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Cardiovascular diseases (CVDs) are responsible for most pre-mature deaths worldwide,
contributing significantly to the global burden of disease and its associated costs to
individuals and healthcare systems. Obesity and associated metabolic inflammation
underlie development of several major health conditions which act as direct risk factors
for development of CVDs. Immune system responses contribute greatly to CVD
development and progression, as well as disease resolution. Innate lymphoid cells
(ILCs) are a family of helper-like and cytotoxic lymphocytes, typically enriched at barrier
sites such as the skin, lung, and gastrointestinal tract. However, recent studies indicate
that most solid organs and tissues are home to resident populations of ILCs - including
those of the cardiovascular system. Despite their relative rarity, ILCs contribute to many
important biological effects during health, whilst promoting inflammatory responses during
tissue damage and disease. This mini review will discuss the evidence for pathological and
protective roles of ILCs in CVD, and its associated risk factor, obesity.
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INTRODUCTION

Cardiovascular diseases (CVDs) are the major global cause of premature human death. Obesity and
associated metabolic inflammation underlie the development of several major health issues
including type 2 diabetes (T2DM), insulin resistance, hypertension, dyslipidaemia, and increased
expression of inflammatory mediators - all of which are risk factors for CVDs. Tackling obesity
therefore remains a key goal the effort to reduce the increasing burden of CVDs worldwide.

Five major subsets of Innate lymphoid cells (ILCs) are acknowledged: cytotoxic natural killer
cells (NKs), lymphoid tissue inducers (LTi) and helper-like ILC1s, ILC2s and ILC3s (1). ILC1s
depend on the transcription factor (TF) T-bet for their development (2) and peripheral
maintenance (3). They produce IFNg, tumor necrosis factor (TNF) (4, 5), and TGF-b under
some contexts (6). ILC2s are regulated by a suite of TFs including GATA3 and RORa, express type 2
cytokines including interleukin (IL)-4, IL-5, IL-9 and IL-13, and tissue repair factors including
amphiregulin. LTi and helper-like ILC3s express TF RORgt and produce IL-17, IL-22, and TNF-
superfamily members, including lymphotoxins. ILCs are activated by environmental signals
including cytokines, tissue-derived danger signals, metabolites, neurotransmitters, and
neuropeptides (1, 7).
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While NKs are predominantly circulatory, helper-like
ILCs reside in tissues and are enriched at barrier mucosal sites
such as the lung and intestinal tract. However, since their
discovery, almost all organs have been found to play host to
ILC subsets, including tissues of the cardiovascular system (8).
Cardiovascular-associated ILCs (cILCs) reside in the
pericardium and pericardial fluid (9), in the adventitia of
arteries including the aorta (10), and in fat-associated
lymphoid clusters (FALC) (11) of perivascular (12) and
pericardial adipose tissue (13). The majority of cILCs are
ILC2s or ILC2-commited precursors, with minimal presence of
ILC1s and ILC3s (14, 15). As observed in other tissues, cILC2
populations are dependent on IL-33 signalling for their
development as well as their activation and function. cILC2s
may even be more responsive to IL-33 signalling than
counterparts at barrier sites such as the lungs, due to unique
phenotypic attributes including greater expression of GATA3
(15). Cardiac fibroblasts are a main source of IL-33 in the heart,
responsible for ILC2 homeostasis and activity (9), while
adventitial stromal cells provide IL-33 and thymic stromal
lymphopoietin (TSLP) to ILC2s in arteries and FALC,
providing a tissue supportive niche for their development and
activation (16). Developmental, adoptive transfer, and parabiosis
studies in mice suggest that, similarly to ILCs from barrier sites
(17–19), cILC populations are tissue-resident cells, seeded during
early embryonic development and shortly after birth, sustaining
themselves through local renewal, even during cardiac
inflammation (14, 15).

