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Predictive biomarkers for 5-fluorouracil and
oxaliplatin-based chemotherapy in gastric cancers
via profiling of patient-derived xenografts
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Gastric cancer (GC) is commonly treated by chemotherapy using 5-fluorouracil (5-FU)
derivatives and platinum combination, but predictive biomarker remains lacking. We develop
patient-derived xenografts (PDXs) from 31 GC patients and treat with a combination of 5-FU
and oxaliplatin, to determine biomarkers associated with responsiveness. When the PDXs are
defined as either responders or non-responders according to tumor volume change after
treatment, the responsiveness of PDXs is significantly consistent with the respective clinical
outcomes of the patients. An integrative genomic and transcriptomic analysis of PDXs
reveals that pathways associated with cell-to-cell and cell-to-extracellular matrix interactions
enriched among the non-responders in both cancer cells and the tumor microenvironment
(TME). We develop a 30-gene prediction model to determine the responsiveness to 5-FU
and oxaliplatin-based chemotherapy and confirm the significant poor survival outcomes
among cases classified as non-responder-like in three independent GC cohorts. Our study
may inform clinical decision-making when designing treatment strategies.
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ARTICLE

astric cancer (GC) is responsible for >1,000,000 new cases

and an estimated 783,000 deaths worldwide in 2018,

making GC the fifth most frequently diagnosed cancer
and the third leading cause of cancer death!. Although progress
has been made in understanding GC etiology, GC treatments
continue to fail in many patients. Curative surgery followed by
adjuvant chemotherapy or chemoradiotherapy are standard-of-
care treatments for locoregional GCs?. More than 50% of patients
undergo surgery; however, even after curative resection,
approximately 60% of patients relapse locally or with distant
metastases®. Folinic acid, 5-fluorouracil (5-FU), and oxaliplatin
(FOLFOX) and capecitabine (5-FU prodrug) and oxaliplatin
(XELOX) are widely used chemotherapy regimens for GC
treatment*, However, responsiveness of these regimens was var-
ious among patients and several cases have reported multidrug
resistance after treatment®.

Genomic and transcriptomic profiling can provide rich sources
of data for patient classification. The molecular subtyping of GC
has progressed substantially during the past decade, especially by
The Cancer Genome Atlas (TCGA)® and the Asian Cancer
Research Group (ACRG)2. ACRG classified GC into four mole-
cular subtypes: microsatellite-instable (MSI), microsatellite-stable
with epithelial-mesenchymal transition (EMT) expression (MSS/
EMT), microsatellite-stable with activated TP53 (MSS/TP53%),
and microsatellite-stable with TP53 functional loss (MSS/TP537).
Patient prognosis was best for MSI and worst for MSS/EMT?2,
However, these classifications are not applicable for predicting
responsiveness to standard chemotherapy. The Singapore-Duke
study identified three molecular GC subtypes, based on expres-
sion patterns: proliferative, metabolic, and mesenchymal’.
Metabolic subtype tumors appeared to display enhanced benefits
in response to 5-FU treatment. However, these subtype classifi-
cations remain insufficient and are inappropriate predictors for
chemotherapy responsiveness.

Patient-derived xenografts (PDXs) are widely used model
systems that recapitulate the histopathological characteristics,
molecular characteristics, and drug responses of parental tumors.
We extensively investigated potential predictive biomarkers for
the responsiveness to 5-FU and oxaliplatin-based chemotherapy
in GC, which is one of the most common chemotherapy regi-
mens, by combining genomic/transcriptomic analyses and in vivo
drug responsiveness data with PDX models. PDX models showed
a similar responsiveness to the clinical responses in matched GC
patients, and convergent pathway alterations of both tumor and
microenvironment were associated with treatment resistance.
This study provided a valuable resource, with clinical utility, for
evaluating the responsiveness to 5-FU and oxaliplatin-based
chemotherapy and therapeutic decision-making in GC patients.

Results

Estimation of responsiveness to 5-FU and oxaliplatin-based
chemotherapy using GC PDX models. To investigate potential
predictive factors associated with chemotherapy responsiveness in
GCs, we established a GC PDX cohort, consisting of 32 PDX
cases from 31 GC patients, and performed in vivo screening for 5-
FU and oxaliplatin-based chemotherapy (Fig. la and detailed
clinical information in Supplementary Table 1, age: 40-86 years,
sex: 25 males and 6 females). PDX tumors retained driver
mutations and genomic/characteristics of the original patient
tumors [median percentage of shared somatic mutations was 67%
between patient and PDX tumors, median Pearson’s correlation
coefficient of somatic mutation allele frequency was 0.72 (P =
0.00016), and median Pearson’s correlation coefficient of mRNA
expression was 0.56 (P=0.005)]. When the mutations with
therapeutic importance were considered, mutations in genes

applicable to Food and Drug Administration-approved drugs and
standard care (OncoKB level 1 and 2; http://www.oncokb.org)
were maintained in all of the patient and PDX pairs (Supple-
mentary Fig. 1 and Supplementary Data 1). Clonal structures,
estimated using the PyClone algorithm?, were well conserved
between patient and PDX tumors (Supplementary Fig. 2a, b).
Because FOLFOX is a widely used standard chemotherapy regi-
men among GC patients, we treated the GC PDX models with 5-
FU + oxaliplatin. The PDX models were classified into 13
responders (Rs), 11 non-responders (NRs), and 8 cases with
questionable responsiveness (Fig. la, b). Rs were classified by
comprehensive evaluation in that it reflects the tumor volumes
before and after treatment with both drug- and vehicle-treated
samples using the following criteria: (1) drug treatment sig-
nificantly inhibited tumor growth [two-way analysis of variance
(ANOVA) P <0.0001; Supplementary Fig. 3a—c and Supplemen-
tary Table 2]; and (2) the percent tumor growth inhibition (T'GI
(%); described in “Methods”) by drug treatment at end point was
>60% (Fig. 1b and Supplementary Table 2)°. The average TGI
was 81.0 and 22.9% in Rs and NRs, respectively, with a significant
difference (U test P <0.0001). However, tumor growth rates
between the R and NR groups did not differ significantly during
the initial xenotransplantation stage (Passage 0; Supplementary
Fig. 4a) or in vehicle-treated mice (Passage 2; Supplementary
Fig. 4b), suggesting that tumor growth rate had little effect on the
responsiveness classification.

