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co-incubation with the IGF2R inhibitor mannose-6-phos-
phate completely abolished the effect of β-glucuronidase. 
Extracellular β-glucuronidase also reduced the formation 
of several B[a]P metabolites and B[a]P–DNA adducts. 
Interestingly, at 24 h of exposure, β-glucuronidase sig-
nificantly enhanced CYP expression, probably because 
β-glucuronidase de-glucuronidated B[a]P metabolites, 
which continued to trigger the aryl hydrocarbon receptor 
(Ah receptor) and induced expression of CYP1A1 (in both 
cell lines) and CYP1B1 (in A549 only). Consequently, sig-
nificantly higher concentrations of B[a]P metabolites and 
DNA adducts were found in β-glucuronidase-treated cells 
at 24 h. DNA adduct levels peaked at 48 h in cells that were 
exposed to B[a]P and treated with β-glucuronidase. Over-
all, these data show that β-glucuronidase alters the cellular 
response to B[a]P and ultimately enhances B[a]P-induced 
DNA adduct levels.

Keywords Benzo[a]pyrene · Inflammation · 
β-Glucuronidase · Cytochrome P450 1A1 · Carcinogen 
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Introduction

Chronic inflammation is causally associated with cancer 
development, and therefore, inflammation was considered 
as the seventh hallmark feature of cancer (Colotta et al. 
2009; Shacter and Weitzman 2002). This is illustrated 
for instance by the relatively high incidence of lung can-
cer in chronic obstructive pulmonary disease (COPD) 
patients (Young et al. 2009). Recent studies have pointed 
out that polymorphonuclear neutrophils (PMN), which are 
recruited at the site of inflammation play an important role 
in the initiation and progression of cancer (Fridlender and 

Abstract Neutrophils infiltrate tissues during inflam-
mation, and when activated, they release β-glucuronidase. 
Since inflammation is associated with carcinogenesis, we 
investigated how extracellular β-glucuronidase changed 
the in vitro cellular response to the chemical carcinogen 
benzo(a)pyrene (B[a]P). For this we exposed human liver 
(HepG2) and lung (A549) cells to B[a]P in the presence 
or absence of β-glucuronidase. β-Glucuronidase reduced 
B[a]P-induced expression of CYP1A1 and CYP1B1 at 6 h 
after exposure, which did not depend on β-glucuronidase 
activity, because the inhibitor d-saccharic acid 1,4-lac-
tone monohydrate did not antagonize the effect of 
β-glucuronidase. On the other hand, the inhibitory effect 
of β-glucuronidase on CYP expression was dependent 
on signalling via the insulin-like growth factor receptor 
(IGF2R, a known receptor for β-glucuronidase), because 
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Albelda 2012; Knaapen et al. 2006). Inhalation of complex 
air pollutants like tobacco smoke and/or fine particles may 
result in pulmonary inflammation, which generates reac-
tive oxygen/nitrogen species (ROS/RNS) that can damage 
lung tissue (van Berlo et al. 2010). At the same time, it 
has been shown that under inflammatory conditions, PMN 
enhance the mutagenic potential of chemical carcinogens 
(Borm et al. 1997; Van Schooten et al. 2004). This is partly 
explained by the action of the PMN-derived enzyme mye-
loperoxidase (MPO) that can metabolically activate carcin-
ogens and inhibit DNA repair, leading to higher levels of 
carcinogen–DNA adducts (Gungor et al. 2010a, b, c). How-
ever, there is still little data available on other factors that 
are released by the relatively high number of PMN during 
chronic inflammation, including β-glucuronidase, and how 
these influence the cellular response to chemical carcino-
gens (Basinska and Florianczyk 2003).

Inhalatory exposure to air pollutants like particles often 
results in a combination of an inflammatory response in 
the presence of genotoxic agents, like polycyclic aromatic 
hydrocarbons (PAHs) (Hoffmann and Hoffmann 1997). 

PAHs, including benzo[a]pyrene (B[a]P), have gained 
much attention, because they are abundantly present in 
the environment (Uppstad et al. 2010), and they have seri-
ous adverse genotoxic effects. B[a]P becomes mutagenic 
and carcinogenic after bioactivation by enzymes, includ-
ing cytochrome P450 (CYP) and epoxide hydrolase (EH) 
(Stiborova et al. 2014). It is converted into various metab-
olites, including oxides, phenols, diols, diol-epoxides, 
quinones, and radical cations (Shimada and Guengerich 
2006). The best studied metabolite is B[a]P-diol epoxide 
(BPDE) (Fig. 1). The first steps is the conversion of B[a]
P by the microsomal NADPH-dependent cytochrome P450 
isoforms 1A1 (CYP1A1) and 1B1 (CYP1B1) to yield the 
B[a]P-7,8-oxide, B[a]P-9,10-oxide or 3-hydroxy-B[a]P 
(3-OH-B[a]P) (Krais et al. 2015; Wohak et al. 2014). Sub-
sequently, both B[a]P-7,8-oxide and B[a]P-9,10-oxide can 
be hydrated by microsomal EH to yield the corresponding 
B[a]P-7,8-trans-dihydrodiols (B[a]P-7,8-diol) and B[a]
P-9,10-trans-dihydrodiols (B[a]P-9,10-diol). B[a]P-7,8-diol 
is further metabolized to the ultimate carcinogen benzo[a]
pyrene-7,8-diol-9,10-epoxide (BPDE), which is known 