This mini review will summarise the known protective and
pathological actions of ILCs in the context of CVDs. As a major
cardiometabolic risk factor, obesity, and its relatedness to ILC
activity will also be discussed. Figure 1 summarises the
information presented. Table 1 provides a list of the abbreviations
used throughout.
PROTECTIVE AND REPARATIVE ROLES
OF ILCS IN CVD

NK Cells
Viral myocarditis is predominantly caused by infection with
Coxsackievirus B3. NKs limit viral replication primarily through
their potent cytotoxicity, among other protective mechanisms
(20). NKs are recruited to the infected heart by cardiomyocyte
upregulation of CXCL10, a chemokine ligand of the NK-
expressed receptor CXCR3 (21). Expression of CXCL10 is
promoted by NK-derived IFNg - a feed-forward mechanism,
driven by NKs for further expansion of the population with in
the tissue (21).

Observational studies linking decreased NK numbers and
activities, with low grade inflammation and increased disease
severity, implicate a protective role for NK cells in atherosclerosis
(AS) and coronary artery disease (CAD) (46–48). These effects
may be related to NK apoptosis (49) and increased expression of
inhibitory molecules (50). However, results from murine models
complicate interpretation of these findings, suggesting either
Frontiers in Immunology | www.frontiersin.org 2
pro-atherogenic roles for NKs (51), or conversely, no impact
on AS development (52).

NKs may also serve cardioprotective functions during
eosinophilic myocarditis, restricting eosinophil influx and
survival. Anti-asialo GM1-mediated NK depletion in an anti-
MHC (myosin heavy chain) immunisation model of
experimental autoimmune myocarditis (EAM) resulted in
worsened disease outcome and enhanced eosinophilic influx,
accompanied by greater cardiac tissue fibrosis (53). NKs may
defend against eosinophilic inflammation directly, by promoting
eosinophil apoptosis (36, 53, 54), and indirectly by suppressing
fibroblast production of the eosinophil recruiting chemokine
eotaxin-1 (CCL11). Furthermore, CXCL10 is an inhibitor of
eosinophil recruitment via antagonism of the eosinophil
trafficking receptor CCR3 (53, 55). IFNg also restricts ILC2
cytokine expression and limits the active niche in which ILC2s
can exert their effects (56, 57). As will be discussed, ILC2s may
promote pathological recruitment of eosinophils in the setting of
cardiac inflammation (9). IFNg production by NKs may
therefore also act to inhibit cardiac ILC2 activity.

ILC2s
Apolipoprotein E deficient mice (Apoe-/-) display defective
lipoprotein clearance and accrue abnormal levels of low-
density lipids, making them prone to development of AS. IL-
25 administration limits initiation and progression of AS in high
fat diet (HFD)-fed Apoe-/- mice. This is concomitant with
expansion of splenic ILC2 populations and enhanced IL-5
production (42, 43). Furthermore, IL-25 treatment increases
levels of circulating anti-phosphorylcholine (PC) IgM,
dependent on intact IL-5 expression, indicative of an
atheroprotective effect of ILC2 activation by IL-25. The PC
epitope is a component of oxidised low-density lipoprotein
(ox-LDL), strongly associated with AS development. Anti-PC
IgM is produced by B-1a cells – an atheroprotective, innate-like
B cell subtype. B-1a cells expand following IL-25 treatment (43),
and depend on IL-5 for their survival and maturation to produce
natural IgM antibodies (58, 59). Transfer of IL-25-expanded,
wild type ILC2s to Apoe-/- mice reduces the lipid content of AS
lesions and augments B-1a cells and anti-PC IgM, suggestive of a
therapeutic avenue to tackle AS (42). Of note, the ILC2/IL-5/B-
1a axis is critically dependent on ILC2 expression of the helix
loop-helix TF, ID3 (60). As an ID3 single nucleotide
polymorphism (rs11574) is associated with increased carotid
intimal media thickness, this may link ILC2 dysfunction in
humans with enhanced AS risk (61).