Next, we compared responsiveness to 5-FU and oxaliplatin in
PDX models with clinical responsiveness in matched patients.
Among 10 patients who were treated with a comparable regimen,
3 of the 4 patients whose PDX models were classified into the R
group showed clinically relevant responsiveness to 5-FU and
platinum-based regimens (median progression-free survival time
>46 months; Fig. 1c, d). Representatively, patient #3 received 54
cycles of XELOX (capecitabine plus oxaliplatin) treatment and
showed no signs of disease progression for 51 weeks (Fig. 1d). In
contrast, all 6 patients whose PDX models were classified as NR
exhibited treatment resistance to 5-FU 4 platinum-based regi-
mens, resulting in relapse or tumor progression (median
progression-free or disease-free survival time of 5 months,
ranging from 1 to 25 months; Fig. 1c, d). Drug responsiveness
in the PDX models was significantly concordant with recurrence
in matched patients (P=0.033, Chi-square test), and patients
classified as NR, based on the PDX response, showed poorer
prognosis than patients classified as R, based on progression-free
survival (P = 0.0212, log-rank test; Fig. le). These data suggested
that responsiveness to 5-FU and oxaliplatin-based chemotherapy
could be reliably predicted according to the PDX model criteria,
anticipating the clinical responsiveness in patients.

Investigation of previously reported factors associated with 5-
FU responsiveness in our PDX cohort. First, we compared
clinical characteristics between R and NR patients, classified
based on the PDX model response. Several clinical parameters,
including gender, age, World Health Organization and Lauren
classifications, tumor location, and tumor stage [Tumor, Node,
Metastasis (TNM)], were not associated with responsiveness to 5-
FU and oxaliplatin (Supplementary Table 3). Additionally, based
on molecular profiling, TCGA molecular GC subtypes® were not
associated with drug responsiveness (P = 0.464; Supplementary
Table 4).

Previous studies suggested that genes in the one-carbon
metabolism  pathway!0,  microsatellite  instability!!, and
p53 status!? were associated with the 5-FU clinical response,
for many cancer types. The one-carbon metabolism pathway
includes  methylenetetrahydrofolate  reductase =~ (MTHEFR),
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methionine synthase (MTR), methionine synthase reductase
(MTRR), and thymidylate synthase (TYMS)!0. Single-nucleotide
polymorphisms (SNPs) and gene expression levels were suggested
to serve as predictive markers for 5-FU-based chemotherapy
responsiveness!). However, no differences were observed in
germline and somatic mutation status (Supplementary Fig. 5a, b)
or one-carbon metabolism-associated gene expression levels
(Supplementary Fig. 5c) between the R and NR groups in
our study.
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Microsatellite instability results from the inactivation of
mismatch repair (MMR) pathways and the benefit from FOLFOX
chemotherapy with MSI tumors remains controversial!113, When
we examined MMR pathway genes, recurrent somatic mutations
in these genes were not associated with 5-FU + oxaliplatin
treatment responsiveness among our PDX cohort (Supplemen-
tary Fig. 6a). The expression levels of MLHI, which is one of the
essential MMR genes, was not significantly different between the
R and NR groups (Supplementary Fig. 6b). However, mutation
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Fig. 1 Classification of gastric cancer (GC) PDX models, based on responsiv to 5-FU-based chemotherapy, and similarities to patients’ clinical
responses. a Graphical overview of the study. This figure was generated using BioRender. WES whole-exome sequencing, WTS whole-transcriptome
sequencing. b Percent tumor growth inhibition (TGl (%)) of 32 PDX models. Asterisks indicate significant differences between the responder and non-
responder groups (*P < 0.05; **P < 0.0001). Violin plot shows the TGl values of PDX models of the responder (n =13), non-responder (n =11), and
intermediate-responder (n = 8) groups. In the box and whisker plots, data are presented as median value and standard deviation, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively. Two-tailed Mann-Whitney U test using normal distribution (P = 0.000038) was
performed. ¢ Computed tomographic images of two representative patients with clinical responses that were consistent with their respective PDX
responses. Cycles of chemotherapy are indicated in the bracket. The yellow arrow indicates tumor mass. M months. d Clinical outcome of patients treated
with 5-FU-based chemotherapy. Of four patients whose PDX models were classified as responders, three patients (patient #3, #5, and #19) showed
prolonged survival, without recurrence or progression to XELOX and TS-1 treatment. All of the six patients whose PDX models were classified as non-
responders showed tumor progression and poor prognosis. XELOX capecitabine (prodrug of 5-FU) and oxaliplatin, FOLFOX folinic acid, 5-FU, and
oxaliplatin, TS-1a combination of tegafur, gimeracil, and oteracil potassium. TS-1is converted into 5-FU after absorption. The number of treatment cycles is
indicated after the drug names. e Progression-free survival of patients, based on the responses of their respective PDX models. Two-sided log-rank test

(P=0.0212).

burden was highly correlated with defective MMR signature, and
MLHI expression showed significant anti-correlation with
mutation burden and defective MMR signature (Supplementary
Fig. 6¢).

Functional p53 protein status has been suggested to affect 5-
FU-based chemotherapy sensitivity in several cancer types!21415,
Although not significantly, the somatic mutations frequencies in
TP53 increased in the NR group relative to the R group (38% for
the R group and 64% for the NR group; Supplementary Fig. 7a,
b), and the average p53 activity score was higher in the R group
(0.19) than in the NR group (—0.11, Supplementary Fig. 7c). In
addition, NRs with no TP53 mutation also showed low p53
activity (group average: —0.13; Supplementary Fig. 7c), suggesting
defective p53 function among the NR group. Although various
factors associated with the MMR process and the p53 pathway
were associated with the R or NR groups, previously suggested
candidate predictive factors for 5-FU-based treatment did not
sufficiently explain drug responsiveness in our GC PDX cohort,
suggesting the need for additional treatment responsiveness
biomarkers to be developed.

