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Abstract

Recently, five thyroid cancer significantly associated genetic variants (rs965513,

rs944289, rs116909374, rs966423, and rs2439302) have been discovered and val-

idated in two independent GWAS and numerous case–control studies, which
were conducted in different populations. We genotyped the above five single

nucleotide polymorphisms (SNPs) in Han Chinese populations and performed

thyroid cancer-risk predictions with nine machine learning methods. We found

that four SNPs were significantly associated with thyroid cancer in Han Chinese

population, while no polymorphism was observed for rs116909374. Small famil-

ial relative risks (1.02–1.05) and limited power to predict thyroid cancer

(AUCs: 0.54–0.60) indicate limited clinical potential. Four significant SNPs have

limited prediction ability for thyroid cancer.

Introduction

Thyroid cancer is the fifth most common type of female

cancer and its incidence is increasing. It has been consid-

ered as one of highest familial risk carcinomas among all

kinds of cancers [1, 2]. Most common diseases are caused

by multiple genetic rather than few loci. In the last 2 years,

two independent genome-wide association studies (GWAS)

have been conducted to identify single nucleotide poly-

morphisms (SNPs) associated with thyroid cancer risk. Five

SNPs (rs965513, rs944289, rs116909374, rs966423, and

rs2439302) which were highly significantly associated with
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papillary thyroid carcinoma (PTC) were discovered by

genome-wide association study. In addition, these five SNP

were validated by continued case–control studies in more

than three different populations (Han Chinese, Ohio,

Poland, etc. Table 1).

To examine the prediction ability based on variants

with highly significant associations, we use all five SNPs

to predict thyroid cancer by nine classification methods

(K-nearest neighbors, logistic regression, na€ıve Bayes, ran-

dom forest, support vector machine, Bayesian additive

regression trees (BART), recursive partitioning, fuzzy

rule-based system, boosting). Contradictory to our intui-

tiveness, we found that although all these five SNPs were

significantly associated with thyroid cancer, the precision

of their prediction for thyroid cancer was very low.

Methods

The five SNPs were genotyped in 845 PTC and 1005 con-

trols in Han Chinese population using the SNaPshot mul-

tiplex single-nucleotide extension system. PTC patients

who were treated in the Department of Head and Neck

Surgery, Fudan University Shanghai Cancer Center,

Shanghai, China from January to December 2010 were

enrolled in this study. All patients were ethnically Chinese

Han and came from Eastern China. A total of 1005 can-

cer-free unrelated individuals were recruited from the

Taizhou Longitudinal Study (TZL). The SNPs were geno-

typed with the SNaPshot multiplex single-nucleotide

extension system. Details of SNPs (Table S1) and primers

were listed in our previous article [3].

The relative risk to daughters of an affected thyroid

cancer individual attributable to a given SNP is calculated

by the formula: k� ¼ pðpr2þqr1Þ2þqðpr1þqÞ2
ðp2r2þ2pqr1þq2Þ2 , where p is the fre-

quency of the risk allele, q = 1 � p, r1 and r2 are the rela-

tive risks (estimated by odds ratio [ORs]) for

heterozygotes relative to common homozygotes and rare

homozygotes relative to common homozygotes in the

population, respectively [4, 5]. Assuming a multiplicative

interaction, the proportion of the familial risk attributable

to the SNP is calculated by log(k*)/log(ko), where ko is

the overall familial relative risk (FRR), estimated to be

8.48 for thyroid cancer [1]. Gender- and age-matched

cases and controls were constructed by 1000 times resam-

pling technology.

Nine machine learning methods were used to make pre-

diction for PTC from health individuals, including K-near-

est neighbors [6], logistic regression, na€ıve Bayes [7],

random forest [8], support vector machine [7], BART [9],

boosting, recursive partitioning, and fuzzy rule-based sys-

tem [10]. The parameters in the models were optimally

Table 1. Odds ratio for five SNPs from GWAS and case–control association study in previous study.

