to an increase 
in the number of false positives resulting from the stronger effect size which do not 
reach the overlap threshold to be considered true positives. There is a larger probability 
that overlapping pathways are detected as significantly enriched. This drop in precision 
is less evident when the OC for identifying true positive pathways is lower, such as in 
Fig. 5a, as a higher proportion of the overlapping pathways are considered true positives, 
resulting in fewer false positives. Compared to conventional PA methods, ssPA methods 
generally have improved recall, particularly at larger effect sizes. However, conventional 
methods tend to have a higher precision than ssPA methods, regardless of effect size. 
At higher effect sizes, ORA generally appears to have higher power to detect significant 
pathways than GSEA. Additionally, we reproduced very similar results using a different 
semi-synthetic dataset based on IBD data from Lloyd-Price et al. [39] (Additional file 1: 
Fig. S2). The sole difference was that kPCA had higher precision than all other methods 
at the higher OC threshold, regardless of effect size.

Finally, we ran the same set of simulations using the KEGG human pathway database 
rather than the Reactome database (Additional file 1: Fig. S3). Despite there being sub-
tle changes in the performance metric results, which are to be expected due to varying 
pathway composition and size, the ranking of the methods across metrics remained con-
sistent with that observed in the Reactome simulations.

The effect of pathway signal strength on ssPA performance

In the previous simulations, we varied the effect size of the pathway enrichment, with 
the abundance of all metabolites in the pathway modified to the same extent. In a real-
world scenario, it is highly unlikely that all metabolites in a differentially active pathway 
would have the same effect size. We therefore performed another simulation in which 
the abundance of varying proportions of randomly selected metabolites in a pathway 
was modified while keeping the effect size at a constant of 1.0. In this scenario, we con-
sider pathways with q ≤ 0.05 and OC ≥ 0.5 true positives and randomly enriched 3 path-
ways in each iteration.

As expected the performance of all methods improves as the signal strength increases 
(Fig. 6), aside from a small drop in precision which is caused by the increase in signal 
strength rendering overlapping pathways more significant, as highlighted in the previ-
ous simulation (Fig. 5). In terms of recall, all ssPA methods perform very similarly across 
signal strength sizes, and clearly outperform the conventional PA methods ORA and 
GSEA. In contrast, the conventional methods slightly outperform the rest of the ssPA 
methods in terms of precision, of which the dimensionality-reduction based methods 
(SVD, ssClustPA, and kPCA) have higher precision than GSEA/z-score-based meth-
ods. Overall, when taking into account varying levels of signal strength, and that not all 
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molecules in an enriched pathway are likely to be significantly differentially abundant, 
clustering/DR-based methods appear to offer the best overall performance in terms of 
ssPA, particularly at moderate to high effect sizes (FC ≈ ≥ 1.5).

ssPA method ability to rank enriched pathways highly

The ability of the ssPA methods to rank enriched pathways highly was investigated, again 
using the semi-synthetic COVID data. Briefly, t-tests were performed on the ssPA scores 
for each pathway (testing for a difference between mean scores in disease and control 
groups) and the resulting p-values were used to rank them in ascending order. The full 
set of 255 Reactome pathways was used. In order to account for the fact that ORA gener-
ally tests fewer pathways than the other methods (as it only calculates p-values for path-
ways with at least one differentially abundant metabolite), the ranks were normalised by 
the total number of pathways tested using each method.

In concordance with the performance metrics calculated in the previous section, at 
lower effect sizes, the GSEA/z-score-based methods rank the truly enriched pathways 
the highest (Additional file 1: Fig. S4). At higher effect sizes (0.8–1.0), there is very little 
difference in the rankings of the enriched pathways by all ssPA methods, with all meth-
ods being able to rank the 3 enriched pathways within the top 10% of pathways.

The effect of pathway coverage on method performance

It is well established that metabolomics assays generally profile a smaller fraction of 
the total metabolome than the fraction of the genome/transcriptome captured by 
sequencing technologies. We compared the level of Reactome human pathway cover-
age in metabolomics and transcriptomics datasets from the same study [39] (Fig.  7), 
and as expected there were far fewer metabolites mapping to pathways than transcripts. 
This well-known issue motivated us to examine how the ssPA methods performed in 
response to varying levels of pathway coverage. Two Reactome human pathways were 
selected as exemplars (‘SLC-mediated transmembrane transport’ and ‘Biological oxida-
tions’), for their high coverage in the original COVID dataset (39 and 26 metabolites 
respectively) and different metabolite composition (OC = 0.27). For each pathway we 

Fig. 6  Effect of varying signal strength on ssPA method performance. Points show mean performance over 
200 iterations with 3 randomly enriched pathways on the full Reactome pathway set (true positive pathways 
are those with an OC ≥ 0.5). Shaded intervals represent average SEM. Dotted lines represent conventional 
pathway analysis methods, and dashed lines represent clustering/dimensionality-reduction based methods
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randomly selected varying proportions of metabolites in each pathway to remove from 
the data. Doing so, we simulate reduced coverage in these pathways, from 100% relative 
coverage (all of the original metabolites present) to 20% relative coverage (80% original 
metabolites deleted).

