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Abstract
The most important and demanding part of the artificial neural network is the training process which involves finding the most
suitable values for the weights in the network architecture, a challenging optimization problem. Gradient approaches and the
meta-heuristic approaches are twomethods extensively used to optimize the weights in the network. Gradient approaches have
serious disadvantages including getting stuck in local optima, inadequate exploration, etc. To overcome these disadvantages,
meta-heuristic approaches are preferred in training the artificial neural network instead of gradient methods. Therefore, in this
study, an improved animal migration optimization algorithm with the Lévy flight feature was proposed to train the multilayer
perceptron. The proposed hybrid algorithm is named IAMO-MLP. The main contributions of this article are that the IAMO
algorithm was developed, the IAMO-MLP algorithm can successfully escape from local optima, and the initial positions
did not affect the performance of the IAMO-MLP algorithm. The enhanced algorithm was tested and validated against a
wider set of benchmark functions and indicated that it substantially outperformed the original implementation. Afterward, the
IAMO-MLP was compared with ten algorithms on five classification problems (xor, balloon, iris, breast cancer, and heart)
and one real-world problem in terms of mean squared error, classification accuracy, and nonparametric statistical Friedman
test. According to the results, the IAMO was successful in training the multilayer perceptron.

Keywords Animal migration optimization algorithm · Artificial neural networks · Civil engineering · Lévy flight · Multilayer
perceptron · Training of artificial neural networks

1 Introduction

The artificial neural network (ANN) is one of the popular top-
ics in machine learning and artificial intelligence. The design
of ANNswas inspired by theworking principle of the biolog-
ical nervous system in the 1940s. It has been used in many
areas as a result of studies that gained speed in the 1980s,
and its success has been proven [1]. Nowadays, the ANN
is a method frequently used in engineering studies due to
its effective problem-solving strategy for complex and dif-
ficult problems. It is formed by connecting many artificial
process elements (neurons) in its layers. ANNs learn from
the samples of the given problem and then decides by using
the information it has obtained when it encounters samples
of the problem that it has never been seen before [2]. The
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method has been successfully used in areas such as classifi-
cation [3], system modeling [4], face recognition [5], speech
recognition [6], and optimization [7].

The most important feature of ANNs is the ability to
make inferences for different conditions using the experi-
ence gained by learning from the information. ANNs consist
of two stages, training (learning) and testing. In the first
step, ANN is trained with training data. Then, the network is
tested using the test data to evaluate the performance of the
trained ANN [8]. The most important and demanding part
of the method is the training process of the network which
involves finding the most suitable values for the weights in
the network architecture, a challenging optimization prob-
lem. As emphasized in [9], two approaches are extensively
used to optimizeweights in the network: gradient approaches
and meta-heuristic approaches. There are some disadvan-
tages in gradient approaches: (i) They can easily get stuck
in local optima. (ii) The value of the learning rate in gradient
approaches is very important and affects the performance of
the algorithm because if the value of the learning rate is too
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small, the training process takes a long time and can get stuck,
and if it is too large, the training process takes a short time
and the algorithm converges prematurely. (iii) The wider the
search space is, the worse the gradient approaches generate
results. (iv) The gradient approaches depend heavily on the
initial values of the weights. Moreover, the same initial val-
ues in different runs generate the same results. Because of
these problems, meta-heuristic approaches can be preferred
in training ANNs instead of gradient methods. Computer
scientists have developed many meta-heuristic algorithms
inspired by certain behaviors of creatures in nature to find
solutions to optimization problems. The animal migration
optimization (AMO) algorithm was designed inspired by
the animal migration behavior of individuals that can be
found in all major animal groups including birds, mam-
mals, and insects. The developer of the AMO algorithm
showed that this algorithm is able to improve the initial
random population, converge toward the global optimum,
provide very competitive results compared to other well-
known algorithms in the literature, and solve different kinds
of optimization problems. Thanks to the success of the AMO
algorithm, it has been applied to many different optimization
problems such as association rule mining [10], clustering
[11], unmanned aerial vehicles placement [12],mobile adhoc
networks [13], the optimal power flowproblem [14], the trav-
eling salesman problem [15], reinforcement of bridges [16],
and multilevel image thresholding [17]. Therefore, these
applications motivated our attempts to employ the AMO
algorithm for training ANNs. In this study, the improved
animal migration optimization (IAMO) algorithm with the
Lévy flight feature was developed and used in the process
of finding optimum weights of the network to increase the
success of ANN.