Study Population Method

OR (P-value)1,2

Referencers965513 rs944289 rs116909374 rs966423 rs2439302

11 Iceland GWAS 1.73 (7.5e-13) 1.48 (8.6e-7) – – – [12]

Iceland all Combined 1.77 (6.8e-20) 1.44 (2.5e-8)

USA Case–control 1.81 (1.2e-7) 1.32 (1.2e-2)

Spain Case–control 1.54 (6.5e-3) 1.14 (4.3e-1)

USA and Spain Case–control 1.72 (3.7e-9) 1.26 (1.1e-2)

All combined Combined 1.75 (1.7e-27) 1.37 (2.0e-9)

21 Chernobyl GWAS 1.76 (4.9e-9) 1.13 (0.17) – – – [13]

Combined 1.65 (4.8e-12) –

32 Japan Case–control 1.69 (1.27e-4) 1.21 (0.0121) – – – [14]

42 UK Case–control 1.98 (6.35e-34) 1.33 (6.95e-7) – – – [15]

51 Iceland Case–control 1.70 (3.0e-18) 1.36 (4.2e-5) 2.03 (5.4e-7) 1.26(3.8e-4) 1.41 (1.3e-6) [16]

Netherland Case–control – 1.39 (0.013) 1.95 (0.024) 1.80(4.2e-6) 1.24 (0.088)

USA Case–control – 1.51 (0.0067) 1.98 (0.018) 1.36 (3.5e-3) 1.33 (6.1e-3)

Spain Case–control – 1.17 (0.31) 3.37 (2.6e-3) 1.20 (0.24) 1.34 (0.073)

All combined Case–control – 1.36 (4.9e-8) 2.09 (4.6e-11) 1.34 (1.3e-9) 1.36 (2.0e-9)

61 USA Case–control 2.10 (<2e-16) 1.28 (1.99e-3) 1.97 (1.11e-3) 1.35 (1.75e-4) 1.51 (4.24e-7) [11]

Poland Case–control 1.78 (<2e-16) 1.21 (3.55e-3) 1.73 (6.27e-3) 1.15 (3.13e-2) 1.27 (2.20e-4)

71,2 China Case–control 1.531 (7.1e-4) 1.511 (2.8e-9) – 1.321 (0.006) 1.401 (2.1e-4) [3]

1.532 (1.4e-4) 1.532 (2.0e-10) 1.312 (0.001) 1.412 (2.7e-5)

GWAS, genome-wide association studies; OR, odds ratio.
1ORs were calculated based on the multiplicative model. For the combined study populations, the OR value were estimated using the Mantel–

Haenszel model.
2ORs were calculated for the risk allele with using multiple logistic regression analyses.
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selected. Classification accuracy, sensitivity, specificity, and

AUC were used to evaluate the performance of the meth-

ods. They were calculated by 10-fold cross-validation.

Results

Marginal FRR of the significant SNPs

As the previous studies showed that the five SNPs with

large OR were significantly associated with thyroid cancer

in various populations (Table 1). Our previous data also

showed that SNPs were significantly associated with thy-

roid cancer in Chinese population (the seventh study of

Table 1). In present study, we estimated the FRR for five

significantly associated SNPs in Chinese population. We

found that the FRRs were low, ranging from 1.02 to 1.05.

These five SNPs counted only 5.98% of the overall famil-

ial risk (Table 2) which was very closed to that of polish

population (about 6%) [11]. Our finding suggested that

majority of the heritability was undiscovered.

Genetic risk prediction for thyroid cancer
based on five SNPs

The five significant SNPs were used to predict risk of thy-

roid cancer by nine classification methods. The results

were summarized in Table 3. The prediction accuracies

ranged from 0.52 to 0.57 in the nine prediction methods,

while receiver operating characteristics (ROCs) ranged

from 0.54 to 0.60. The sensitivity of the prediction (0.28–
0.48) was much less than specificity (0.56–0.76), which

suggested the clinical application value might be limited

(Table 3). In addition, the AUC of classification based on

five SNPs and gender, and based on five SNPs, gender,

and age ranged from 0.49 to 0.58, and from 0.50 to 0.59,

respectively. This indicated that including gender and age

information will not improve prediction (Tables S2 and

S3, Fig. S1).