We calculated performance metrics as in the previous simulations, keeping the mini-
mum overlap coefficient threshold to declare true positive pathways fixed at OC = 0.5, 
and demonstrating two effect size scenarios (low effect at α = 0.25 and moderate effect 
at α = 0.75). For both pathways (Additional file 1: Figs S5 and S6), we observed similar 
rankings in PA methods across all three performance metrics as in the effect size sim-
ulations (Fig. 5). As expected, both recall and precision gradually increased as relative 
coverage of the pathway increased. While AUC appears to decline with increased cov-
erage (particularly at the higher effect size), which may seem counterintuitive, this can 
be attributed to an increase in the false positive rate. As coverage increases, more path-
ways share an overlap with the simulated enriched pathway and therefore attain signifi-
cant p-values, but do not have a high enough OC to be considered true positives, hence 
resulting in a rise in false positives and a decreased AUC. Importantly, we found that 
higher coverage generally improves method performance, but does not have profound 
effects on the rankings of method performance, which recapitulate those observed in the 
previous simulations investigating effect size and signal strength.

Method runtimes

Each ssPA method was run 10 times on a laptop with standard hardware and 16  GB 
of RAM using the COVID dataset, which contained 263 samples (rows) and 335 

Fig. 7  Comparison of Reactome human pathway coverage in metabolomics versus transcriptomics data 
from the same study (IBD data, Lloyd-Price et al. [39]). Violin plots show log10 transformed distributions of the 
number of metabolites/genes mapping to each Reactome pathway
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metabolites (columns), as well as Reactome pathways with sufficient coverage in the 
dataset ( k=255). In terms of runtime, the fastest method was the z-score, followed by 
SVD (Additional file 1: Table S2).

Application of ssPA in metabolomics: a case‑study of inflammatory bowel disease

We then focused on the application and interpretation of ssPA in typical metabolomics 
data, using real experimental datasets. In order to simplify our presentation, we demon-
strated the use of a single method, kPCA, to showcase one of our newly proposed meth-
ods, although the following application is generalisable to any ssPA method.

In order to demonstrate some of the potential use cases of ssPA methods applied to 
metabolomics data, we selected a different dataset to that used in the benchmarking 
portion of this work and made use of ssPA to help detect and interpret complex biologi-
cal patterns within the data. The untargeted metabolomics data used in this case study 
was derived from a multi-omics study of inflammatory bowel disease (IBD) by Lloyd-
Price et al. [39]. It is important to note that the group termed “non-IBD" are not neces-
sarily healthy individuals and may still exhibit symptoms of IBD. Further details of this 
dataset can be found in the Methods and the original article [39].

To obtain an exploratory perspective on the strength of the biological signals in the 
dataset, PCA was used to visualise the data at both the metabolite and pathway level. 
We transformed the metabolite-level data to pathway scores using the kPCA method 
described earlier and compared the PCA results obtained. No strong separation between 
the sample classes was observed using either approach, with most samples appearing 
amalgamated together in a central cluster (Additional file  1: Fig. S7). This is consist-
ent with findings from the original work, in which intra-individual variation in the IBD 
metabolome was greater than inter-individual variation [39]. However, the percentage 
variance explained in the first two principal components of the data was higher using 
pathway scores than individual metabolites (Additional file 1: Fig. S7).

In order to more rigorously quantify the clustering performance achieved using 
metabolites (only those present in pathways) vs. pathway scores, we ranked each of the 
metabolites/pathways using BH-FDR corrected t-test q-values (testing for differences 
between the IBD and non-IBD groups) and performed clustering after progressively 
adding each entity significant at q ≤ 0.05 (Fig. 8). Hierarchical clustering was used to par-
tition the samples into groups based on the two main branches of the tree, which were 
compared to the original sample labels (IBD or non-IBD) using the Adjusted Rand Index 
(ARI) [43]. Note that negative ARI values can be obtained if the RI is less than expected 
by chance. This heuristic method suggested that for this particular dataset, using path-
way scores for clustering generally achieves higher ARI across a range of different cut-
off thresholds, as well as improved robustness to the threshold used for clustering, than 
by using metabolites alone. Consequently, we made use of the clustering applied to the 
top 50 sets of pathway scores to identify clusters of pathways that could discriminate 
between the IBD sample classes. Two distinct pathway clusters were evident (Additional 
file 1: Fig. S8), which we visualised using Cytoscape in Fig. 9.