The most important and demanding part of ANNs is the
training process of the network. To increase the success of
the network, the network should be updated with optimum
weights. In the literature, the training of ANNs has been car-
ried out using some different optimization algorithms. The
success of these optimization algorithms in training ANNs
was determined by comparing them in the solution of dif-
ferent world problems. Ibrahim Aljarah et al. [18] proposed
the whale optimization algorithm for training ANNs. This
algorithm was proven to be able to solve a wide variety
of optimization problems and surpass existing algorithms.
Twenty datasets with different difficulty levels were used to
test the success of the algorithm in the training of the feed-
forward ANN. The success of the algorithm was determined
by comparing it with the backpropagation (BP) algorithm
and six different evolutionary optimization algorithms. It
was shown that the proposed model performs better than
the other algorithms in terms of both local optimum avoid-
ance and convergence speed. Ilyas Benmessahel et al. [19]
proposed an advanced detection approach by combining the

multi-verse optimization algorithm and anANN for the intru-
sion detection system. Themain idea of the studywas to train
feed-forward multilayer ANN using the multi-verse opti-
mization algorithm to detect new intrusions. NSL-KDD and
UNSW-NB15 datasets were used to test the success of the
approach, and the results for UNSW-NB15 were better than
the results for NSL-KDD. Moreover, the proposed method
outperforms the ANN trained using the particle swarm opti-
mization (PSO) algorithm. Sankhadeep Chatterjee et al. [20]
proposed an ANN trained using the PSO algorithm to solve
the problem of predicting the failure probability of multi-
story concrete structures by determining the causes of their
structural failure. In experimental studies, a database of
multi-story reinforced concrete structures consisting of 150
multistoried buildings was used. The proposed method was
compared to the multilayer feed-forward ANN model. The
proposed method demonstrated a better success rate than the
multilayer feed-forward ANN model. Thus, the success of
the proposed method was proved. Gülay Tezel et al. [21]
used the artificial algae algorithm (AAA) as a tool to opti-
mize the weights of the ANN. The ANN and AAA were
combined in such a way that the training phase of the ANN
was performed by the AAA. The proposed model was tested
in three data sets (iris, thyroid, and dermatology) taken from
the University of California, Irvine (UCI) machine learn-
ing database. The results were compared with the multilayer
perceptron algorithmwith backpropagation in terms of mean
absolute error. It has been stated that the models where the
proposed method would be applied can provide a reduction
of up to 96% in mean squared error. In [22], the moth flame
optimization algorithm is proposed for training feed-forward
multilayerANN.The algorithm is used to produceweight and
bias values that ensure to obtain minimum error and a high
classification rate. Five classification datasets were used to
evaluate the performance of the proposed method which was
compared with the genetic algorithm (GA), PSO, ant colony
optimization (ACO), and evolution strategy. The experimen-
tal results proved that the moth flame optimization algorithm
solves the local minima problem and achieves high accuracy.
Najmeh Sadat Jaddi et al. [23] proposed a hybrid method
based on the bat optimization algorithm (BAT) and the ANN.
The BAT algorithm produces the weight and bias values of
the ANN with minimum error and high classification suc-
cess. To test the performance of the proposed approach in
terms of classification and prediction accuracy, six classifi-
cation and two time series data sets were used. The statistical
tests showed that the proposedmethod produces good results.
The method was applied to a real-world problem to predict
future values of rain data, and the results showed themethod’s
success. In [24], the particle swarm optimization algorithm
was used in training the ANN. In the experimental studies,
four datasets from the UCI machine learning database were
used. In [25], the grey wolf optimization (GWO) algorithm
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was applied to train a multilayer perceptron (GWO-MLP).
Eight datasets were used in the experiments, and the GWO-
MLP algorithmwas compared to the PSO-MLP based on the
PSO algorithm, the GA-MLP based on the GA algorithm,
the ACO-MLP based on the ACO algorithm, the ES-MLP
based on the evolution strategy algorithm, and the PBIL-
MLP based on the population-based incremental learning
algorithm. In [26], the states of matter search (SMS) algo-
rithmwas used to train the ANN. In the experimental studies,
five datasets from the UCI machine learning database were
used, and the SMS-MLP algorithm was compared to six
algorithms in the literature. According to the experimen-
tal results, the SMS-MLP algorithm outperformed the six
algorithms. In [27], an improved version of the beetle anten-
nae search algorithm was proposed. The improved beetle
antennae search algorithm outperformed the original imple-
mentation on the benchmark functions. The improved beetle
antennae search algorithm is used to optimize the parameters
of the adaptive neuro-fuzzy inference system and to improve
the performance of the prediction model. The improved bee-
tle antennae search algorithm was evaluated for COVID-19
case prediction using the World Health Organization’s offi-
cial data. The overfitting problem of convolutional neural
networks was overcome by means of properly selecting a
regularization parameter known as a dropout in the context
of convolutional neural networks usingmeta-heuristic-driven
techniques. In [28], the overfitting problem of convolutional
neural networks was overcome by means of properly select-
ing a regularization parameter known as a dropout in the
context of convolutional neural networks using four distinct
meta-heuristic techniques (particle swarm optimization, bat
algorithm, cuckoo search and firefly algorithm). The results
of four optimizationmethodswere comparedwith the default
dropout-less and the default dropout ratio. The experiments
were carried out over four public datasets in the context of
image classification. The experimental results showed that
the meta-heuristic-based dropout convolutional neural net-
work is very promising.