HFD feeding also reduces peripheral ILC2 numbers and alters
their functional cytokine responses in AS-prone mouse strains -
linking defective ILC2 activity with disease (12). Low-density
lipoprotein receptor deficient mice (Ldlr-/-) share a similar
functional defect in lipid clearance as Apoe-/- mice and are
similarly AS-prone. Ldlr-/- mice reconstituted with bone
marrow from ILC2 deficient mice (Staggerer/RoraFlox x Il7raCre)
displayed accelerated AS plaque lesion development. This was
associated with reduced collagen deposition found in larger
plaques (indicative of increased plaque destabilisation) and
altered plaque immune cell composition, dependent on loss of
May 2022 | Volume 13 | Article 903678
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FIGURE 1 | Innate lymphoid cells contribute to protective and pathological processes in cardiovascular diseases and obesity. During viral myocarditis caused by
agents such as Coxsackie virus B3 (CV-B3), NKs restrict viral replication (20) and are recruited to cardiac tissues by cardiomyocyte production of C-X-C motif
chemokine ligand 10 (CXCL10), itself promoted by NK-derived interferon gamma (IFNg) (21). IFNg may also restrict ILC2 activity, influencing ILC2 capacity to
drive inflammation associated with eosinophilic pericarditis. Interleukin (IL)-33 derived from cardiac fibroblasts drives cardiac ILC2 proliferation and along with
fibroblast production of eotaxins (i.e. eotaxin-1/CCL11), ILC2 production of IL-5 may facilitate recruitment of eosinophils to the pericardium (9). ILC2 production
of IL-13 can also promote polarisation of M2 macrophages, which may serve protective roles in atherosclerosis (12, 22). Conversely, ILC1s and promotion of
classically activated proinflammatory M1 macrophages may promote atherosclerotic plaque formation (23–25). ILC2s, regulated by IL-2 signalling, may also
serve protective roles for cardiac tissue repair following major adverse events such as myocardial infarction, via the production of amphiregulin (AREG) and bone
morphogenic protein 7 (BMP7), inhibiting pathological tissue remodelling and fibrosis (26). The impact of prolonged activation of ILC2s by factors such as IL-33
on the outcome of ILC2 repair responses in this context require further study (27). In the circulation, increased frequencies of ILC1s and ILC3s are associated
with major cardiovascular and cerebrovascular events including ST-elevated myocardial infarction (STEMI) and acute cerebrovascular infarction (ACI/Stroke) (28,
29). This may be related to increased circulating levels of oxidised low-density lipoproteins (ox-LDL) in patients, but the impact of these alterations to ILC subset
frequencies inpatients remain to be elucidated. Obesity, and its associated metabolic inflammation is associated with major risk factors for the development of
CVDs, including type 2 diabetes mellitus (T2DM), dyslipidaemia, hypertension, and inflammation. As observed in cardiovascular tissues, ILC2s are the dominant
ILC subtype found within lean adipose tissue. ILC2s promote alternatively activated M2 macrophage phenotypes and eosinophils within adipose tissue via their
production of IL-5 and IL-13, contributing to lean adipose tissue homeostasis (30–33). ILC2 expression of methionine enkephalin (MetEnk) (31) and IL-4 (34), in
addition to signaling via Glucocorticoid-induced TNFR-related protein (GITR) (32) can protect from obesity by promoting beiging of white adipose tissue, linked
to upregulation of mitochondrial uncoupling protein 1 (UCP-1), increasing glucose sensitivity and energy expenditure. In obese adipose tissue ILC2 numbers and
functions are impaired, contributing to increased visceral adipose tissue (VAT) depots, insulin resistance and decreased beiging. Upregulation of inhibitory