Comprehensive genomic characterization of Rs and NRs to 5-
FU and oxaliplatin-based chemotherapy. To identify novel
genomic features that separate the R and NR groups, we analyzed
the genomic profiles of PDX tumors, using whole-exome
sequencing (WES). Difference in the frequency of MSI-high
samples (6/13 in Rs, 3/11 in NRs, P = 0.597) and tumor mutation
burden (TMB; P=0.254, when the blood DNA unmatched
samples were excluded) were not significant between groups
(Fig. 2a). In GC-associated cancer genes, suggested by the TCGA
reports®, no genes with significantly different mutation fre-
quencies were identified between the R and NR groups (Fig. 2a).
When comparing whole-exome mutation profiles between the R
and NR groups, we identified 11 exclusively mutated cancer-
associated genes, including KIAA1549 (4/13), BRD3 (3/13),
ZMYM?2 (3/13), PDGFRA (3/13), ICE1 (3/13), and TRIM33 (3/
13), in the R group, and BCL9 (4/11), HEY1 (3/11), FOXO3 (3/
11), NCOR2 (3/11), and DDR2 (2/11), in the NR group (Fisher’s
exact test, P<0.1, Fig. 2a). The functional changes and clinical
implications of these mutations remain to be further clarified.
Mutational signature analyses, based on mutations associated
with single base substitutions (SBSs; https://cancer.sanger.ac.uk/
cosmic/signatures/SBS/index.tt)6, revealed that mutational sig-
natures associated with defective MMR (SBS6, SBS14, SBS15,
SBS20, SBS21, and SBS26) were higher in the R group (average
proportion: 29.2% for Rs, 21.6% for NRs; Fig. 2b), whereas
mutational signatures associated with age at cancer diagnosis
(clock-like; SBS1, SBS5) were higher in the NR group (average
proportion: 31.1% for Rs, 35.4% for NRs; Fig. 2b). A possible 5-

FU-associated signature (SBS17b) was observed in both the
groups (average proportion: 2.6% for Rs, 2.2% for NRs; Fig. 2b).
Analyses of small insertion and deletion (ID) signatures also
showed a higher proportion of defective MMR signatures (IDI,
ID2, and ID7) in the R group than in the NR group (Fig. 2¢). The
average proportions of ID2 were 33.2% for Rs and 27.1% for NRs
and the average proportions of ID7 were 6.0% for Rs and 2.5% for
NRs (Fig. 2c). Although the etiology remains unknown, ID9 was
higher in the NR group than in the R group (average proportion:
8.8% for Rs and 17.4% for NRs; Fig. 2c). We also estimated the
number of clonal mutation clusters, using PyClone®. The
complexity of the clonal architecture was not significantly
different between the groups (the median prevalence of changes
between the patient and PDXs tumor were 0.22 and 0.16 in the R
and NR groups, respectively; Supplementary Fig. 2c, d).

Next, we estimated somatic copy number alterations (SCNAs),
using WES data, and compared copy number changes between
groups. The amplification of 2q and the deletions of 16p and 19p
were significantly enriched in the NR group, whereas the deletion
of 11p was enriched in the R group (P<0.1; Supplementary
Fig. 8a). The percentages of the PDX tumor genome affected by
SCNAs were not significantly different between the two groups
(median percentage of genome altered for Rs: 17.1%, NRs: 14.2%,
Supplementary Fig. 8b). Among the GC-associated cancer genes
identified in the TCGA reports®, the focal gene amplification of
CCND1 (23% for Rs, 0% for NRs), MET (38% for Rs, 18% for
NRs), and MDM?2 (23% for Rs, 0% for NRs) was observed in the
R group (Fig. 2d). H3F3A, which encodes histone protein H3.3A,
was highly amplified in the R group (62% for Rs; 18% for NRs;
Fig. 2d). In the NR group, the recurrent amplifications of ETV1,
PLAGI, and MAF were significantly enriched compared with the
R group (Fig. 2d). The functional changes and clinical implica-
tions of these alterations must be further clarified.

Metabolic pathways define Rs, and cell-to-cell interactions
define NRs to 5-FU and oxaliplatin-based chemotherapy. We
investigated the transcriptomic signatures of the R and NR
groups by analyzing RNA sequencing data from PDX tumors. R
and NR tumors were not easily discernible according to overall
expression pattern due to mixed heterogeneous expression pat-
terns, without distinct clustering patterns (Supplementary
Fig. 9a). This indicates that drug responsiveness is not largely
reflected by general gene expression patterns; instead, specific
markers need to be examined through comparisons of the R and
NR groups.

Gene set enrichment analysis (GSEA; Fig. 3a) and pathway
analyses, based on differentially expressed genes (DEGs; Supple-
mentary Fig. 9b, ¢) in the PDX transcriptome, revealed the
enrichment of common gene sets associated with cancer
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including “REACTOME: MET activates PTK2 signaling,”

“HALLMARK: Wnt/f-catenin signaling,” “KEGG: ECM-receptor
interaction,” and “HALLMARK: angiogenesis” (Fig. 3a and
Supplementary Fig. 9c).
To identify more robust predictive tumor expression markers
associated with responsiveness to 5-FU and oxaliplatin-based
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Fig. 2 Comprehensive genomic profiles associated with responsiveness to 5-FU and oxaliplatin-based chemotherapy. a Overall mutation patterns for
both the responder (R) and non-responder (NR) groups. Tumor mutation burden (TMB) and clinicopathologic information (top), somatic mutation
patterns of GC-associated genes (middle), and exclusively mutated cancer-associated genes (mutation frequency >20% only in the R or NR groups;
bottom) were compared between the R and NR groups. b Trinucleotide mutation frequencies of the R and NR groups (top) and mutational signatures of
single base substitutions (middle). Each mutational signature was grouped by the proposed etiology. Representative mutational signatures of 13 responders
and 11 non-responders are shown with violin plots (bottom). In the box and whisker plots, data are presented as median value and standard deviation (SD),
and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. € Somatic indel frequencies of the R and NR groups (top) and
differential mutational signatures of small insertions and deletions (bottom). In the box and whisker plots, indel signature proportions of 13 responders and
11 non-responders are presented as median value and SD, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. d
Gene-level somatic copy number alterations in GC-associated genes (top) and differentially altered cancer-associated genes between the R and NR groups
(bottom; Two-sided Fisher's exact test P<0.1. Data are provided in Source data).

chemotherapy, we also analyzed the transcriptomes of matched
human cancer tissues, and DEGs that were regulated in both
patient and PDX tumors were compared between groups. A total
of 40 upregulated genes shared between patient and PDX tumors
were identified for the R group (log, fold-change > 1.5, P<0.1),
including MDM2, TMPRSS2, and POUR5FI (Fig. 3b). In contrast,
83 genes, including FGFR1, PDGFRA, MLLT11, and COLIAI,
were upregulated in the NR group for both patient and PDX
tumors (log, fold-change < -1.5, P < 0.1; Fig. 3b). A complete list
of 123 DEGs is shown in Supplementary Data 2. Data integration
between both exome and transcriptome analyses revealed fewer
TP53 mutations and increased p53 activity, based on increased
p53 target gene (MDM2 and CDKNIA) expression!”-18, in the R
group (Fig. 3b), suggesting that intact p53 signaling likely
enhances responsiveness to 5-FU and oxaliplatin-based che-
motherapy. Protein-protein interaction (PPI) networks and the
functional enrichment analysis of the 83 commonly upregulated
genes between patient and PDX tumors in the NR group showed
the significant functional enrichment of “ECM-receptor interac-
tion,” “Focal adhesion,” and “PI3K-Akt signaling pathway” gene
sets (Fig. 3c). Of the 83 upregulated gene in the NR group, 19
genes were previously reported to be upregulated in EMT!® and
23 genes were associated with mesenchymal phenotype of GC?,
and many of these genes were subtype marker genes in previous
studies (Supplementary Fig. 10a). In addition, EMT marker genes
such as SNAII, MMP9, and FNI showed significantly higher
expression in the NR group (Supplementary Fig. 10b). These data
emphasize the importance of p53 signaling and ECM interaction
pathways for resistance to 5-FU and oxaliplatin-based
chemotherapy.