Fig. 1  Critical steps of B[a]P activation and UDP-glucuronosyltrans-
ferases (UGTs) detoxification. B[a]P is metabolized to hydroxylated 
B[a]P including B[a]P-7,8-diol and these B[a]P metabolites are fur-
ther detoxified by UGTs. β-Glucuronidases are able to hydrolyse 

glucuronidated B[a]P metabolites and therefore increase the amount 
of B[a]P-7,8-diol, consequently leading to more BPDE and DNA 
adducts formation
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as a reactive derivative of B[a]P that can covalently bind 
to DNA to form adducts preferentially at guanine residues 
(e.g. 10-(deoxyguanosin-N2-yI)-7,8,9-trihydroxy-7,8,9,10-
tetrahydro benzo[a]pyrene; dG-N2-BPDE) (Arlt et al. 2008; 
Kim et al. 1998; Wohak et al. 2014). It is generally accepted 
that the formation of such DNA adducts leads to mutations 
relevant for carcinogenesis (Kucab et al. 2015). In addition, 
the reactive metabolites can be conjugated by an important 
phase II detoxification enzyme UDP-glucuronosyltrans-
ferases (UGTs) that leads to glucuronides which are not 
mutagenic or carcinogenic (Shimoi and Nakayama 2005; 
Shimoi et al. 2001). Indeed, UGT1A6 was found to glucu-
ronate a range of B[a]P metabolites including 3-OH-B[a]P, 
B[a]P-9,10-diol and the pro-carcinogen B[a]P-7,8-diol (Jin 
et al. 1993; Trushin et al. 2012; Zheng et al. 2002).

In order to elucidate the role of β-glucuronidase in 
inflammatory disease and its effect on chemically induced 
cancer, it is crucial to understand how β-glucuronidase 
changes the cellular response towards B[a]P. In a recent 
study, it was found that lipopolysaccharide (LPS) treatment 
increased B[a]P-induced DNA adduct levels in lung and 
liver tissues of B[a]P inhalatory-exposed mice (Arlt et al. 
2015). To explain this result, we hypothesise that the LPS 
induced an inflammatory response resulting in the release 
of β-glucuronidase that hydrolysed glucuronidated B[a]
P metabolites and thus reversing the protective effect of 
glucuronidation, and subsequently enhanced the binding 
of B[a]P metabolites to DNA. To test our hypothesis, we 
studied the impact of extracellular β-glucuronidase on the 
formation of B[a]P metabolites (3-OH-B[a]P, B[a]P-9,10-
diol and B[a]P-7,8-diol), gene expression of some enzymes 
pivotal in B[a]P metabolism (including CYP1A1, CYP1B1 
and UGT1A6), and DNA adduct formation in human liver 
cell line (HepG2) and human lung cell line (A549).

Materials and methods

Mouse lung and liver tissues

All procedures performed in the study involving animal 
experiments were conducted at King’s College London 
under license in accordance with the Institutional Eth-
ics Committee on the protocols approved by the Home 
Office under “The Animals (Scientific Procedures) Act 
(1986).” Mice were divided into four groups (n = 3 in each 
group): (a) control group; mice were nasally instilled with 
saline. After 24 h, mice were intratracheally instilled with 
tricaprylin. (b) The lipopolysaccharide (LPS) treatment 
group; each mouse was nasally instilled with 20 μg LPS 
(dissolved in saline). After 24 h, mice were intratrache-
ally instilled with tricaprylin. (c) The B[a]P-treated group; 
mice were nasally instilled with saline and intratracheally 

instilled with 0.5 mg B[a]P (dissolved in 25 μl tricapry-
lin) after 24 h. (d) The B[a]P- and LPS-treated group; each 
mouse was nasally instilled with 20 μg of LPS. After 24 h, 
mice were intratracheally instilled with 0.5 mg B[a]P. All 
mice were sacrificed at 48 h after the intratracheal expo-
sure. The collection of bronchoalveolar lavage fluid (BAL 
fluid) and the isolation of cytosolic fractions from lung and 
liver were performed as described in Arlt et al. (2015).

Cell lines and cell treatment

Human liver hepatocellular carcinoma HepG2 cells and 
human epithelial lung adenoma carcinoma A549 cells were 
obtained from the American Tissue Culture Collection. 
HepG2 cells were cultured in minimum essential medium 
(MEM) plus glutamax containing 10 % (v/v) foetal calf 
serum (FCS, Gibco invitrogen, Breda, the Netherlands), 
1 % (v/v) sodium pyruvate, 1 % (v/v) penicillin/strepto-
mycin (Sigma, Zwijndrecht, the Netherlands), and 1 % 
(v/v) non-essential amino acids (Sigma). A549 cells were 
cultured in RPMI (Sigma) supplemented with 5 % (v/v) 
FCS and 1 % (v/v) penicillin/streptomycin. All cells were 
cultured under humidified atmosphere containing 5 % CO2 
at 37 °C. Cell passages between 20 and 29 were used for 
experiments. All chemicals were purchased from Sigma-
Aldrich unless stated otherwise.

Cells with 80 % confluency were exposed to 1 μM B[a]
P in the presence or absence of β-glucuronidase (4 U/ml) 
for 6, 24 or 48 h. B[a]P was dissolved in dimethylsulphox-
ide (DMSO) and added to the medium with a final DMSO 
concentration of 0.5 % (v/v). β-Glucuronidase was dis-
solved in 0.1 M sodium acetate buffer (pH 5.5). Mannose-
6-phosphate (M6P) was dissolved in 0.1 M sodium acetate 
buffer (pH 5.5) and the final concentration in cell culture 
is 100 μM. d-Saccharic acid 1,4-lactone monohydrate was 
dissolved in 0.1 M sodium acetate buffer (pH 5.5), and the 
final concentration in cell culture is 100 μM. Before incu-
bation, all cell media were adjusted to pH 5.5 by using 1 M 
HCl in order to mimic the microenvironment of inflamma-
tion. After incubation, the medium and cells were stored at 
−20 °C until further analysis. Experiments were performed 
at least with three replicates in three independent cultures.