receptor PD-1 by ILC2s (35), negative regulation by IFNg derived from ILC1s and natural killer cells (NKs) (36, 37), and ILC2 to ILC1 conversion (38) may be
among the mechanisms which result in ILC2 dysfunction in obesity. NKs and ILC1s numbers are also altered in obesity, potentially impacting upon the ratio
between inflammatory M1 and anti-inflammatory M2 macrophages (33, 39). Influences from physiological signals and ILCs present in other tissues may also
impact upon CVDs and obesity pathogenesis. The nervous system can regulate ILC2 activity within lean adipose tissue via a brain/mesenchymal/ILC2 axis (40).
Dysregulation of this axis may contribute to development of obesity, however, broader effects of neuronal signalling on ILCs in the context of CVDs requires
further study. In the induction of pulmonary arterial hypertension (PAH), IL-5 derived from pulmonary system ILC2s are responsible for tissue eosinophilia which
may drive arterial damage (41). IL-25 drives ILC2 proliferation in the spleen, promoting atheroprotective effects, IL-5-dependent B-1a expansion and production
of anti- phosphorylcholine (PC) Immunoglobulin M (IgM) which targets ox-LDL (42, 43). In the gastrointestinal (GI) tract, sensing of microbial composition by
ILC3s may influence inflammatory cell cardiotropism in the context of myocarditis (44), while ILC2s and ILC3s within the intestinal lamina propria (LP) may also
contribute to processes driving obesity, through factors such as production of IL-2 (45).
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ILC2-derived IL-13. Plaque macrophage phenotypes were
disrupted by ILC2 loss, with reduced arginase-1 expression
suggestive of a restricted capacity for tissue repair. This
supports work identifying IL-13 as an atheroprotective
cytokine, acting via induction of alternatively activated (M2)
macrophages (22), potentially supporting the augmentation of
ILC2 responses as a novel therapeutic strategy for AS. Indeed,
expansion of CD25+ ILC2s by IL-2/anti-IL-2 complexes reduces
circulating ox-LDL and AS lesion development in HFD-fed
lymphopenic Rag-/-Ldlr-/- mice (10), indicating that IL-2
therapy may be a novel treatment option in some forms of
CVD. Supportive of this, genetic ablation of ILC2s in a murine
model of myocardial infarction (MI) delayed recovery of cardiac
function. MI-protective functions of ILC2s were associated with
an upstream regulatory IL-2 signalling axis (13). Furthermore,
analysis of peripheral blood from patients recruited to a placebo-
controlled, double-blind trial designed to assess the safety of
Low-dose InterLeukin-2 treatment in patients with stable
ischaemic heart disease and Acute Coronary Syndromes
[LILACS trial (62)], revealed a short-term increase in
circulating ILC2s, serum IL-5, and eosinophil counts (13). This
indicates that IL-2 therapy activates human ILC2s in vivo.
However, putative protective roles of ILC2s in this context
remain to be fully investigated. Post-cardiac injury,
augmentation of ILC2 repair responses may also be an
attractive therapeutic option, inhibiting TGF-b1-driven
pathological fibrosis and remodelling by cardiac fibroblasts
which can lead to terminal heart failure (26).
Frontiers in Immunology | www.frontiersin.org 4
ILC3s
ILC3 associated cytokines IL-17A and IL-22 have been linked to
CVDs, but may be protective under certain contexts (63–65).
ILC3s might also be protective during hepatic (66) and intestinal
(67) ischemia-reperfusion-injury (IRI), suggestive, potentially, of
similar roles during reperfusion following MI. However, in both
the liver and the intestinal tract, ILC3s are far more populous
than in cardiovascular tissues, where Th17 cells are also more
likely to be the major source of ILC3-associated effector
cytokines. Whether ILC3s serve protective roles in CVDs
requires further investigation.
ILCS AND CVD PATHOGENESIS