The networks shown in Fig. 9 represent two distinct groups of pathways that discrimi-
nate between IBD and non-IBD samples. An edge-weighted spring-embedded layout was 
applied to the network to visually group nodes by pathway score Spearman correlation. 
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The network nodes are coloured by the average pathway score across the samples in each 
subtype (from top to bottom: non-IBD, CD, UC). Using the kPCA approach (or cluster-
ing/DR-based approaches in general), it is not possible to make a direct link between 
the sign of the pathway scores obtained and the direction of the pathway enrichment. 
However, GSEA-based ssPA approaches can be used to determine this, if desired. GSVA 
was used to determine that cluster 1 of Fig. 9 represents pathways whose metabolites are 
upregulated in IBD relative to the non-IBD group, whereas cluster 2 represents pathways 
with metabolites depleted in IBD relative to the non-IBD group.

IBD encompasses a group of diseases broadly characterised by chronic inflammation 
of the gut, and is widely attributed to a complex interplay of immune dysregulation, dys-
biosis of the gut microbiome, and genetic and environmental factors. A sub-cluster of 
immune-related pathways can be seen in cluster 1 (Fig. 9a), highlighting the role of phos-
pholipids and Fc-gamma receptors in phagocytosis, which is concordant with findings in 
current literature [46, 47]. Changes in phospholipid metabolism are strongly implicated 
in IBD pathology, particularly in degradation of the intestinal epithelial mucus layer [47]. 
Another pathway associated with maintaining the integrity of the gut mucosal barrier 
highlighted in this cluster is ‘Metabolism of polyamines’ (Fig. 9b), which corroborates 
the work of Weiss et al. [48], who found increased levels of the polyamine spermidine 
alongside decreased levels of spermine in IBD patients. One major benefit of ssPA is that 
it enables comparison of pathway scores across multiple study groups. Using the ‘Metab-
olism of polyamines’ pathway as an example, we note that enrichment of the pathway 

Fig. 8  Clustering performance at the metabolite and pathway levels (kPCA method) for different selection 
thresholds. Clustering performance is quantified using the Adjusted Rand Index (y-axis). The number of 
entities used to perform the clustering are shown on the x-axis, and only entities significant at q ≤ 0.05 were 
included in the analysis. A total of 69 metabolites and 116 pathways were significant and are shown in the 
violin plots. Entities were ranked by q-value and only those within each selection threshold are used for each 
comparison. Violin plots show the distribution of ARI values achieved using the cumulative thresholds (e.g. 
the top 10 pathways). Solid lines represent the median ARI, whereas dashed lines represent the upper and 
lower quartiles. The violin plot range is truncated to the range of the data
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is greater in CD patients than it is in UC patients, relative to non-IBD patients. A large 
sub-cluster of differentially active pathways relates to bile acid and salt metabolism 
(Fig.  9c), consistent with alterations in primary (e.g. cholate) and secondary bile acid 
metabolism in IBD observed by Lloyd-Price et al. [39], likely attributable to changes in 
gut microbial composition, as microbes directly modulate bile acids [49]. Other notable 
pathways enriched in cluster 1 (particularly in CD patients) include ‘Glycosphingolipid 

Fig. 9  Pathway cluster network derived using hierarchical clustering on IBD pathway scores (kPCA, top 
50 pathways). Coloured bands in each node represent mean pathway score within each subtype (from 
top to bottom: non-IBD, CD, UC). Edge weight represents Spearman correlation between pathway scores. 
Only edges with Spearman’s rank correlation coefficient ( ρ ) ≥ 0.4 are displayed. Shaded sub-clusters depict 
pathways consistent with current IBD literature and are discussed in the text. Shading of subclusters 
corresponds to Reactome pathway parent category
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metabolism’ and ‘ABC transporters in lipid homeostasis’ (Fig. 9d), which are congruous 
with the known dysregulation of lipid metabolism in IBD coupled with inflammation 
[50–52].