Conclusion

In the present study, we estimated the FRR and evaluated

thyroid cancer prediction accuracy of the five SNPs that

showed significant association with thyroid cancer in sev-

eral association studies. The results showed that although

the OR of each SNPs was large, the FRR of each SNPs

was very marginal. By 10-fold cross-validation, we found

that the prediction accuracy of five SNPs was low across

all nine classification methods. Particularly, the sensitivity

of five SNPs was very low. It suggested that the clinical

application of five SNPs might be limited. Our results

strongly demonstrate that complex diseases are caused

by a large number of SNPs, environments, and their

interactions. GWAS addressing common variants have

come to its limit and missing heritability for most com-

plex disorders is very high. Only about 5–10% heritability

Table 2. Estimation of familial relative risk of thyroid cancer for the

five SNPs in population of Han Chinese.

SNPs

Familial

relative risk Proportion (100%) P-value

rs965513 1.0189

(1.0186–1.0192)

0.843 (0.806–0.880) <2.2e-16

s944289 1.0419

(1.0415–1.0422)

1.969 (1.922–2.016) <2.2e-16

rs116909374 N.A.1 N.A.1 N.A.1

rs966423 1.0493

(1.0485–1.0500)

2.191 (2.093–2.289) <2.2e-16

rs2439302 1.0207

(1.0205–1.0210)

0.977 (0.939–1.015) <2.2e-16

1rs116909374 SNP was not detected in the Chinese population.

Table 3. Model performance with methods based on five significant SNPs.

AUC Sensitivity Specificity Accuracy

Range of 95%

CI of AUC

K-nearest neighbors 0.5589 0.3861 0.6591 0.533 [0.4293, 0.7101]

Logistic regression 0.6044 0.4982 0.5648 0.5346 [0.4433, 0.7368]

Na€ıve Bayes 0.5996 0.3921 0.7206 0.5686 [0.4571, 0.7469]

Random forest 0.5743 0.3169 0.7558 0.5535 [0.4405, 0.7233]

Support vector machine 0.5494 0.2762 0.7775 0.547 [0.4187, 0.7086]

Bayesian additive

regression trees

0.5906 0.4779 0.5571 0.5211 [0.4385, 0.7211]

Boosting 0.6024 0.4723 0.5544 0.5157 [0.4584, 0.7287]

Recursive partitioning 0.5871 0.4085 0.7218 0.5778 [0.3926, 0.7048]

Fuzzy rule-based system 0.5396 0.4931 0.5006 0.4968 [0.4115, 0.6710]

AUC, sensitivity, specificity, and accuracy were its mean value in 10-fold validations. Range of 95% CI of AUC represents the range of the 95%

CI of AUC in 10-fold Cross-validation. SVM represents support vector machines and Kernel Methods.
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was found based on common disease common variant

(CDCV) model. To improve prediction of genetic varia-

tion for complex diseases, we need to incorporate more

common and rare SNPs, copy number variations (CNVs),

and nongenetic susceptibility factors, such as iodine

intake, exposure to radiation in the classification analysis.

Novel statistical methods for variable screening should be

developed to optimally select SNPs and CNVs across the

genome for disease risk prediction.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. ROC comparison among all the machine

learning prediction methods. Nine machine learning

method were used to make prediction for PTC from

health individuals, including K-nearest neighbors (KNN),

logistic regression (LR), na€ıve Bayes, random forest, sup-

port vector machine, Bayesian additive regression trees
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(BART), boosting, recursive partitioning, fuzzy rule-based

system. The parameters in the models were optimally

selected. Classification accuracy, sensitivity, specificity and

AUC were used to evaluate the performance of the meth-

ods. They were calculated by 10-fold cross-validation.

Table S1. Genomic information for five Acknowledged

SNPs from GWAS.

Table S2. Model performance with methods based on five

SNPs and gender.

Table S3. Model performance with methods based on five

SNPs, gender, and age.
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