ILC1s
ILC1s constitute only a minor population of the ILCs identified
within murine cardiovascular tissues (14, 15). Despite this, Ldlr-/-

and Apoe-/- models combining genetic knockout of T-bet or IL-
12, implicate roles for ILC1s in development of HFD-induced AS
(23, 24). However, these models also deplete other cells
important in AS pathogenesis, including Th1 and NKs (68).
ILC1s have been more specifically linked to AS plaque
development using adaptive lymphocyte deficient Rag-/-Apoe-/-

models. Anti-NK1.1 or anti-IL-15R antibodies were used to
deplete ILC1s and/or NK cells respectively, followed by
adoptive transfer of splenic ILC1s, identifying a possible role
for ILC1s in aggravation of AS (25).

Involvement of ILC1s in the pathology of major cardiovascular
and cerebrovascular adverse events has been proposed, based on
correlations between disease severity and circulating frequency of
these cells. Total number and proportions of ILCs among
circulating leukocytes were increased in acute ST-segment
elevation myocardial infarction (STEMI) patients, compared to
healthy controls (28). This was accounted for by a specific
increase in ILC1s, while numbers of ILC2s and ILC3s remained
unaltered, indicating an expansion of ILC1s rather than ILC subset
plasticity towards the ILC1 phenotype (69, 70). Similar observations
were made in acute cerebral infarction (ACI) patients (29). A
significantly increased proportion of ILC1s among total
circulating ILCs, profiled at the time of admission, was observed
compared to healthy controls. Concomitant with this was a decrease
in the proportion of ILC2s and no impact on circulating ILC3s.
However, as total number of ILCs among leukocytes was not
reported, whether alterations to subset prevalence among total
ILCs represents phenotypic plasticity between ILC2s to ILC1s
(38, 71–73) in the context of ACI, or reflects a specific expansion
of ILC1s, remains unclear.

ILC2s
ILC2s may drive the recruitment of eosinophils to the
pericardium via production of IL-5 and promotion of cardiac
fibroblast-derived eotaxins (9). Choi et al., utilised repeated IL-33
administration to induce eosinophilic pericarditis in mice,
finding that pericardial IL-33R+ (ST2+) ILC2s greatly expanded
in response to treatment (9). IL-5 deficiency prevented
pericardial eosinophil infiltration, however Il13-/- mice
TABLE 1 | Meanings of abbreviations used in this article.

Abbreviation Meaning

ACI Acute cerebrovascular infarction
AS Atherosclerosis
AT Adipose tissue
AT1-ILCs Group 1 adipose tissue innate lymphoid cells
ATM Adipose tissue macrophage
BAT Brown adipose tissue
cILCs Cardiovascular-associated innate lymphoid cells
CVD/CVDs Cardiovascular disease/s
DCM Dilated cardiomyopathy
DIO Diet-induced obesity
EAM Experimental autoimmune myocarditis
FALC Fat-associated lymphoid tissue
HFD High fat diet
ILC/ILCs Innate lymphoid cell/innate lymphoid cells
ILC1/ILC1s Helper-like type 1 innate lymphoid cell/s
ILC2/ILC2s Helper-like type 2 innate lymphoid cell/s
ILC3/ILC3s Helper-like type 3 innate lymphoid cell/s
LTi Lymphoid tissue inducer cell
MI Myocardial infarction
NK/NKs Natural killer cell/natural killer cells
ox-LDL Oxidised low-density lipoprotein
PAH Pulmonary arterial hypertension
PBMCs Peripheral blood mononuclear cells
PC phosphorylcholine
STEMI ST-elevation myocardial infarction
T2DM Type 2 Diabetes mellitus
TF/TFs Transcription factor/s
TSLP Thymic stromal lymphopoietin
WAT White adipose tissue
May 2022 | Volume 13 | Article 903678
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displayed a similar level of pericarditis toWTmice. Furthermore,
total ILCs were enriched in the pericardial fluid of pericarditis
patients, relative to patients with other heart diseases or healthy
controls. However, deeper analysis of ILC subsets was not
reported, impeding specific association of human pericarditis
with ILC2s. ILC2-derived IL-5 also promotes eosinophil
accumulation around pulmonary arteries, following chronic
activation by IL-33 (41). This accumulation resulted in severe
arterial occlusion and pulmonary arterial hypertrophy (PAH).
This was ablated in IL-5 deficient and eosinophil deficient mice,
but not in Rag-/- mice, supporting an ILC2/IL-5/eosinophil
dependent axis in the aetiology of PAH. Furthermore, PAH
has previously been associated with vascular remodelling driven
by IL-33 (74). Despite eosinophilia and other abnormalities in
IL-5 overexpressing mice, pulmonary arteries in these animals do
not appear to be affected (75). Therefore, while the ILC2/
eosinophil axis plays a role, other factors also contribute to
PAH development. Prolonged IL-33/ST2 signalling may also
contribute to poorer cardiac remodelling and promote heart
failure following MI (27), despite augmenting ILC2-driven type 2
immune activity, which may be protective or reparative of
ventricular function in the acute phase post-MI (57). ILC2s
therefore act as a ‘‘double-edged sword’’ (37), the activity of
which must be precisely balanced to provide protection, while
limiting pathological outcomes.