In the second cluster, which consists of pathways whose metabolites are depleted in 
IBD, a prominent sub-cluster containing pathways related to platelet homeostasis, VEGF, 
and nitric oxide (NO) signalling is visible (Fig. 9e). It is widely recognised that platelet 
abnormalities are associated with IBD, alongside complications such as microvascular 
thrombosis and thromboembolism [53]. The reduction in NO signalling is consistent 
with findings of reduced NO-mediated vasodilation found in IBD patients [54], which 
could further contribute to thrombosis. This cluster of pathways focused on VEGF sig-
nalling is one example that was not detected as significantly enriched using ORA, but 
was detected amongst the top pathways using ssPA (see Additional file 1: Table S3 for 
ORA results).

Another large sub-cluster within cluster 2 focuses on DNA repair processes, including 
base-excision repair (Fig. 9f ). This subcluster can be linked to another significant path-
way, ‘ROS and RNS production in phagocytes’ (Fig. 9g), as reactive oxygen species (ROS) 
contribute to DNA damage, which in turn induce DNA repair mechanisms [55, 56]. The 
negative enrichment of these pathways may allude to potential defects or reduction in 
DNA repair processes in IBD.

We also trained a random forest (RF) classifier on the IBD dataset, which based on 
fivefold repeated stratified cross-validation achieved comparable AUC using kPCA 
scores ( µ = 0.861 , σ = 0.042 ) as did the classifier trained on the pathway-annotated 
metabolites ( µ = 0.865 , σ = 0.040 ). Pathway importances were calculated by permut-
ing each of the features individually, and ranked by the mean decrease in AUC. Many of 
the top 50 pathways ranked by the RF classifier are shared with those in the networks in 
Fig. 9 (see Additional file 1: Table S4).

Using the same approach, a pathway-based correlation network was created using 
the COVID dataset (Additional file 1: Fig. S9). The use of ssPA shows a clear correla-
tion between the WHO status of the samples, corresponding to COVID severity, and 
the enrichment level of the top 30 pathways shown in the network. Both case studies 
highlight the value of ssPA methods in quantifying pathway enrichment at an individual 
sample level, enabling direct comparison of multiple sample sub-groups, as well as in the 
case of the IBD network, identifying a cluster of enriched pathways related to VEGF/NO 
signalling that were not identified by the conventional method ORA. Taken together, 
these case studies demonstrate a small subset of the downstream analyses possible using 
pathway scores, but highlight the benefits in interpretability and predictive robustness 
they can achieve.

Discussion
Single-sample PA methods have continued to gain popularity in recent literature 
as a way to examine pathway signatures at an individual sample level [29, 30, 57, 58]. 
Unlike conventional PA approaches, which usually compare two groups of samples, 
ssPA approaches enable researchers to dissect the heterogeneity of complex diseases or 
response to treatments at an individual level, facilitating advances in precision medicine. 
Within the transcriptomics field, continuous advances to ssPA methodologies are being 



Page 22 of 26Wieder et al. BMC Bioinformatics          (2022) 23:481 

proposed, alongside demonstrated applications on gene-expression data [29, 57–59]. 
Despite the importance of metabolic pathways in disease and drug-response, there exists 
very little literature surveying the applicability of ssPA approaches to metabolomics data 
[60]. The present study was designed to address this gap by providing a critical evalu-
ation of the most widely used ssPA methods and their performance, robustness, and 
applicability to metabolomics data.

Using semi-synthetic metabolomics data, our benchmarking procedure evaluated 
several properties of ssPA methods: recall, precision, AUC, and the ability to rank 
enriched pathways highly. By varying simulation parameters such as effect size and sig-
nal strength, we were able to ascertain how the methods performed under these more 
realistic scenarios. Applied to transcriptomics data, GSVA is often a top performer, 
particularly in gene-set recall [25, 29]. This finding is consistent with our results, where 
GSVA was found to have higher recall than all other ssPA methods across lower effect 
sizes, and at higher effect sizes had similar recall to ssGSEA. GSEA-based methods may 
provide more power at lower effect sizes as they calculate scores as a function of the 
metabolites inside and outside of the pathway, testing a competitive null hypothesis, 
whereas all other methods benchmarked (besides z-score) calculate scores based only 
on the metabolites within a pathway itself. When effect sizes become larger however, the 
recall of GSVA was found to be very similar to that of ssGSEA and z-score. In contrast, 
when identifying correctly the enriched pathways (precision), GSVA was one of the low-
est performing methods, as opposed to clustering and DR-based methods ssClustPA, 
kPCA and SVD. In general, it can be inferred that GSEA/z-score-based methods offer 
higher recall (most evident at lower effect sizes), whereas clustering/DR-based methods 
offer improvements in precision, particularly at higher effect sizes, for metabolomics 
data. In general, we suggest the use of clustering/DR-based methods for datasets with 
moderate-high effect sizes, and GSVA for datasets with lower effect sizes.