Tumor microenvironment (TME) reflects cancer cell char-
acteristics based on responsiveness to 5-FU and oxaliplatin-
based chemotherapy. Because ECM-receptor interaction path-
way activation was identified in the NR group of our PDX cohort
(Fig. 3a, ¢), we further investigated the TME composition. In PDX
models, TME components, including immune and stromal cells
and non-cellular matrix proteins, are usually replaced by cells and
matrix components of mouse origin2122, Therefore, we analyzed
mouse-originating RNA reads from the WTS analysis as repre-
sentative of the TME?3.

GSEA analysis of the TME, using mouse-originating sequenced
reads from PDX models, revealed the highly enhanced metabolic
features of the R group, including “Fatty acid metabolism” and
“Xenobiotic metabolism” (Fig. 4a and Supplementary Fig. 11a),
consistent with the patterns observed for human cancer cells. In
addition, gene sets associated with cell-to-cell and cell-to-ECM
interactions, such as “Transforming growth factor-p (TGF-p)
signaling,” “Angiogenesis,” and “Wnt/B-Catenin signaling,” were
enriched in the NR group (Fig. 4a and Supplementary Fig. 11a),
consistent with the GSEA results from human cancer cells.
Several TGF-p signaling pathway genes, such as Eng? and Jag22>,

were upregulated in the NR group tumors (Fig. 4b), and Eng and
Jag2 genes were also reported to be involved in the regulation of
endothelial cell migration and endothelium development?6-27.
Comparing TME DEGs between groups for both patient (from
the whole transcriptome) and PDX models (from mouse reads),
we identified 27 and 23 genes enriched in the R and NR groups,
respectively (Fig. 4c). Network analysis, using the STRING
database for 23 TME-associated genes in the NR group, showed
the functional enrichment of genes regulating angiogenesis,
including Cdh5, Tiel, and DIl4 (Fig. 4d). These data suggested
that the upregulation of metabolism-related pathways, in both
tumor cells and the TME, cooperate to induce a favorable
response to 5-FU and oxaliplatin-based chemotherapy, whereas
cell-to-cell or cell-to-ECM interactions and angiogenesis were
associated with an unfavorable response to 5-FU and oxaliplatin-
based chemotherapy.

We also investigated the TME cellular composition, using
transcriptome data for both patient and PDX tumors. The
stromal scores of patient tumors were slightly higher in the NR
group than in the R group (P = 0.09), and several cell types, such
as endothelial cells (Mann-Whitney U test, P = 0.09), interstitial
dendritic cells (Mann-Whitney U test, P = 0.09), and fibroblasts
(Mann-Whitney U test, P=0.14), were enriched in patient
tumors from the NR group (Fig. 4e and Supplementary Fig. 11b).
The enrichment of endothelial cells in patient tumors during
cellular composition analyses was compatible with the increased
expression of angiogenesis-related gene sets observed in the TME
transcriptome analyses (Fig. 4d). The estimated proportion of
endothelial cells in the PDX TME were higher in the NR group
than in the R group, although this difference was not significant
(Fig. 4e and Supplementary Fig. 11c). In addition, when we
compared marker gene expression for TME components
(leukocytes and cancer-associated fibroblasts) among PDX
tumors, genes associated with cancer-associated fibroblasts were
expressed at higher levels in the NR group than in the R group
(Supplementary Fig. 11d). These data suggested that stromal cells
in the TME, such as endothelial cells and fibroblasts, and their
interactions with cancer cells play important roles in responsive-
ness to 5-FU and oxaliplatin-based chemotherapy.

Developing a predictive model of responsiveness to 5-FU and
oxaliplatin-based chemotherapy in GC. Since existing molecular
subtyping methods based on hundreds of genes are less effective,
we developed a predictive model of responsiveness to 5-FU and
oxaliplatin-based chemotherapy with the fewest possible markers.
After developing a predictive model based on 123 DEGs using
Bayesian Compound Covariate Predictor (BCCP) algorithm, we
reduced to 30 markers with high gene weight to create a sim-
plified model with a correlation coefficient of 0.908 (with cross-
validation P value < 0.01, sensitivity for Rs of 0.86 and specificity
of 0.89) (Supplementary Figs. 12 and 13). The high-weighted
genes of the 30-gene prediction model included genes related to
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Fig. 3 Identification of response-associated gene expression features for 5-FU and oxaliplatin-based chemotherapy. a Gene set enrichment analysis
(GSEA) of the R versus NR PDX models, using RNA sequencing data. GSEA demonstrated that metabolism-related pathways were enriched in the R group
and Wnt/B-catenin and angiogenesis signaling pathways were enriched in the NR group. Normalized enrichment score (NES) and nominal P value is
described. b Identification of core differentially expressed genes (DEGs) between the R and NR groups in both patient tumors and PDX tumors (Top). A
total of 40 upregulated genes were identified in the R group and 83 upregulated genes were identified in the NR group. The bottom panel shows the
genetic and transcriptomic alterations in TP53-associated genes in the R and NR groups. ¢ Protein-protein interaction enrichment analysis based on
STRING network for the 83 DEGs that are upregulated in the NR group. Enrichment P value are corrected for multiple testing using the method of Benjamini
and Hochberg.
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apoptosis, metabolism, ECM interactions, and EMT (Fig. 5a). The
predictive model was applied to other independent GC cohorts to
confirm the predictive value of this model by comparing the
estimated responsiveness with patients’ outcomes. Patients in
cohort of ACRG?, TCGA® and Singapore-Duke study?® did not
receive neoadjuvant therapy and some patients received adjuvant
therapy with 5-FU-based regimens. Applied to 300 GC patients of