In this study, we propose the IAMO algorithm which is
used in the process of finding the optimum weights of the
network to increase the success of the ANN. The contri-
bution of this article is that the IAMO algorithm has the
Lévy flight strategy. The proposed hybrid algorithm is called
IAMO-MLP, and 13 benchmark functions, five classification
problems (xor, balloon, iris, breast cancer, heart) andone real-
world problem (a prediction problem in civil engineering)
are used in the experiments. On the benchmark functions,
the IAMO algorithm was compared with the original AMO
algorithm. On the classification problems, the results of the
IAMO-MLP algorithm were compared in detail with the
results of the AMO-MLP algorithm, the BAT-MLP based
on the bat optimization algorithm, the SMS-MLP [26] based
on the states of matter search optimization [29] algorithm,

and the BP algorithm. The IAMO-MLP algorithm was also
compared to the GWO-MLP, ACO-MLP, GA-MLP, PBIL-
MLP, PSO-MLP, and ES-MLP algorithms in [25]. On the
real-world problem, the results of the IAMO-MLP algorithm
were compared with the results of the AMO-MLP, BAT-
MLP, SMS-MLP, and BP.Moreover, the algorithms were run
using different numbers of neurons in the hidden layer. The
experimental results showed that the proposed IAMO-MLP
algorithm is more efficient than the others.

The main contributions of this article are as follows: (1)
The proposed IAMO algorithm has the Lévy flight feature.
(2) This article employs the AMO and IAMO to train the
ANN for the first time, and the proposed algorithm is called
IAMO-MLP. (3) The IAMO-MLP algorithm has the abil-
ity to escape successfully from local optima. (4) The initial
parameters and positions do not affect the performance of the
IAMO-MLP algorithm. (5) The features of the IAMO-MLP
algorithm are the simplicity, requiring only a few parameters,
and solving a wide array of problems.