We offer two novel methods for ssPA: ssClustPA and kPCA, which can theoretically 
be applied to any omics datatype. Leveraging fundamental machine learning concepts 
of clustering and kernels respectively, both ssClustPA and kPCA have been designed 
to make use of these unsupervised approaches to discriminate between samples at the 
pathway level. ssClustPA is particularly advantageous when there is clear structure to 
the underlying data, exploiting this to provide more precise pathway scores. The RBF 
kernel used in the kPCA method allows complex non-linear structure within the data 
to be modelled and projected into a subspace where datapoints become more linearly 
separable, and hence more likely to provide precise pathway scores, which would oth-
erwise not be feasible using linear separation methods such as PCA or SVD. Applied to 
metabolomics data, these methods have been shown to offer advances in precision com-
pared to established ssPA methods. Using metabolomics data from IBD samples [39] we 
employed kPCA to generate pathway scores, and created an IBD subtype-specific path-
way network using this data.

Although the objective of this work was not to ascertain whether metabolite or path-
way level data yields better performance in downstream analyses, a key question we 
were able to partially address was whether pathway-level data exhibits greater predictive 
robustness than its metabolite-level counterpart [28]. Using the IBD dataset, improved 
clustering performance was observed when using kPCA pathway scores as opposed to 
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individual metabolites. Not only was the maximum ARI achievable higher using the 
pathway scores, but the range of ARI scores obtained using a variety of different thresh-
olds used to select which entities to include in the clustering was consistently higher 
using pathway scores than metabolites. This observation supports the hypothesis that 
in some cases pathway scores can provide improved robustness to noise, one example of 
which is the number of pathways used as features in downstream analyses.

We have undertaken the first benchmark into ssPA methods for metabolomics data. 
The insights gained from this study may provide guidance to practitioners in the field for 
selecting an appropriate ssPA method, as well as highlighting the broad range of appli-
cations for downstream analyses using pathway scores. The semi-synthetic simulation 
approach we have outlined is not only applicable to metabolomics data, but can be gen-
eralised to evaluate a multitude of PA methods across various omics datatypes. Although 
we used the Reactome and KEGG pathway databases within this work, our approach is 
easily extensible to other databases e.g. WikiPathways [61]or MetaCyc [21] and we do 
not expect our results to be highly dependent on the pathway database used. Further-
more, it is common knowledge that the results of metabolomics analysis vary greatly 
in response to the sample source, assay(s) used, etc. Pathway coverage as well as assay 
chemical bias remain amongst the key challenges in metabolomics, though advance-
ments in metabolic profiling technologies will undoubtedly ameliorate these in the com-
ing years. Although it was out of the scope of the current work to test ssPA methods on 
all possible assay types and sample matrices, we found the performance rankings of all 
methods tested remained robust regardless of the sample source (plasma vs. stool), as 
well as to changes in pathway coverage.

We aimed to include a range of ssPA methods in our benchmark that are well estab-
lished in the literature, suitable for use on metabolomics data, while also having program-
matic implementations available, however we acknowledge there are additional important 
ssPA algorithms that have not been included but are highly relevant to the present work 
[23, 29, 62–64]. Pathifier [23] is one such approach that uses nonlinear principal curve 
modelling applied to gene expression data to calculate pathway scores by computing the 
distance from the centroid of control samples to case samples along the curve. The kPCA 
ssPA approach we developed uses a similar nonlinear dimensionality-reduction based 
approach, but requires fewer computational resources (wall time and memory) than prin-
cipal curve modelling. iPath [63] is similar to Pathifier in that it is developed for ssPA 
analysis of transcriptomic case–control cancer datasets, but instead computes z-scores 
based on a ‘transcriptomic homeostasis’ expression profile derived from normal samples 
which is then used to rank samples as input to an ssGSEA-like algorithm to generate ssPA 
scores. SLEA [62] also uses z-scores to produce ssPA scores, comparing the mean expres-
sion profile of samples within a pathway to that of a null distribution derived from ran-
domised pathway definitions. Furthermore, a class of methods we have not included in 
this work are topology-based ssPA methods [13]. Further work is required to determine 
how such methods compare to non-topology-based alternatives, and whether the inclu-
sion of topological information improves performance notwithstanding the low coverage 
of pathways observed in metabolomics data. Overall, ssPA methods show a great deal of 
promise both for analysing and interpreting metabolomics data, in addition to the pros-
pect of integrating metabolomics with other omics datatypes.
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