8

ACRG, 165 and 113 patients were assigned to R-like and NR-like,
respectively (Supplementary Table 5). Survival analysis showed
that NR-like patients had worse prognosis than R-like patients in
both relapse-free (P <0.0001 for all patients and P=0.061 for
patients with adjuvant therapy by log-rank test) and overall
survival (P <0.0001) (Fig. 5b and Supplementary Fig. 14a—c). In
262 TCGA GC patients, patients assigned to R-like (n=105)
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Fig. 4 Expression profiles for the tumor microenvironment (TME) that are associated with responsiveness to 5-FU and oxaliplatin-based
chemotherapy. a GSEA of the presumed TME expression pattern, based on mouse sequencing reads from PDX tumors. The responder (R) group shows
the enrichment of reactive oxygen species (ROS) and metabolism pathways, and the non-responder (NR) group shows the enrichment of TGF-f, Wnt/p-
catenin, and angiogenesis signaling pathways. b Core gene expression from the top gene sets identified in the GSEA results. Log,FPKM expression levels
are shown with box plots (n =13 for Rs, n =9 for NRs). Data are presented as median value and standard deviation (SD), and the bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively. The two-tailed Wald test P values are shown. ¢ Candidate TME genes were selected by
comparing patient tumors and PDX TME expression levels between the R and NR groups. d Protein-protein interaction (PPI) enrichment analysis for 23
candidate TME genes in the NR group, showing the protein-protein interactions associated with the regulation of angiogenesis. Enrichment P values are
corrected for multiple testing using the method of Benjamini and Hochberg. e Estimated endothelial cell (EC) proportion in both patient and PDX tumors (n
=13 for Rs, n =9 for NRs). Data are presented as box and whisker plot with median value and SD, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. Two-tailed Mann-Whitney test P values are shown. n.s. not significant.

showed significantly better prognosis in both relapse-free and
overall survival than patients assigned to NR-like (n=84)
(Fig. 5¢, Supplementary Table 5, and Supplementary Fig. 15). In
200 GC patients of Singapore-Duke study, patients were classified
to 105 R-like and 79 NR-like subgroups (Supplementary Table 5),
and NR-like patients had worse prognosis than R-like patients in
overall survival (P=0.0013 by log-rank test; Fig. 5d and Sup-
plementary Fig. 16). When compared with subtypes in each
cohort, most MSI-type samples in the ACRG and TCGA cohorts
were classified into R-like groups, and most EMT-type sample in
the ACRG cohort and most invasive samples in Singapore-Duke
study were assigned to NR-like group (Fig. 5e-g). Taken together,
we suggest that 30-gene-based classifier model has a predictive
value for FOLFOX responsiveness and GC patient prognosis.

Discussion

In this study, we comprehensively investigated genomic and
transcriptomic differences between Rs and NRs to 5-FU and
oxaliplatin-based chemotherapy, estimated from PDX experi-
ments, and identified several important tumor biology pathways
associated with drug response (Fig. 6a, b): (1) defective p53 sig-
naling, in NRs; (2) increased metabolic processes, in Rs; and (3)
increased cell-to-cell and cell-to-ECM interactions, in NRs.
Defects in the p53 pathway have been suggested as determining
factors for the sensitivity of 5-FU-based chemotherapy, in several
cancer types!21415, because p53 status is strongly associated with
apoptosis and tumor-suppressing effects. In addition, several
genes were reported to play roles in the resistance to 5-FU-based
chemotherapy by regulating p53-dependent pathway2?30, Our
genomic and transcriptomic analyses demonstrated a lower
mutation frequency for TP53 and the increased expression of p53
target genes, such as MDM2 and CDKNI1A17:18, in the R group
(Fig. 3b and Supplementary Fig. 7c). NRs with no TP53 mutation
also showed low p53 activity (group average: —0.13; Supple-
mentary Fig. 7c), suggesting that p53 function is inactive or
defective in most NRs. Furthermore, among 343 genes, directly
regulated by p533], several genes including SEN (associated with
EMT; P=0.0092), FDXR (associated with metabolism; P =
0.0107), and BBC3 (associated with apoptosis; P = 0.0349) were
significantly downregulated in the NR group. These data suggest
that defective p53 signaling is one of the predictive features for 5-
FU and oxaliplatin-based chemotherapy resistance.

Our transcriptomic analyses demonstrated metabolism-related
gene set enrichment in the R group and the activation of cell-to-
cell and cell-to-ECM interactions in the NR group, which were
reproducibly detected in analyses of both cancer cells and the
TME (Figs. 3a and 4a), indicating the importance of interactions
between cancer and stromal cells in the TME for the development
of resistance to 5-FU and oxaliplatin-based chemotherapy. Sev-
eral soluble factors in the TME appear to play critical roles in
determining chemotherapy responsiveness. TGF-f plays an
important role in drug resistance against both targeted and

conventional agents. Recent studies showed that the treatment of
triple-negative breast cancer xenografts with paclitaxel induced
autocrine TGF-P signaling, cancer stem cell formation, and drug
resistance2. Clinical trials are ongoing for the combined treat-
ment of chemotherapeutic drugs and the TGF-B receptor I
inhibitor LY2157299, in glioblastoma (NCT01582269), hepato-
cellular carcinoma (NCT01246986), and pancreatic cancer
(NCT01373164). Wnt/B-catenin signaling is reportedly involved
in a multitude of developmental processes, the regulation of cell
proliferation, differentiation, migration, genetic stability, and
apoptosis®3. Although therapeutic agents that specifically target
the Wnt pathway have recently entered clinical trials, the detailed
mechanisms through which the Wnt pathway generates che-
motherapeutic drug resistance remain unclear33. TGF-f signaling
and Wnt/B-catenin were highly associated with the EMT
process>43>. Previous studies have suggested that TGF-B-induced
EMT confer GC cells resistance to 5-FU3¢37, and suppression of
EMT via diverse approaches increased the sensitivity to 5-FU-
based chemotherapy in GC3%3. The role played by the EMT in
reduced therapeutic efficacy is evident in several tumors*0-42. The
5-FU-resistant cell lines showed typical EMT alterations,
including increased invasiveness, the upregulation of mesenchy-
mal markers, the increased expression of EMT-related proteins,
and the downregulation of epithelial markers*>., Our tran-
scriptomic data showed that several EMT-related genes were
significantly upregulated in the NR group (Supplementary
Fig. 10a, b), and in our prediction, ACRG EMT subgroup and
Singapore-Duke invasive subtypes were mostly assigned to NR-
like (Fig. 5e, g). These data emphasized that cancer cells and the
TME work cooperatively during resistance to 5-FU and
oxaliplatin-based chemotherapy, by activating comparable
pathways.