This article is organized as follows. Information about the
training process of ANN and somemeta-heuristic algorithms
employed in training ANNs is provided in the Introduction
section. Information about the ANN algorithm, the AMO
algorithm, the proposed IAMO algorithm, and the IAMO-
MLP algorithm (training ANN using IAMO algorithm) is
provided in the Material and Methods section. The experi-
mental results of the algorithms on the benchmark functions,
the classification problems and the real-world problem are
given in the Experimental Results section. Finally, the results
obtained are evaluated, and suggestions about future studies
are presented in the Conclusion section.

2 Material andMethod

This section gives detailed information about the ANN algo-
rithm, the AMO algorithm, the proposed IAMO algorithm
and the IAMO-MLP algorithm.

2.1 Artificial Neural Networks

The first studies on ANN were carried out in the late nine-
teenth century and early twentieth century. The first study
looked at physics, psychology, and neuropsychology [30]
emphasizing the general theory of learning, perception, and
conditioning. Over time, new developments such as the BP
algorithm which is used to train multilayer networks further
strengthened the studies on ANN. Over the years, many arti-
cles have been written about ANNs, and developed ANN
models have been used in many distinct areas.

ANN is frequentlymentioned in the area ofmachine learn-
ing and artificial intelligence nowadays. The main areas in
which ANN is used are classification, clustering, pattern
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Fig. 1 Structure of the MLP [37]

Fig. 2 Neuron in the MLP [38]

recognition, estimation, and optimization. ANN is used for
problem-solving not only in engineering but also in many
other fields including finance [31], medicine [32], physics
[33], transportation [34], statistic [35], andmathematics [36].
ANNhasmany features that cause it to beused inmanydiffer-
ent areas including the ability to produce nonlinear models,
the ability to learn and generalize, and the applicability to
different problems.

ANN is a problem-solving strategy that consists of arti-
ficial nerve cells similar to the structure of biological nerve
cells. The multilayer perceptron (MLP) is a version of ANN
which consists of three main layers, namely input, hidden,
and output. The general structure of MLP is given in Fig. 1.
The input layer is where the input data in the data set of the
problem are given to the MLP. In the input layer, there are
as many cells as the input data in the dataset of the problem.
The data given to the input layer are transmitted to the next
layer in order to process the data. The hidden layer processes
the data taken from the input layer and transmits the results
to the output layer. While some MLPs have only one hidden
layer, some have more than one. The number of neurons in

the hidden layer is independent of the number of neurons in
the input layer and the output layer. The complexity of the
algorithm and the solution duration of the problem increase
along with the increase in the number of neurons in the hid-
den layer. But this situation enables the ANN to be used in
solvingmore complex problems. The output layer is the layer
where the output of the network is produced by processing
the data coming from the hidden layers [2].

MLP consists of artificial nerve cells, and an artificial
nerve cell consists of five main parts: inputs, weights, addi-
tion (aggregation) function, activation function, and outputs.
The data coming to neurons are called input. Weights are
used to adjust the effect of inputs to artificial nerve cells on
the output of the problem.

The value of a weight can be a positive value, a negative
value, or zero. If the weight value is 0, the inputs do not affect
the output of the neuron. The input data of artificial nerve
cells are multiplied by the weights of the connections, and
the net input is calculated using the addition function. The
bias value is also added to the net. The activation function
produces the output of the artificial nerve cell by process-
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ing the net input value obtained from the addition function.
This process is shown in Fig. 2. When determining the acti-
vation function, nonlinear activation functions are generally
preferred. Another point to consider when determining the
activation function is that the derivative of the function should
be easily calculated. The sigmoid activation function is gen-
erally preferred in the MLP model, which is widely used
today. The sigmoid activation function given in Eq. (1) is
a continuous, nonlinear, and easy derivative function. This
function generates a value between 0 and 1 for each input
value. The value obtained using the activation function cor-
responds to the output value of the artificial nerve cell [2].
In addition, all datasets are normalized by using the min—
max normalization function given in Eq. (2) to eliminate the
effect of attributes that may have different effective rates on
the classification [18].