ILC3s
Few studies have investigated ILC3s in CVD pathogenesis.
During EAM, differential disease susceptibility in mice from
different sources has been associated with intestinal ILC3s and
specific microbiome profiles (44). Anti-CD90 antibody mediated
depletion of ILCs restricted inflammatory leukocyte trafficking to
the heart during EAM, indicating that microbial sensing via
ILC3s plays a role in development of inflammatory heart diseases
via cardiotropic immune cell chemotaxis. Additionally, a study
investigating ILC3s in axial spondyloarthritis (axSpA) indirectly
suggests ILC3 differentiation is promoted by risk factors driving
CVD (76). Patients with inflammatory joint conditions,
including axSpA, have an increased risk of developing CVD
(77). Therefore, clinical management of CVD risk factors,
including dyslipidaemia, is important. Circulating IL-22+ ILC3s
were increased in axSPa patients with dyslipidaemia compared to
patients without dyslipidaemia or healthy controls. Furthermore,
ox-LDL promoted IL-22+ and IL-17+ ILC3 differentiation from
axSPa patient peripheral blood mononuclear cells (PBMCs) (76)
and ILC3s expressed the ox-LDL receptor CD36, blockade of
which prevented ox-LDL-mediated differentiation of the cells
(76). This indicates that ox-LDL affects ILC3 generation, similar
to observations made for ILC1 differentiation from ACI patient
PBMCs (29). Although in that study, no effect of ox-LDL
stimulation on ILC3s was observed, suggestive of other disease-
specific effects of ox-LDL signalling on ILCs. ILC3s are regulated
by hypoxia, acting via hypoxia inducible factor (HIF)-1a (78).
Tissue hypoxia can be induced by, and contribute to CVDs (79).
Hypoxia-driven ILC3 responses might therefore also play a role
in some forms of CVD.
Frontiers in Immunology | www.frontiersin.org 5
ILCs, Adipose Tissue and Obesity
Lean adipose tissue (AT) contains populations of immune cells
important for maintaining metabolic homeostasis, including
regulatory T cells (TREGs), eosinophils and M2 macrophages.
These cells are regulated by ILC2s resident in AT-depots in mice
and humans (30–33) and these functions are reliant on IL-33
signalling (30, 33). Disruption of IL-33 signalling in mice reduces
ILC2s inwhiteAT (WAT), increasing visceral fat depots, impairing
glucose homeostasis, and disrupting energy metabolism by
prevention of WAT beiging (33). Beiging converts white
adipocytes, or adipogenic precursors within WAT, to brown-like
AT and is associated with the upregulation of mitochondrial
uncoupling protein 1 (UCP1). This increases thermogenesis -
raising body heat and calorific expenditure, protecting from
obesity, at least in mice. Mechanistically, IL-33-mediated beiging
is dependent on the ILC2-expressed opioid peptide methionine
enkephalin, which acts on WAT to induce UCP1 expression (31),
similarly to the actions of other ILC2-associatedmolecules like IL-4
(34) and activation of Glucocorticoid-induced TNFR-related
protein (GITR), expressed by both human and murine AT
ILC2s (32).

During obesity in humans and in murine diet-induced obesity
(DIO) models, AT ILC2 frequencies are reduced, and their
functions become dysregulated. This may negatively impact the
homeostatic, immunometabolic roles of ILC2s, such as restricting
differentiation of obesity-protective M2 AT macrophages (ATM)
(30). The mechanisms responsible for reduction of ILC2 responses
during obesity are likely multifaceted and remain under study.
Recent developments suggest they include the upregulation and
activation of inhibitory co-stimulatory receptor PD-1 on ILC2s
during obesity (35), and dysregulation of brain-AT circuits, which
modulate ILC2 activation indirectly via neuro-mesenchymal
interactions (40). Furthermore, as human and murine AT is also
populated by group 1 ILCs (AT1-ILCs), including mature and
immature NKs, and non-NK ILC1s, AT ILC2 activities may be
affected by aberrant IFNg signaling, which restrains ILC2 responses
(30, 56). An increase in AT ILC1s duringDIO has been reported by
some studies. This might drive ATM M1 polarization via IFNg
production, promoting insulin resistance and metabolic
dysfunction in a manner dependent on IL-12 and downstream
STAT4 signalling (80). IL-12-mediated plasticity of AT ILC2s to
ILC1-like cellsmay further contribute to these effects (38).ATMM1
responses may also be promoted by increased WAT expression of
CD36 in the context of defective ILC2 functions, resulting in
enhanced absorption of saturated fatty acids by adipocytes,
driving M1 polarisation (33). Conversely, Boulenouar and
colleagues report that obesity is associated with a decrease in the
numberandcytotoxicity ofAT1-ILCs.Thismaycontribute toATM
accumulation and alterations to the ratioof proinflammatoryM1 to
anti-inflammatory M2, thereby impacting insulin resistance and
metabolic dysfunction (39). The contribution of AT1-ILC
responses and their roles in AT homeostasis and during obesity is
an area that requires further investigation.