The effect of defective MMR pathway in 5-FU-based che-
motherapy responsiveness is quite controversiall 44, In previous
clinical trials, the CLASSIC and the MAGIC trials demonstrated
that patients with MSI high (MSI-H) GC showed no survival
benefit and worse survival from 5-FU-based adjuvant che-
motherapy, respectively*>46, However, recent study from 162
Korean patients with MSI-H GC demonstrated that the group
with 5-FU-based adjuvant chemotherapy showed better overall
and disease-free survival compared to the group with no adjuvant
chemotherapy?’, suggesting a possible role of a defective MMR
pathway in the responsiveness of 5-FU-based adjuvant che-
motherapy. In our data, despite a higher frequency of MSI-H (Rs:
38.5%, NRs: 27.3%) and following higher frequencies of defective
MMR mutational signatures in Rs (Fig. 2b, c), those features are
not general characteristics of the R group. Recent studies reported
molecular subtyping of MSI-H tumors in colorectal and GCs and
revealed prognostic difference among MSI-H tumors#$4%, sug-
gesting that patients with MSI-H are heterogeneous in terms of
tumor characteristics and prognosis. Therefore, the effect of a
defective MMR pathway on the responsiveness of 5-FU-based

| (2021)12:4840 | https://doi.org/10.1038/s41467-021-25122-4 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ART

ICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25122-4

a

Gene weight
4 0

(T _ I PDX response
- Apogltﬁsis: Log,FPKM
L]
Up-regulated
E Metabolism: preguiate
s ALDH3A1 PFKFB2 PLCH1
. EMT down: Down-regulated
° ANKRD22 PLA2G10
< Gastric tissue:
. KCNg3h Model performance
ther:
E POUSF1 TMPRSS2 Class R
A Sensitivity  0.86
ECM interaction: .
° S ficit .
. MFAP2 ITGA1 pecificity 0.89
E EMT up: PPV 0.92
e HTRA1 NPV 0.80
. Other:
® STX2 PDLIM4 PBX3
b c d _
ACRG TCGA Singapore-Duke
Relapse-free survival Relapse-free survival Overall survival
= 107 R-like (n=152) < 10 7] R-like (n=105) s 10 7 R-like (n=105)
®© >
§ 0.8 NR-like (n=109) % 0.8 NR-like (n=84) S 08 NR-like (n=79)
3 06 206 306
c 15 S
£ € S
§ 271 p=0.000024 5027 g %2
o =Vu. 4 = = =
i 00 _l T T | | T a 00 —I P | 0105 | T T 8- 00 _I P 90013I I
0 20 60 0 20 60 100 0 50 100 150
Time (months) Time (months) Time (months)
e ACRG f TCGA g Singapore-Duke
R_-|Ike R-like R-like
IMSI (n=165) M]‘ MSI (n=130) Metaboﬁc (n=105)
k R like B Riike ([ N R like ‘
p>3p \ \ "\\ Ptoliferéi\ve
> ’\\\\\ R N - N\
: _ — LI NS
___Wxc  NR-like Gl NC o Lo NG \R-ike
pi3emeg (n=113) B (n=116) I Unstable (n=79)
N_like 4 ke _ N_like
I e D = ) Invasive
MSI DFS p53+ DFS MSI DFS CIN DFS Unstable OS Proliferative OS
10 1.0 10 1.0 1.0 o 10 -
0.8 0.8 0.8 08 0.8 08
06 - 0.6 06 - 06 06 06 p-value=0.0184
04 - 0.4 1 04 - 04 - 04 - 04 -
02 0.2 1 02 02 0.2 02
-value=0.0209 -value=0.0776 -value= 0.0996 -value= 0.12 =
00 _‘P vaiuel T T 0.0 Alpvalue | — 00 _lpvaluel | — 00 = P:’au? T T 00 ‘;p".’al‘f_xo'?gsr TT 00 ~
0 20 60 100 0 20 40 60 80 0 20 60 100 0 10 30 50 0 40 80 120 100 150
R-like (n=44) R-like (n=57) R-like (n=31) R-like (n=50) R-like (n=17) R Ilke (n=47)
NR-like (n=11) NR-like (n=14) NR-like (n=9) NR-like (n=42) NR-like (n=14) NR-like (n=17)

Fig. 5 Development of a response prediction model for 5-FU-based chemotherapy. a The gene expression of 30 classifier genes from among the core
DEGs in PDX tumors. b-d Survival analyses for GC patients in ACRG (b), TCGA (c), and Singapore-Duke (d) studies, according to prediction model.
Patients were stratified by our prediction model, and the responder-like (R-like) patient group showed a significantly better prognosis than the non-
responder-like (NR-like) group. P values were calculated from the log-rank test. ACRG the Asian Cancer Research Group. e-g Reassignment of GC patients
from the ACRG study (e), TCGA (f), and Singapore-Duke (g) studies according to prediction model (Top). Survival analyses for subgroups in ACRG (e),
TCGA (), and Singapore-Duke (g) studies, according to prediction model (bottom). P values were calculated from the two-sided log-rank test.
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Fig. 6 Summary of integrative characteristics associated with 5-FU-based therapy responding and non-responding tumors. a Representative pathways
enriched in the R group. b Representative pathways enriched in the NR group. The figures were generated with BioRender.

adjuvant chemotherapy needs to be evaluated by randomized
prospective clinical trials with a large cohort of MSI-H GC
patients.

The responsiveness prediction model, built using DEGs as
biomarkers in a machine learning-based prediction model and 30
gene expression signatures, correctly classified our PDX models
and GC patient cohorts. Several efforts have been made to
identify GC biomarkers, including a predictive test for adjuvant
chemotherapy response, which compared the expression levels of
four classifier genes in formalin-fixed, paraffin-embedded tumors
between patients who underwent surgery alone and those who
received postoperative chemotherapy®). However, this study was
unable to completely separate the effects of surgery from the
effects of chemotherapy. Recently, to identify predictive bio-
markers for 5-FU + oxaliplatin-based neoadjuvant chemother-
apy, Li et al. compared the sequencing data profiles of biopsy
samples collected from 35 Chinese GC patients who underwent
neo-adjuvant therapy®!. By comparing the multi-omics char-
acteristics of 17 Rs and 18 NRs, they demonstrated that MSI and
MDM?2 amplification were observed in non-responsive tumors,
whereas MYC amplification was observed in responsive tumors.

Some discrepancies exist between this previous study and our
data, especially for the effects of MSI in drug responsiveness.
Although our observations were cross-validated in both patient
and PDX tumors, detailed explanations regarding these differ-
ences must be further evaluated.