Sigmoid(x) � 1

1 + e−x
(1)

x ′ � (x − xmin)

(xmax − xmin)
(2)

where x ′ is the normalized value of x which is in the range
[xmin, xmax]. The normalized value x ′ will be in the range [0,
1].

2.2 The Animal Migration Optimization Algorithm

Migration, is a common animal behavior arising out of the
animal’s survival efforts, is a behavioralmovement that trans-
ports animals to new habitats. Animal migrations are the
movements of individuals over long distances, usually sea-
sonally.Migration is a vital activity found in all animal groups
including birds, mammals, and insects. Climate and insuffi-
cient food are the main reasons that force animals to migrate.
During the migration process, individuals in animal groups
act by following threemain instructions: (1)move in the same
direction as neighbors, (2) stay close to neighbors, and (3)
avoid colliding with neighbors. Recent studies on starlings
have shown that each bird changes its position in a direct
relationship to six or seven animals around it, regardless of
how close or how far the animals are. These interactions
between starlings in a flock are based on a topological rule
[39]. Inspired by these rules, a new swarm-based algorithm
called AMO has been proposed by Li, Zhang, and Yin [40].

The main idea of the AMO algorithm is applied through
concentric regions around each animal. In the thrust zone, the
animal concernedwill try to distance itself from its neighbors
to avoid the collision. Moving away a little, the animal will
try to align its direction of movement with its neighbors in
the zone of harmony. In the outermost attraction zone, the
animal concerned will try to move toward its neighbor.

The AMO algorithm is a swarm-based optimization algo-
rithm developed to solve global optimization problems
inspired by animal migration behavior that can be found in
all large animal groups such as birds and fish. Two idealized
assumptions are used to describe the basic function of the
algorithm: (1) The animal with the highest quality in the herd
will be defined as the leader animal, and the leader animal
will be protected in future generations. (2) The number of
animals in the herd is fixed, and each animal will be replaced
with a new individual with probability Pa. In this case, the
animal will leave the group, and then a new animal will join
the group.

The AMO algorithm consists of two processes: the migra-
tion process and the population updating process. The
migration process covers how the animalsmove from the cur-
rent location to the new location. Animals must obey three
topological rules of migration in this process. (1) move in
the same direction as neighbors, (2) stay close to neighbors,
and (3) avoid colliding with neighbors. When these rules are
followed, animals migrate in an optimized way. The migra-
tory animal population consists of a range of animal herds as
follows. This migration population is shown in Eq. (3),

population � {X1, X2, . . . , XN P } (3)

where NP and Xi represent the population size and an indi-
vidual in the population, respectively. Each individual in the
population consists of a d-dimensional vector accepted as
the elements of a solution within the maximum and min-
imum limits in the search space. At the beginning of the
algorithm, a value within the maximum and minimum limits
is assigned to the d-dimensional vector of each individual in
the population using Eq. (4),

Xi � Xmin + rand ∗ (Xmax − Xmin) (4)

where Xi , Xmin and Xmax represent an individual in the
population, the minimum bounds in the search space, and
maximum bounds in the search space, respectively. rand is
a uniformly distributed random number between 0 and 1.

A local neighbor cluster is needed to determine the new
location of each individual in the population. The ring topol-
ogy scheme given in Fig. 3 is used to define this cluster.

In Fig. 3, the length of the adjacent cluster is set to be
five for each dimension of the individual. If the animal index
is i, the neighbor cluster will be created with animals hav-
ing the indices i−2, i−1, i, i + 1, and i + 2. If the animal
index is 1, the neighbor cluster will be created with animals
having indices NP-1, NP, 1, 2, and 3. NP represents the total
number of individuals in themigration population. Each indi-
vidual whose neighbor cluster is determined calculates the
new position according to the position of the individuals in
the neighbor cluster by obeying the rules to be considered
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Fig. 3 Concept of the local neighborhood of an individual

during the migration. The new position of the individual is
calculated using Eq. (5),

Xt+1
i � Xt

i + δ ∗
(
Xt
neighbor − Xt

i

)
(5)

where Xt
neighbor is the current position of the neighbor

selected from the cluster. Xt
i and Xt+1

i are the positions of the
ith individual in the iterations t and t + 1, respectively, and
δ is a random value between 0 and 1. This value may vary
according to different problems in the real world.