Measurement of β‑glucuronidase activity

β-Glucuronidase (Helix pomatia-type H5, ≥400,000 Units/g 
solid) activity was determined by fluometrically monitor-
ing the hydrolysis of 4-methylumbelliferyl-β-d-glucuronide 
(4MUgIA) according to the method described by (Bar-
tholome et al. 2010) with some modifications. Briefly, the 
reaction mixture in a total volume of 140 μl contained 
0.1 M sodium acetate buffer (pH 5.5), 2 mM 4MUgIA, 
and sample containing β-glucuronidase. The reaction was 
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initiated by mixing 4MUgIA and the sample. The hydrol-
ysis of 4MUgIA was measured in a thermostated plate 
reader (Spectra max m2, MDS, CA) at 37 °C and 320-
/460-nm excitation/emission wavelengths. A standard 
curve of β-glucuronidase [0.4–400 Units/ml (U/ml)] was 
generated to quantitate formation of fluorescence in the 
presence of 4MUgIA. d-Saccharic acid 1,4-lactone mono-
hydrate, a β-glucuronidase inhibitor, was used to inhibit 
β-glucuronidase activity.

For testing the interaction between B[a]P and 
β-glucuronidase, we used similar condition as mentioned 
above. A total volume of 140 μl contained 0.1 M sodium ace-
tate buffer (pH 5.5), different concentrations of 4MUgIA (e.g. 
500, 250, 100, 50, 10 and 1 μM), and 4 U/ml β-glucuronidase 
with additional 1 μl of 200 μM B[a]P or 1 μl DMSO. The 
measurement of fluorescence was performed for 10 h at 37 °C.

HPLC fluorescence analysis of B[a]P  
and B[a]P metabolites

B[a]P and its metabolites were extracted from 5 ml cell 
medium by mixing with 1 ml ethylacetate for 20 min and fol-
lowed by centrifugation (10 min, 980g). The top layer was 
transferred to a new tube. This procedure was repeated twice. 
The top layers were evaporated under nitrogen, and the resi-
due was redissolved in 0.5 ml methanol (Biosolve Chemi-
cals, Valkenswaard, the Netherlands). Samples were subse-
quently analysed by HPLC-FD using a Gynkotek P580A 
HPLC system (Separations Analytical Instruments, Hendrik-
Ido-Ambacht, the Netherlands) consisting of a Spark SP830 
autosampler (Spark Holland, Emmen, The Netherlands) and 
a Perkin Elmer LS-30 programmable fluorescence detec-
tor (Perkin Elmer, Foster City, CA, USA) operated at exci-
tation/emission wavelengths 257/>350 nm. The samples 
were injected onto a Hypersil 5-μm ODS HPLC column 
(250 mm × 3 mm) (Supelco 54933, Bellefonte, PA, USA) 
with a flow rate of 0.5 ml/min. Separation was performed 
using a mixture of two mobile phases: A (100 % methanol) 
and B (40 % methanol in water) in the following multi-step 
gradient conditions: 0–5 min, 30/70 (A/B, v/v); 5–30 min, gra-
dient from 30/70 (A/B, v/v) to 90/10 (A/B, v/v); 30–35 min, 
90/10 (A/B, v/v); 35–37 min, gradient from 90/10 (A/B, v/v) 
to 30/70 (A/B, v/v); and 37–40 min, 30/70 (A/B, v/v). For 
quantitation of the specific metabolites, a standard mix which 
contained 50 ng/ml B[a]P-9,10-diol 50 ng/ml B[a]P-7,8-
diol and 50 ng/ml 3-OH-B[a]P (Midwest Research Institute, 
Kansas City, MO, USA) were injected, and the area of each 
metabolite peak in the chromatogram was determined.

Quantitative real‑time PCR

Gene expression levels were measured by quantitative real-
time reverse transcriptase PCR (RT-qPCR) using a MyiQ 

Single Colour real-time PCR detection system (BioRad, 
Veenendaal, The Netherlands). Total RNA was isolated and 
purified by using the RNeasy® Mini Kit (Qiagen Westburg, 
Leusden, The Netherlands) in combination with DNase 
treatment (Qiagen). cDNA was generated from 500 ng 
total RNA by using the iScript™ cDNA synthesis kit pro-
tocol (BioRad). Primers were purchased from Operon (Lei-
den, The Netherlands) for the following genes: β-actin, 
CYP1A1, CYP1B1 and UGT1A6 [see (Schults et al. 2014)]. 
The reaction contained SYBR© Green Supermix (Bio-
Ras), 5 μl (40 times diluted) cDNA and 0.3 μM primers in 
a total volume of 25 μl. PCR was conducted under the fol-
lowing condition: denaturation at 95 °C for 3 min, followed 
by 40 cycles of 95 °C for 10 s and 55 °C for 45 s. All PCR 
reactions included a cDNA dilution curve to assess PCR 
efficiency, and all reactions were followed by a melt curve 
(55–95 °C). Data were analysed by using MyiQ Software 
system (BioRad), and the amount of target cDNA in each 
sample was determined by a fractional PCR threshold cycle 
number (Ct value) and compared to the corresponding Ct 
value for the housekeeping gene β-actin. The relative gene 
expression level for each gene was calculated by using the 
2−ΔΔCt method (Livak and Schmittgen 2001).