PDXs are increasingly used as drug development tools in
preclinical settings and have been shown to recapitulate the his-
tology and behavior of the cancers from which they are derived.
However, whether PDXs mimic the clinical outcomes of patients
remains controversial. The Golub group tracked the dynamics of
copy number alterations during passaging in 1110 PDX models
from 24 types of cancers, collecting the relevant genetic data®2.
The results revealed variations in the mouse data compared with
the genetic data from human tumor cells after the tumor tissues
were transplanted into mice. The researchers suggested that these
changes may cause different responses to cancer drugs in the
PDX models. In contrast, the Sidransky group established PDX
models of 92 patients with various solid cancers and conducted a
dosing study, which identified correlations as high as 87%
between the response to drugs in patients and the associated PDX
models>3. Also, Wong et al. performed a retrospective population
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pharmacokinetic-pharmacodynamic analysis of relevant xeno-
graft efficacy data for eight anticancer drugs with known clinical
outcome, including 5-FU. This group suggested that agents that
can achieve 60% TGI or higher in preclinical models are more
likely to drive clinical efficacy in man®. Our data demonstrated
that the estimated responsiveness to 5-FU and oxaliplatin-based
chemotherapy in PDX models was highly correlated with clinical
outcomes in the adjuvant setting (Fig. 1c-e) and that the pre-
diction model, developed from analyses of PDX tumors, was able
to predict patients’ drug responsiveness and prognosis (Fig. 5).
There are some limitations in analyzing human samples com-
pared to PDX models. It is difficult to obtain large quantity of
cancer tissues from patients, and tumor cell purity in tissues are
more diverse in human samples than in PDX tumors. Patients’
general conditions and environmental factors are hard to nor-
malize in human study, which requires large size of patient
cohort. Therefore, through multiple PDXs, integration of drug
responsiveness, and genomic/transcriptomic profiling will pro-
vide additional prediction model for treatment responsiveness
other than 5-FU and oxaliplatin-based chemotherapy.

Methods

GC patient sample collection. This study was approved by the institutional review
board of the Seoul National University Hospital (No. C-1402-054-555), in accor-
dance with the Declaration of Helsinki. All samples were obtained with informed
consent at the Seoul National University Hospital. Tissue samples of GCs, paired
normal gastric tissues, and blood samples were obtained from individuals who
underwent gastrectomy at Seoul National University Hospital between 2014 and
2017. Patients who were treated preoperatively with chemotherapy or chemor-
adiation therapy were excluded from this study. Immediately after sample acqui-
sition, tumor samples were transferred to RPMI 1640 medium (Thermo Fisher
Scientific), containing 1% penicillin/streptomycin (Thermo Fisher Scientific), for
PDX generation.

Generation of PDX models. Mice were cared for according to the institutional
guidelines of the Institutional Animal Care and Use Committee of Seoul National
University Hospital (No. 14-0016-C0A0). For PDX models, surgically resected
tissues were minced into pieces, approximately 2 mm in size, and injected into the
subcutaneous area of the flanks of 6-week-old NOD/SCID/IL-2y-receptor null
(NSG mice, The Jackson Laboratory) female mice. The tumor volumes and body
weights of the mice were checked once or twice, weekly. Tumor volume was
calculated as (length x width2)/2. Tumor formations in the implanted site >500
mm?3 in size were considered successful engraftments. Mice with successful
engraftment were sacrificed, and tumor tissues were excised and stored. For each
tumor, tumor tissues were divided and stored for three purposes: (1) tumor tissues
were cryopreserved in liquid nitrogen, for use in the next passage of PDXs; (2)
tumor tissues were frozen in liquid nitrogen, for genomic analyses; and (3) tumor
tissues were fixed in 10% formalin solution, for histological analyses.

In vivo pharmacological studies. In PDX mice bearing subcutaneous engraft-
ments of previously established PDX tumors, drug treatments began after the
tumors reached approximately 200 mm?3. Mice were divided randomly, into control
and 5-FU + oxaliplatin-treated groups, with five mice in each group. 5-FU (Sell-
eckchem, 5 mg/kg, weekly) and oxaliplatin (Selleckchem, 50 mg/kg, weekly), in
saline, was administered via intraperitoneal injection for 21 days. Tumors volumes
were checked three times, weekly, calculated as (length x width?)/2.

To evaluate the responsiveness, we combined two criteria comparing relative
tumor volume changes between drug- and vehicle-treated arms: (1) drug treatment
significantly inhibited tumor growth [two-way ANOVA P <0.0001 for the R group,
P >0.05 for the NR group]; and (2) the TGI (%) was >60% for the R group
(Supplementary Table 2). TGI is calculated via the following equation:

TV.ehicle

- TVtreatmenl
100
v X (1

TGI (%) = v

vehicle initial

where TV epicle 18 the tumor volume for the vehicle-treated animals at a specified
end point time, TViyjya is the initial tumor volume at the start of the treatment,
and TV reatment is the tumor volume of the drug treatment groups at a specified end
point time®. The intermediate group consist of samples that did not meet these
criteria. The ANOVA test was performed using the SPSS software version 22 (IBM
Corp., Version 22.0).

Statistical analysis of clinical characteristics. Clinical and pathological infor-
mation regarding enrolled patients was collected prospectively. The following
variables were analyzed to identify factors associated with responsiveness to 5-FU

and oxaliplatin-based chemotherapy: (1) the patient’s age and sex, and (2) tumor
pathological characteristics, including and pTNM stage, according to the Seventh
edition of the Union for International Cancer Control, Lauren classification.
Continuous variables are presented as the median and analyzed by Mann-Whitney
U test, using the SPSS software. Categorical variables are presented as the number
and percentage and analyzed by Fisher’s exact test. A P value of <0.05 was con-
sidered significant.

Isolation of nucleic acids and next-generation sequencing. Genomic DNA was
extracted from patient blood samples using the Gentra Puregene Blood Kit (Qia-
gen), and tumor DNA was obtained from patients and PDX tumors using the
DNeasy Blood & Tissue Kit (Qiagen). Then 250 ng of DNA was sonicated with a
Covaris S220 Focused-ultrasonicator, and 101-bp paired-end libraries were con-
structed with the SureSelect All Exon V5 Kit (Agilent). WES was performed on
Illumina HiSeq 2000 instruments, with read lengths of 2 x 101 bp.