The population updating process covers how some ani-
mals left the herd and how new animals are added to the herd.
A probability value is given to each individual in the popu-
lation according to their fitness value. While the probability
value for the most compatible individual in the population is
1, this value is 1/NP for the most incompatible individual,
and NP is the population size. When the probability value of
the individual is less than the randomly generated value, a
new individual is created using Eq. (6),

Xt+1
i � Xt

r1 + rand ∗ (
Xt
best − Xt

i

)
+ rand ∗ (

Xt
r2 − Xt

i

)
(6)

where Xt
i and Xt+1

i are the positions of the ith individual
in the iterations t and t + 1, respectively. Xt

r1 and Xt
r2 are

randomly selected individuals from the population, Xt
best is

the leading animal with the high quality of the position, and
rand is a random value between 0 and 1. If the quality of the
new individual is better than the current individual, then the
current individual is removed from the population and the
new individual is added to the population. The flowchart of
the AMO algorithm is shown in Fig. 4, and the pseudo-code
of the AMO algorithm is presented in [40].

Fig. 4 Flowchart of the AMO algorithm

2.3 The Improved Animal Migration Optimization
Algorithm

Although the AMO algorithm is one of the recent meta-
heuristic algorithms and shows good performance in solving
optimization problems, it has somebottlenecks.According to
[41], the performance of AMO is degraded rapidly when the
dimensionality is larger than 30. According to [42], the bot-
tlenecks of the AMO algorithm are premature convergence
and falling into local optima. In order to overcome these bot-
tlenecks, we have proposed the IAMO algorithm which has
the Lévy flight strategy.

The Lévy flight developed by Paul Lévy is a version of
the random walk model. It is based on the Lévy distribution
which is a continuous probability distribution. Studies show
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that the distance traveled by many animals, including bees,
ants and fish, in foraging behavior corresponds to the Lévy
distribution [43]. The advantage of the Lévy flight is that it
optimizes the distance in foraging. Therefore, we applied the
Lévy flight strategy to the individuals in the IAMO algorithm
and as a result of this, the Lévy flight improved the diversifi-
cation and intensification in the IAMO algorithm. Normally,
the position of an individual is updated using Eq. (5). But in
IAMO, if an individual cannot improve its position in sev-
eral consecutive iterations, this individual updates its position
using Eq. (7) which contains the Lévy flight strategy.

Xt+1
i � Xt

i + Levy(D) × Xt
i (7)

where Xt
i and Xt+1

i are the positions of the ith individual in
the iterations t and t + 1, respectively. D is the dimension of
the position Xt

i . The Lévy flight is calculated using Eq. (8),

Levy(x) � 0.01 × r1 × σ

|r2|1/β
(8)

where β is a constant (1.5), and r1 and r2 are the random
numbers between 0 and 1. σ is calculated using Eq. (9),

σ �
⎛
⎜⎝

�(1 + β) × sin
(

πβ
2

)

�
(
1+β
2

)
× β × 2

(
β−1
2

)

⎞
⎟⎠

1/β

(9)

where G is calculated using Eq. (10).

�(x) � (x − 1)! (10)

In contrast to AMO, each individual in IAMO has also
a counter variable that records the number of consecutive
iterations where the individual cannot be improved. There is
also a threshold variable in IAMO that controls the activation
of the Lévy flight. If the value of the counter variable of an
individual exceeds the threshold value, then the Lévy flight
strategy is applied to this individual using Eq. (7).