32P‑Postlabelling of B[a]P–DNA adducts

DNA harvested from cells was isolated using a phe-
nol–chloroform–isoamylalcohol extraction procedure as 
described by Schults et al. (2013). Briefly, after incubation, 
cells were resuspended in 450 μl lysis buffer [10 mM Tris, 
10 mM TEMPO, 1 mM EDTA and 1 % (w/v) sodium dode-
cyl sulphate (SDS); pH 8] and incubated with proteinase K 
(10 μg/ml) at 37 °C overnight. The mixture was extracted 
with 1 volume Tris-saturated phenol, 1 volume Tris-satu-
rated phenol–chloroform–isoamyl alcohol (25:24:1 by vol-
ume), and 1 volume chloroform–isoamyl alcohol (24:1, 
v/v). The DNA was precipitated with 1/30 volume 3 M 
NaAc pH 5.2 and 2 volumes of cold 100 % ethanol. Precip-
itated DNA was washed with 70 % ethanol and dried under 
nitrogen. The DNA was dissolved in 2 mM Tris (pH 8.0) 
with final concentration 0.5 μg/μl.

DNA digestion and 32P-postlabelling were performed 
as described by Van Schooten et al. (1997). In short, DNA 
samples (10 μg) were digested with micrococcal nuclease 
(Sigma) (0.25 U/μl) and spleen phosphodiesterase (Sigma) 
(2 μg/μl) for 4 h at 37 °C in a total volume of 9.5 μl. For 
DNA adduct enrichment, samples were treated with nucle-
ase P1 (Sigma) (2.5 μg/μl) at 37 °C for 30 min. The nucle-
ase P1 reaction was terminated by addition of 1 µl 1 M Tris 
(pH 9.6). DNA adducts were subsequently labelled with 
[ɣ-32P]ATP (50 μCi/sample; PerkinElmer, Indianapolis) 
using T4-polynucleotide kinase (10 U/μl) for 30 min at 
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37 °C. The 32P-labelled adducts were separated on PEI–cel-
lulose sheets (Machery Nagel, Düren, Germany) by multi-
directional thin-layer chromatography (TLC).

The TLC sheets were scanned using Phosphor-Imaging 
technology (Fujifilm FLA-3000) and DNA adducts lev-
els were calculated from two B[a]PDE–DNA standards 
with known adducts levels (1 adduct/106 and 1 adduct/107 
nucleotides). The major B[a]P–DNA adduct that was used 
for quantitation purposes in both HepG2 and A549 cells 
migrated to the same position as the major adduct of the 
BPDE-DNA adduct standard. In addition, the B[a]PDE-
DNA adduct levels were corrected for the amount of DNA 
in the sample which was assessed by HPLC–UV analysis.

Statistical analysis

Data were expressed as mean ± standard error of the mean 
(SEM). Statistical analysis was performed using Graphpad 
Prism 6. To examine differences between the different treat-
ments at each time point, a two-way analysis of variance 
test (ANOVA) with Bonferroni post hoc multiple compari-
son was used. Differences were considered to be statisti-
cally significant if the p value was less than 0.05 (p < 0.05).

Results

Activity of β‑glucuronidase in lung and liver tissues 
of mice

Intranasal exposure of the mice to LPS resulted in an 
approximately twofold induction of β-glucuronidase activ-
ity in lung tissue compared to control (Table 1). Similarly, 
when LPS treatment was combined with B[a]P treatment, a 
significant 1.5-fold higher activity of β-glucuronidase was 
observed compared with the B[a]P-treated group without 
LPS. In addition, bronchoalveolar lavage fluid (BAL fluid) 
was collected, and the β-glucuronidase activity in BAL 

fluid was lower than in the tissues, but LPS treatment did 
result in a significant increase in β-glucuronidase when 
compared to animals that were not treated with LPS (i.e. 
irrespective of B[a]P exposure). On the other hand, in liver 
tissue a 1.2-fold lower activity of β-glucuronidase was 
observed in LPS-treated animals when compared to con-
trol and B[a]P-treated mice, respectively. These changes 
in β-glucuronidase activity after LPS treatment were in the 
range of 2–30 U/ml β-glucuronidase, and therefore, 4 U/

Table 1  Activity of β-glucuronidase in mouse liver, lung tissues and 
BAL fluids

* Significantly different from control animals (p < 0.05)

** Significantly different from B[a]P-treated animals (p < 0.05)
# p < 0.05 if both LPS-treated groups were combined when com-
pared to non-LPS-treated animals

Control  
(U/ml)

LPS  
(U/ml)

B[a]P  
(U/ml)

B[a]P and 
LPS (U/ml)

Liver  
cytosol

27.1 ± 1.5 23.3 ± 0.4* 27.6 ± 0.9 22.5 ± 1.0**

Lung  
cytosol

7.6 ± 0.8 15.4 ± 1.3* 7.4 ± 0.8 11.1 ± 1.3**

BAL fluids 2 ± 0.2 2.2 ± 0.1# 2.0 ± 0.1 2.2 ± 0.1# Fig. 2  RT-qPCR analysis of gene expression CYP1A1 in both A549 
(a) and HepG2 (b) cells after exposure to β-glucuronidase and/
or B[a]P. Cells were exposed to 1 μM B[a]P with or without 4 U/
ml β-glucuronidase and harvested after the times indicated. Cells 
exposed to DMSO and sodium acetate buffer were used as a vehi-
cle control. All values are given as the mean ± SEM (n = 4 per data 
point). (*p < 0.05; **p < 0.01; ***p < 0.001)
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ml was used as biologically relevant dose in the subsequent 
cell culture experiments (see Table 1).