RNA extraction from non-tumor tissues and patient and PDX tumors was
performed using TRIzol™ (Invitrogen). Samples with an RNA integrity number >5
were further processed. The 101-bp paired-end libraries were constructed with the
TruSeq RNA Sample Prep Kit v2 (Illumina), using 1 pug of RNA. Whole-
transcriptome sequencing (WTS) was performed on Illumina HiSeq 2000
instruments.

Sequencing data processing using combined reference. We built a combined
reference genome of the human (GRCh37) and mouse reference genomes
(GRCm38) and raw FASTQ files from WES and WTS were aligned with the
combined reference genome. Sequenced reads from WES and WTS were aligned
using a Burrows-Wheeler Aligner mem>* and STAR aligner™, respectively. The
sorting and marking of duplicates were performed by Picard tools. After processing
the binary aligned and mapping (BAM) files, mouse genome-aligned reads were
removed for analyses of human cancer cells.

Identification of somatic single-nucleotide variants and insertions/deletions
(indels). Indel realignment and base recalibration of the BAM files were performed
using the Genome Analysis Tool Kit (GATK) version 3.2. Somatic mutations were
called using MuTect®® and Indelocator®” and annotated with Annovar®$. Variants
with total read depths <7 and alternate allele depth <4 were excluded. To select rare
functional mutations, coding sequence mutations, with a population frequency of
<0.01, were included, based on the ESP6500 and the total and East Asian popu-
lations of 1000 Genomes Project phase 3 and ExAC studies. SNPs with >1% minor
allele frequency, based on the dbSNP flag, and error-prone variants on the seg-
mentally duplicated region were removed.

Cancer-related genes were annotated using cancer gene databases, including
TARGET (Tumor Alterations Relevant for GEnomics-driven Therapy; http://www.
broadinstitute.org/cancer/cga/target), Cancer Gene Census>”, and known cancer
genes from Vogelstein et al.%. Oncogenes and oncogenic/likely oncogenic
mutations were annotated by OncoKB (http://www.oncokb.org).

Decomposition of mutational signatures. We estimated the amount of exposure
to mutational processes for each tumor sample using MuTect results, based on the
mutational signatures of the COSMIC database (http://cancer.sanger.ac.uk/cosmic/
signatures). The R package deconstructSigs®! was used to compute the mutational
signatures, and tumor samples with matched germline data that harbored at least
20 mutations were included for the analysis.

Analysis of clonal architecture. To estimate tumor heterogeneity and changes in
the clonal architecture of each pair of patient and PDX tumors, PyClone, a
Bayesian clustering method relying on Markov Chain Monte Carlo, was applied®.
Based on the allele frequencies of somatic mutations and copy number values from
WES, PyClone clustered mutations that shifted together across tumors and pre-
dicted the cellular prevalence of each cluster. A beta-binomial emission was
applied. Two pairs of patient and PDX tumors were excluded from this analysis
due to the absence of a matched patient tumor and few mutual mutations identified
between the patient and PDX tumors.

Identification of SCNAs. To identify SCNAs between Rs and NRs that may
affect drug response, Z-transformed RPKMs (Reads Per Kilobase per Million
mapped reads) of each tumor were calculated using CONIFER®Z, log normalized
with matched germline data, and further segmented using DNA copy package
(https://www.bioconductor.org/packages/release/bioc/html/DNAcopy.html).
For tumor samples without matched blood, pooled blood data were used as a
baseline. Amplification was defined as a value >0.2, whereas deletion was defined
as a value <—0.2.

Gene expression analysis. The numbers of expressed reads for each gene were
quantified using the HTSeq-count program, based on the GRCh37 Ensemble v65.
Fragments per kilobase of exon per million mapped reads (FPKM) values were
calculated and normalized with edgeR®3. Of the 62,000 Ensemble genes, we first
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removed genes with median FPKM values < 1. GSEA between Rs and NRs was
performed on GenePattern module®* using the Hallmark gene sets.

The extraction of DEGs was performed using DESeq2 package®®, which uses
raw counts. After DEG extraction, we applied further filtration steps as follows:
adjusted P value < 0.1, |log, fold-change| = 1.5. Using filtered DEGs, we performed
pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis tool and Gene Ontology database and determined statistical significance
with The Database for Annotation, Visualization and Integrated Discovery
functional annotation tool. Clustering was performed based on log-transformed
and gene-centered FPKM values, using the cluster3.0 program, and visualized with
Treeview. Enrichment of PPIs among DEGs was analyzed based on KEGG, using
the STRING database.

TME analysis. During the xenotransplantation, human stromal cells are replaced
with mouse-derived stromal cells, and PDX tumors composed of human tumor
cells become surrounded by murine stroma. Thus, tumor-specific gene expression
was observed through human genome-aligned reads, and stroma-specific gene
expression could be separately analyzed based on mouse genome-aligned reads®®.
Murine gene expression was evaluated and counted based on the Mus Musculus
GRCm38 Ensembl v78 database, which was converted into FPKM using edgeR.
DEG analyses were performed using DESeq2 and genes with |log, fold-change| >
1.5 and adjusted P value < 0.05 were evaluated further. GSEA and PPI analysis were
performed, as in the tumor analyses.

xCell estimates the abundances of 64 stromal and immune cell types®’. We
converted mouse genes to orthologous human genes, and xCell was applied to
determine the microenvironment components of PDX tumors compared with
those in patient tumors.

Development of the response prediction model to 5-FU and oxaliplatin-based
chemotherapy. To develop a predictive classification model for 5-FU-based che-
motherapy responsiveness, 30 signature classifier genes were selected from core 123
DEGs of tumor analysis. Using these classifiers, we developed a model using the
BCCP algorithm assuming a Gaussian distribution, of BRB-ArrayTools®, which
was cross-validated by the leave-one-out cross-validation. Robustness of the trained
model was evaluated by the Receiver Operating Characteristics curve. We applied
this prediction model to TCGA, ACRG (GSE62254)2, and Singapore-Duke
(GSE15459)28 cohorts and reclassified tumors into R-like and NR-like groups.
Clinicopathologic analysis was performed between the R- and NR-like groups.
Survival analysis was conducted using the Kaplan-Meier method and log-rank test.
The Sankey diagram was built using R library networkD3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The PDX sequencing data generated in this study have been deposited in the
European Nucleotide Archive (ENA) repository under accession code PRJEB40936.
The TCGA validation data used in this study are available in the FIREHOSE database
[http://firebrowse.org/?cohort=STAD]. The ACRG expression data used in this study
are available in the Gene Expression Omnibus (GEO) database under accession code
GSE62254. The Singapore-Duke expression data used in this study are available in the
GEO database under accession code GSE15459. Source data are provided with

this paper.
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