Figure 5 shows the flowchart of the IAMO algorithm.
The pseudo-code of the IAMO algorithm is shown in Fig. 6.
Firstly, the parameters are initialized, and the population is
randomly generated. The fitness value of each individual is
calculated, and the global best position is determined. Sec-
ondly, the migration process of the algorithm, which covers
how the animals move from the current location to the new
location, starts. An individual updates its position with the
help of its neighbors. If an individual cannot improve its fit-
ness value in several consecutive iterations, this individual
updates its position using the Lévy flight strategy, and the
counter value of the individual is reset. The fitness value
of the new position of each individual is calculated, and, if
the new position is better than the current position, then the

Fig. 5 Flowchart of the IAMO algorithm

migration of the individual occurs. Otherwise, the individ-
ual keeps using its current position, and the counter value
is incremented. After the migration process is finished, the
global best position in the herd is updated. Thirdly, the popu-
lation updating process, which covers how some animals left
the herd and how new animals are added to the herd, starts.
The probability Pa of each individual is calculated according
to their fitness value.While the probability value for themost
compatible individual in the population is 1, and this value
is 1/NP for the most incompatible individual. NP is the pop-
ulation size. When the probability value of the individual is
less than a randomly generated value between 0 and 1, then a
new individual is created using Eq. (6). The fitness values of
all individuals are calculated. If the position of the new indi-
vidual is better than the position of the current individual,
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Fig. 6 Pseudo-code of the IAMO algorithm

Fig. 7 MLP with the 2-3-2
structure

Fig. 8 Position vector of the individual for the weights and biases

then the current individual leaves the herd, and the new indi-
vidual is added to the herd. Otherwise, the current individual
keeps staying within the herd, and the counter value is incre-

mented. After the population updating process is finished,
the global best position in the herd is updated. Thus, one iter-
ation is completed. The migration and population updating
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Fig. 9 Flowchart of the IAMO-MLP algorithm

processes are run consecutively until the termination criteria
are met. Finally, the global best position is reported at the
end of the algorithm.

2.4 TrainingMultilayer Perceptron using Improved
Animal Migration Optimization Algorithm

In this work, a hybrid algorithm (IAMO-MLP) is proposed to
train the multilayer perceptron (MLP) using the IAMO algo-
rithm. In the proposed IAMO-MLP algorithm, the IAMO
algorithm optimizes the weights and biases of the MLP. In
the proposed IAMO-MLP algorithm, each individual with
a d-dimensional solution in the migration population repre-
sents a candidate solution which is a d-dimensional vector.
This candidate solution vector (position vector) represents
the structure of the MLP, namely the weights and biases of

the MLP. The position vector consists of four parts. The first
part contains the weight values between the neurons in the
input layer and the hidden layer. The second part contains the
weight values between the neurons in the hidden layer and
the output layer. The third part contains the bias values of
the neurons in the hidden layer. The fourth part contains the
bias values of the neurons in the output layer. An example
is shown in Fig. 8. Figure 7 shows an exemplar of the MLP
with the 2-3-2 structure, and Fig. 8 shows the position vector
for this MLP. In Fig. 7, Xi, oi, wij and bi represent the inputs,
the outputs, the weights, and the biases of the MLP, respec-
tively. The candidate solution vector is the same size for all
individuals in the population and is equal to the total number
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of weights and biases that make up the network. The length
of the candidate solution vector is calculated using Eq. (11)

L � (k ∗ l) + l + (l ∗ m) + m (11)

where L, k, l, and m represent the length of the vector, the
number of neurons in the input layer, the number of neurons
in the hidden layer, and the number of neurons in the output
layer, respectively.

The IAMO-MLP algorithm optimizes the weights and
biases of MLP according to the inputs–outputs pattern. To
find the optimum values, the IAMO-MLP algorithm tries to
minimize the error between the real outputs and predicted
outputs. The mean squared error (MSE) shown in Eq. (12) is
used as the objective function to calculate the fitness values
of the solution vector. The IAMO-MLP algorithm aims to
minimize the MSE.

MSE � 1

N

N∑
i�1

K∑
j�1

(
r ij − pij

)2
(12)

where N is the number of the training samples, K is the
number of neurons in the output layer, and r ij and pij are the
real output and predicted output of the neuron j for the ith
instance of the training samples, respectively.