Phenotypes after B[a]P exposure with or 
without β‑glucuronidase

Expression of CYP1A1 and CYP1B1

Exposure to B[a]P significantly induced the expression 
of CYP1A1 and CYP1B1 (Figs. 2a, 3a). In A549 cells, the 

expression of these genes at 6 h after exposure was increased 
56-fold and fivefold, respectively. Surprisingly, co-incuba-
tion with β-glucuronidase inhibited the induction of expres-
sion with approximately 50–90 %. Expression of CYP1A1 
and CYP1B1 in cells that were treated with β-glucuronidase 
without additional exposure to B[a]P was also reduced when 
compared to the expression observed in control cells, but this 
difference did not reach statistical significance. At 24 h, the 
expression of CYP1A1 and CYP1B1 was induced by B[a]
P to 39-fold and threefold, respectively. Surprisingly, the 
induction of both genes was now strongly increased by the 
presence of β-glucuronidase (191-fold and sixfold, respec-
tively). At t = 48 h, the induction of CYP1A1 and CYP1B1 
in cells that were co-exposed to β-glucuronidase remained 
higher than in cells that were only exposed to B[a]P. The 
same pattern of changes in gene expression of CYP1A1 and 
CYP1B1 by β-glucuronidase was observed in the absence of 
B[a]P, although less pronounced. Moreover, changes in gene 
expression of CYP1A1 and CYP1B1 were essentially similar 
in HepG2 cells (Figs. 2b, 3b), but the fold changes that were 
reached were lower than in A549 cells.

Expression of UGT1A6

As shown in Fig. 4b, in HepG2 cells the expression of 
UGT1A6 was threefold and 11-fold induced by B[a]P when 
compared to unexposed cells at 6 and 24 h after exposure, 
respectively. Addition of β-glucuronidase inhibited UGT1A6 
expression after 6 h when compared to cells treated with 
B[a]P alone. However, a significant increase in UGT1A6 
expression was observed 24 h after exposure (61-fold and 
sixfold compared to unexposed cells and only B[a]P-treated 
cells, respectively). At 48 h, the expression of UGT1A6 
remained enhanced by B[a]P and B[a]P with additional 
β-glucuronidase, but the induction levels were three times 
lower (ninefold and 28-fold, respectively). In addition, a sim-
ilar pattern of changes in gene expression of UGT1A6 were 
shown by β-glucuronidase in the absence of B[a]P.

On the other hand, in A549 cells, there was no signifi-
cant induction or inhibition of UGT1A6 expression by B[a]
P nor by β-glucuronidase, but at t = 48 h, all treatments 
induced the expression of UGT1A6 compared to unex-
posed cells (see Fig. 4a).

B[a]P and its metabolites

Extracellular B[a]P metabolite (B[a]P-7,8-diol and B[a]
P-9,10-diol) concentrations of A549 cells that were exposed 
to 1 μM B[a]P with β-glucuronidase (10 µg/ml) for 6 h sig-
nificantly decreased, when compared to A549 cells that 
were exposed to B[a]P only (Fig. 5, right column). How-
ever, when cells were exposed for 24 h, the concentra-
tions of extracellular B[a]P metabolites in the medium of 

Fig. 3  RT-qPCR analysis of gene expression CYP1B in both A549 
(a) and HepG2 cells (b) after exposure to β-glucuronidase and/
or B[a]P. Cells were exposed to 1 μM B[a]P with or without 4 U/
ml β-glucuronidase and harvested after the times indicated. Cells 
exposed to DMSO and sodium acetate buffer were used as a vehi-
cle control. All values are given as the mean ± SEM (n = 4 per data 
point). (*p < 0.05; **p < 0.01; ***p < 0.001)
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β-glucuronidase-treated cells significantly increased and 
were higher than in A549 cells that were exposed to B[a]
P alone. At 48 h, the extracellular B[a]P metabolite levels 
were below the detection limit in both treatments (presence 
or absence of β-glucuronidase).

The results were essentially similar for HepG2 cells 
(Fig. 5, left column). However, the initial difference at 
t = 6 h was more pronounced, and statistically significant 
for B[a]P-7,8-diol and B[a]P-9,10-diol.

Moreover, the concentration of unmetabolized B[a]P 
in the medium showed similar time-dependent patterns in 
both cell lines (Fig. 5g, h). The concentration of unmetabo-
lized B[a]P gradually declined with time. However, after 
24 h of exposure, the concentration of the parent compound 
in A549 cells was about threefold higher (p < 0.05) in the 
samples that included β-glucuronidase than in cells with-
out β-glucuronidase. For HepG2 cells, the concentration 
of B[a]P in the presence of β-glucuronidase was approxi-
mately twofold higher than in samples that were treated 
with B[a]P alone. For both cell lines, B[a]P was almost 
fully metabolized 48 h after exposure.

B[a]P–DNA adducts level

B[a]P exposure resulted in a time-dependent increase in 
B[a]P–DNA adduct levels in both cell lines (Fig. 6). How-
ever, the presence of β-glucuronidase altered the kinetics in 
which DNA adducts were formed: in A549 cells, at t = 6 
and t = 24 h, DNA adduct levels were initially lower in 
cells that were treated with B[a]P and β-glucuronidase. 
However, a strong increase in DNA adduct levels from 
5 adducts per 107 nucleotides at t = 24 h to 65 adducts 
per 107 nucleotides at 48 h (p < 0.0001), was found in 
β-glucuronidase-treated A549. This was not the case in 
the samples with B[a]P only. Consequently, at t = 48 h, 
B[a]P–DNA adduct levels were 1.4-fold higher in cells 
that were treated with β-glucuronidase compared to treat-
ment with B[a]P only. In HepG2 cells, the presence of 
β-glucuronidase resulted in 1.5-fold, twofold, and 1.6-fold 
higher levels of B[a]P–DNA adducts at 6, 24, and 48 h, 
respectively, compared to the samples that were treated 
with B[a]P only (p < 0.05 at 48 h).