While AT ILC2s have emerged as important metabolic
regulators which promote AT homeostasis, ILC2s from other
tissues may also act to promote obesity. In the setting of
May 2022 | Volume 13 | Article 903678
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lymphopenic DIO murine models, adoptive transfer of small
intestinal ILC2s, but not WAT ILC2s, promotes obesity via an
axis dependent on their production of IL-2 (45) – supportive of a
role for this cytokine in obesity induction (81). Intestinal ILC3s
also moderately contributed to DIO (45). Currently, few studies
have investigated the roles of ILC3s in obesity. However,
increased frequency of circulating ILC3s in children who are
overweight and asthmatic (compared to children who are
asthmatic but not-overweight) suggests that obesity may be an
independent risk-factor for promotion of ILC3 differentiation
(82). Furthermore, the lymphotoxin pathway may promote DIO
by driving a pro-obesity intestinal microbiota (83). As LTi and
helper-ILC3s produce lymphotoxins, this potentially implicates
these cells in obesity pathogenesis.
CONCLUSIONS AND FUTURE
PERSPECTIVES

CVD and obesity are major global health concerns. ILCs are
emerging as cells capable of both driving or protecting from CVD
pathology. As the field expands, it will shed light on current gaps in
our knowledge – for instance, whether ILC1s or ILC3s serve any
CVD protective functions. Studies which investigate whether and
how cILCs are regulated by factors known to control ILC activity in
other tissues and disease states are also required. This may include
investigation of cILC regulation by neurotransmitters and
neuropeptides (1, 84), post-transcriptional regulation by non-
coding RNAs (85–87), and effects of metabolic dysfunction, such
as lactic acidosis (88) - a known indicator of cardiac stress. Further
studies which compare functions and transcriptional profiles of
cILCs with more widely studied barrier ILC populations would also
be useful. This would facilitate understanding of similarities and
unique differences between these populations, related to the
pressures and requirements exerted by the disparate tissue
environments these cells function within. Such work may inform
new, tissue-specific therapeutic strategies. Encouragingly, there are
now several studies which demonstrate how modification of ILC
responses might show promise for therapeutic intervention of CVD
Frontiers in Immunology | www.frontiersin.org 6
and obesity in humans. However, most of our mechanistic
knowledge about ILC activity is still derived from murine models.
As these models are often lymphopenic in nature, the potential
translational meaning of these observations to immunocompetent
human disease settings is somewhat confounded. Future research
should continue to explore and unravel cardiovascular-associated
ILC responses, particularly focusing on their roles in the context of
human disease.
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Sustained Post-Developmental T-Bet Expression Is Critical for the
Maintenance of Type One Innate Lymphoid Cells In Vivo. Front Immunol
(2021) 12:760198. doi: 10.3389/fimmu.2021.760198

4. Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, et al. T-Bet and
Eomes Instruct the Development of Two Distinct Natural Killer Cell Lineages
in the Liver and in the Bone Marrow. J Exp Med (2014) 211:563–77.
doi: 10.1084/jem.20131560

5. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, et al.
Intraepithelial Type 1 Innate Lymphoid Cells Are a Unique Subset of IL-12-
and IL-15-Responsive IFN-g-Producing Cells. Immunity (2013) 38:769–81.
doi: 10.1016/j.immuni.2013.02.010

6. Jowett GM, Norman MDA, Yu TTL, Rosell Arévalo P, Hoogland D, Lust ST,
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