Potential mechanisms

Can β‑glucuronidase interact with B[a]P to prevent B[a]P 
from entering the cells?

Since B[a]P metabolism seems to be delayed, we studied 
whether B[a]P could temporarily bind to β-glucuronidase, 
which could prevent B[a]P from entering the cell. We 
assumed that binding of B[a]P to β-glucuronidase would 
interfere with β-glucuronidase activity. Therefore, we 
assessed the β-glucuronidase hydrolysis of 4MUgIA in 
the presence B[a]P (Fig. 7). At 37 °C for 10 h, 10 μg/ml 
of β-glucuronidase and 1 μM B[a]P were mixed with dif-
ferent concentration of substrate (4MUgIA). The addition 
of B[a]P lowered the changes in fluorescence units per 
hours compared with control. With increasing concentra-
tions of 4MUgIA, the difference of the Δfluorescence/hour 
between these two groups became larger. This difference 
was significant at 100 μM (p < 0.01), 250 μM (p < 0.05) 

Fig. 4  RT-qPCR analysis of gene expression UGT1A6 in A549 
(a) and HepG2 (b) cells after exposure to β-glucuronidase and/
or B[a]P. Cells were exposed to 1 μM B[a]P with or without 4 U/
ml β-glucuronidase and harvested after the times indicated. Cells 
exposed to DMSO and sodium acetate buffer were used as a vehi-
cle control. All values are given as the mean ± SEM (n = 4 per data 
point). (*p < 0.05; **p < 0.01; ***p < 0.001)
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Fig. 5  HPLC fluorescence 
analysis of B[a]P-7,8-diol, 
B[a]P-9,10-diol, 3-OH-B[a]
P and B[a]P in HepG2 cells 
(left column) and A549 cells 
(right column) after exposure 
to β-glucuronidase and/or B[a]
P. Cells were exposed to 1 μM 
B[a]P with or without 4 U/
ml β-glucuronidase and cell 
medium was harvested after the 
time indicated. Cells exposed 
to DMSO and sodium acetate 
buffer were used as a vehicle 
control. All values are given as 
the mean ± SEM (n = 3 per 
data point). Filled circle without 
β-glucuronidase, open circle 
with β-glucuronidase
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and 500 μM (p < 0.001) of 4MUgIA. The largest difference 
was observed at the highest concentration of 4MUgIA and 
was approximately 18 % lower than control. In addition, 
we performed Michaelis–Menten equation to determine the 
Vmax and Km for both reactions. Although the Km in both 
reactions is same (0.07 ± 0.01 µM and 0.07 ± 0.01 µM for 
control and B[a]P-treated, respectively), the Vmax in con-
trol is significantly larger than in the B[a]P-treated sample 
(p < 0.05). Therefore, we concluded that there is a non-
competitive inhibition reaction.

Is the inhibitory effect of β‑glucuronidase on CYP1A1 
expression dependent on its activity?

In order to gain further insight into the role of 
β-glucuronidase activity in influencing CYP1A1 expression, 
an β-glucuronidase inhibitor (d-saccharic acid 1,4-lactone 

monohydrate) was added to the B[a]P and β-glucuronidase 
incubations in A549 cells (Fig. 8). A concentration of 
100 μM fully inhibited β-glucuronidase activity (Fig. 8a). 
As shown in Fig. 8b, the presence of this inhibitor in incu-
bations with B[a]P and β-glucuronidase did not change the 
inhibitory effect of β-glucuronidase on CYP1A1 expression 
(0.13 ± 0.03 and 0.08 ± 0.01 in the absence or presence of 
inhibitor, respectively) at t = 6 h. On the contrary, at t = 24 h, 
the presence of this inhibitor significantly lowered CYP1A1 
expression when compared to cells that were exposed to B[a]
P and β-glucuronidase without inhibitor (p < 0.01).

Involvement of the insulin‑like growth factor  
2/mannose‑6‑phosphate pathway

Extracellular enzymes like β-glucuronidase are known 
to bind to the mannose-6-phosphate (M6P) receptor 

Fig. 6  32P-Postlabelling 
analysis of DNA adducts level 
in HepG2 cells and A549 cells 
after exposure to B[a]P with or 
without β-glucuronidase.  
a HepG2 cells were exposed 
to 1 μM B[a]P with or without 
10 μg/ml β-glucuronidase and 
harvest after the times indicated. 
b A549 cells were exposed to 
1 μM B[a]P with or without 
4 U/ml β-glucuronidase and 
harvest after the times indicated. 
Data are expressed as number 
of B[a]P–DNA adducts per 107 
nucleotides (n = 5 for HepG2 
cells and n = 4 for A549 cells, 
mean ± SEM) (*p < 0.05; 
***p < 0.001). Representative 
chromatograms obtained by 
32P-postlabelling in HepG2 
cells (c) and A549 cells (d). 
The adduct spot (arrow) that 
migrated during 2D-TLC to 
the same position as the major 
DNA adduct in a BPDE-DNA 
adduct standard was quantitated 
in all samples. Before phos-
phorimaging of the TLC plates 
the origin located at the bottom 
left-hand corner was excised
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(Gonzalez-Noriega et al. 2001), which is also known as 
IGF2 receptor. The IGF2 receptor can be inhibited by 
high concentrations of M6P (El-Shewy and Luttrell 2009). 
β-Glucuronidase inhibited the induction of CYP1A1 expres-
sion by B[a]P at 6 h of incubation to approximately 10 % 
(Fig. 9), whereas in the presence of M6P, β-glucuronidase 
was unable to inhibit CYP1A1 expression at 6 h. As 
shown previously, β-glucuronidase significantly induced 
CYP1A1 expression at 24 h when co-incubated with B[a]
P (p < 0.01). CYP1A1 expression was still enhanced with 
additional M6P at 24 h, but the changes in expression were 
less pronounced.

Discussion

It remains to be established how the cellular response 
to B[a]P is affected by the presence of extracellular 
β-glucuronidase, which is released during inflammation. In 
this study, we demonstrated that β-glucuronidase initially 
(6 h after exposure) inhibited gene expression of enzymes 
that are pivotal in B[a]P metabolism, including CYP1A1, 
CYP1B1, and UGT1A6. As a result, subsequent formation 
of B[a]P metabolites and the formation of B[a]P–DNA 
adducts was delayed in the presence of β-glucuronidase. 
However, at 24 h of exposure, CYP expression was sig-
nificantly enhanced in β-glucuronidase-treated cells, prob-
ably because more B[a]P remained unmetabolized and 
β-glucuronidase converted B[a]P-derived glucuronide 
metabolites into active B[a]P metabolites. The higher con-
centration of active B[a]P metabolites continued to trigger 
the Ah receptor for gene expression of CYP1A1 (in both 
cell lines) and CYP1B1 (in A549 only). Consequently, the 

formation of active B[a]P metabolites and DNA adducts at 
t = 24 h was further increased in β-glucuronidase-treated 
cells. Because of this delayed metabolism of B[a]P, DNA 
adduct levels could accumulate in cells that were treated 
with β-glucuronidase and peaked at 48 h after the initial 
exposure.

A recent study observed that increased B[a]P–DNA 
adduct levels in mice that were exposed to B[a]P and intra-
nasally instilled with LPS (Arlt et al. 2015). As LPS can 

Fig. 7  4MUgIA assay was applied to assess the possibility of B[a]P 
to bind to β-glucuronidase. A total volume of 140 μl contained 0.1 M 
sodium acetate buffer (pH 5.5), different concentration of 4MUgIA 
(e.g. 500, 250, 100, 50, 10 and 1 μM), and 4 U/ml β-glucuronidase 
with 1 μl of 200 μM B[a]P or 1 μl DMSO. The measurement of fluo-
rescence [Relative Fluorescence Unit (RFU)] was performed for 10 h 
at 37 °C. B[a]P-treated samples were compared with control at each 
concentration, respectively. (*p < 0.05; **p < 0.01; ***p < 0.001)

Fig. 8  a 4MUgIA assay was applied to assess the inhibition of 
β-glucuronidase by d-saccharic acid 1,4-lactone monohydrate. A total 
volume of 140 μl contained 0.1 M sodium acetate buffer (pH 5.5), 
2 mM 4MUgIA, 4 U/ml β-glucuronidase and different concentra-
tion of d-saccharic acid 1,4-lactone monohydrate (10 μM, 100 and 
500 μM). 100 μM of d-saccharic acid 1,4-lactone monohydrate was 
used in the following incubation. b A549 cells were exposed to 1 μM 
B[a]P with or without β-glucuronidase, d-saccharic acid 1,4-lac-
tone monohydrate for 6 and 24 h. Cells exposed to 1 μM B[a]P and 
sodium acetate buffer was used as a control. All values are given 
as the mean ± SEM (n = 4 per data point) (*p < 0.05; **p < 0.01; 
***p < 0.001)
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induce an inflammatory response and stimulate the release 
of β-glucuronidase from neutrophils (Basinska and Flo-
rianczyk 2003; Ngkelo et al. 2012), we determined the 
β-glucuronidase activity in lung and liver tissues from 
these mice (Table 1). Indeed, β-glucuronidase activity was 
significantly enhanced in lung and BAL fluid of all LPS-
treated animals when compared to the control group. On 
the other hand, we found that the β-glucuronidase activity 
was significantly decreased in liver tissue 3 days after being 
intranasally instilled with LPS. LPS treatment results in the 
recruitment of neutrophils from the liver to the lung, which 
could explain the lower β-glucuronidase activity in the liver 
after LPS treatment (Reutershan et al. 2005). The signifi-
cant increase in β-glucuronidase activity in the lung sam-
ples by LPS treatment was approximately 4 U/ml, which 
we also subsequently used in our in vitro experiments.

B[a]P is known to bind to the AhR which stimulates its 
own metabolism by inducing the expression of CYP1A1 
and CYP1B1 (Spink et al. 2002). CYP1A1 and CYP1B1 
play an important role in both B[a]P activation and detoxi-
fication (Moserova et al. 2009), and B[a]P metabolites are 
further detoxified by glucuronidation. β-Glucuronidase will 
hydrolyse glucuronidated B[a]P metabolites and therefore 
will increase the concentration of active B[a]P metabo-
lites (Shimoi and Nakayama 2005). Higher concentrations 

of these B[a]P metabolites (e.g. B[a]P-7,8-diol and B[a]
P-9,10-diol) enhance the expression of CYP1A1 and 
CYP1B1 (Almahmeed et al. 2004; Spink et al. 2008). 
Therefore, we expected that addition of β-glucuronidase 
would increase CYP1A1 and CYP1B1 expression. How-
ever, we found that β-glucuronidase inhibited CYP expres-
sion shortly after B[a]P exposure (i.e. 6 h) in both A549 
and HepG2 cells. This initial inhibition of gene expression 
by β-glucuronidase was independent of β-glucuronidase 
activity, because the β-glucuronidase inhibitor d-saccharic 
acid 1,4-lactone monohydrate did not change the results. 
Several studies report the binding of β-glucuronidase to 
insulin-like growth factor 2 receptors (IGF2R), which 
are located in the cell membrane (Gonzalez-Noriega and 
Michalak 2001; Urayama et al. 2004; Vogler et al. 2005). 
Moreover, IGF2 induced AhR in MCF-7 cells (Tomblin 
and Salisbury 2014). Therefore, we studied the involve-
ment of IGF2R signalling by adding its inhibitor mannose-
6-phosphate (M6P), and we found that the inhibitory effect 
of β-glucuronidase on CYP expression was also blocked. 
Therefore, we suggest a connection between IGF2R as 
receptor of extracellular β-glucuronidase and intracellular 
AhR-signalling after B[a]P exposure.

In addition, UGT1A6 can be induced by AhR ligands 
in order to detoxify reactive B[a]P derivatives (Jin et al. 
1993). UGT1A6 is an important enzyme for the detoxifica-
tion of B[a]P metabolites and is predominantly located in 
human liver nuclear membranes (Radominska-Pandya et al. 
2002; Zheng et al. 2002). This could explain the different 
kinetics of expression of UGT1A6 between the two cell 
lines in this study. Hence, our mRNA expression data of 
UGT1A6 exhibited a similar pattern as CYP1A1 in HepG2 
cells, but not in A549 cells. It is known that lung cells 
have a lower expression of UGT’s than liver cells (Ohno 
and Nakajin 2009), and therefore, it was expected that 
the effects of β-glucuronidase on the metabolism of B[a]
P would be more pronounced in the liver-derived HepG2 
cells than in the lung-derived A549 cells. Indeed, B[a]
P–DNA adducts were already higher in β-glucuronidase-
treated HepG2 cells at t = 24 h, whereas in A549 cells 
an additional 24 h was needed for further accumulation 
of DNA adducts. At the 24-h time point, the effects of 
β-glucuronidase on CYP expression were at least partly 
dependent on β-glucuronidase activity. Thus, we suggest 
that de-glucuronidated metabolites of B[a]P in combina-
tion with the higher concentrations of unmetabolized B[a]
P, continued to trigger the Ah receptor and the subsequent 
expression of CYP1A1 and CYP1B1. Therefore, our results 
indicate that there are two possible underlying mechanisms 
resulting in altered B[a]P metabolism and subsequent DNA 
adduct formation; (1) changes in gene expression by IGF2 
signalling and (2) de-glucuronidation of glucuronidated 
metabolites.

Fig. 9  RT-qPCR analysis of gene expression CYP1A1 in A549 cells 
after exposure to β-glucuronidase and B[a]P with the IGF2R inhibi-
tor M6P. Cells were exposed to 1 μM B[a]P with or without 4 U/ml 
β-glucuronidase and with or without 100 μM M6P. Cells were har-
vested after the times indicated. Cells exposed to B[a]P and sodium 
acetate buffer were used as vehicle control. All values are given as 
the mean ± SEM (n = 4 per data point) (*p < 0.05; **p < 0.01; 
***p < 0.001)
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Moreover, we studied whether B[a]P could temporarily 
bind to β-glucuronidase which would postpone B[a]P from 
entering the cell. Indeed, the presence of B[a]P decreased the 
capacity of β-glucuronidase to deconjugate 4MUgIA, sug-
gesting an interaction between β-glucuronidase and B[a]P. 
However, this effect is unlikely to explain the present data, 
because the changes in β-glucuronidase activity by B[a]P 
are relatively small (<20 %), and in our experiments B[a]P is 
added in excess. However, this interaction may become more 
relevant at sites of inflammation and low B[a]P exposure.

Since CYP1A1 is considered to be the major enzyme 
for the activation and detoxification of B[a]P (Arlt et al. 
2008), our measured B[a]P metabolites, including B[a]
P-7,8-diol, paralleled the pattern of CYP1A1 expression in 
both cell lines (HepG2 and A549). In addition, it is known 
that inhibition of CYP1A1 decreased B[a]P–DNA adduct 
formation in vitro (Endo et al. 2008), but not in vivo (Ma 
and Lu 2007). However, we showed that with additional 
β-glucuronidase, the metabolism of B[a]P is delayed, 
which prolonged the effective exposure of cells to unme-
tabolized B[a]P, ultimately producing more toxic metabo-
lites instead of excretable derivatives of B[a]P. A study 
using Cyp1a1(‒/‒) mice revealed that slower metabolic 
clearance of B[a]P may indeed lead to greater formation of 
B[a]P-mediated DNA adducts (Uno et al. 2001).

In summary, in this study we showed that β-glucuronidase 
alters the cellular response towards B[a]P by changing gene 
expression of CYP1A1 in both lung- and liver-derived cells, 
ultimately causing higher DNA adduct levels. Moreover, we 
identified that β-glucuronidase may bind to IGF2R, thereby 
delaying B[a]P metabolism. This study exemplifies the 
complexity of the effect of inflammation on B[a]P-induced 
carcinogenesis, which deserves further attention.
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