The flowchart of the IAMO-MLP algorithm is shown in
Fig. 9. The IAMO-MLP algorithm works as follows: Each
individual in the algorithm represents an animal and offers a
solution. Each individual has a fitness value calculated by the
objective function in Eq. (12). Firstly, the population size and
the length of the neighborhood are initialized and the popula-
tion is randomly generated using Eqs. (3) and (4). Then, the
fitness value for each individual is calculated by the objec-
tive function. In this stage, each individual is assigned to
MLP and evaluates MLP using MSE on the training sam-
ples. Then, the migration process with the Lévy flight is run.
In the migration process with the Lévy flight, each individ-
ual seeks better solutions in the search space with the help of
their neighbors and the Lévy flight strategy using Eqs. (5) and
(7). Then, the population updating process is run in which
animals with low fitness value are removed from the popula-
tion and new individuals with high fitness value are added to
the population using Eq. (6). Thus, each individual searches
for better solutions in the search space. This process is con-
tinued until the termination criteria are met. At the end of
the algorithm, the best position, namely the best MLP with
minimum MSE, is reported as the output of the algorithm.
Thus, the IAMO-MLP algorithm finds the most appropriate
values of the weights and biases according to the inputs–out-
puts pattern. Consequently, the IAMO algorithm updates the
values of the weights, and biases of the MLP to minimize the
MSE until the termination criteria of the training process are
met.

The efficiency of an algorithmmay be demonstrated using
a theoretical analysis or an empirical analysis [44]. In an
empirical analysis of IAMO-MLP, Table 6 presents the aver-
age computational time in seconds. In theoretical analysis,
the worst-case complexity of the algorithm is generally com-
puted. The worst-case complexity of IAMO-MLP depends
on the number of iterations, the number of animals, the struc-
ture of theMLP, the number of training instances, the number
of attributes of training instances, the migration process, and
the population updating process. So, theworst-case complex-
ity of IAMO-MLP is as follows:

O(IAMO − MLP) � O(g(O(migration) + O(MLP)

+O(population updating) + O(MLP)))

(13)

where g is the number of iterations. The computational com-
plexity of the migration phase is O(Nd), where N is the
number of individuals and d is the dimension of the position
vectors of an individual. The computational complexity of an
MLPwithN animals, i input nodes, h hidden nodes, o output
nodes, and t training instances is equal toO(Nt((ih) + (ho))).
The migration phase and the population updating phase have
the same computational complexity, namely O(Nd). There-
fore, the final computational complexity of the IAMO-MLP
algorithm is as follows:

O(IAMO − MLP) � O(g(O(Nd) + O(Nt((ih) + (ho))))

+O(Nd) + O(Nt((ih) + (ho)))) (14)

where g is the number of iterations, N is the number of indi-
viduals, t is the number of training instances, i is the number
of input nodes, h is the number of hidden nodes, o is the num-
ber of output nodes, and d is the dimension of the position
vectors of an individual.

3 Experimental Results

In this section, to verify the accuracy and robustness of the
proposed IAMO and IAMO-MLP algorithms, the experi-
mental studies were carried out on datasets with different
difficulty levels and different features. These datasets are
13 benchmark functions, five classification datasets taken
from UCI Machine Learning Repository, and a real-world
problem taken from [45]. The specifications of the hardware
and software used in the experiments are as follows: Intel(R)
Core(TM) i5-3330 3.00 GHz, 4 GB memory, and Microsoft
Windows10.The algorithmswere implemented inMATLAB
R2015a. All statistical analyses in this study were performed
with Microsoft Excel 2013 software.
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Table 2 Minimization result of the benchmark functions for different algorithms

IAMO AMO [40] PSO [46] DE [47] BBO [48] CS [49] FA [50] GSA [51] ABC [52]

f 1 Mean
StdDev

7.83E−47
6.03E−47

8.65E−40
1.04E−39

3.33E−10
7.04E−10

5.60E−14
4.41E−14

3.74E−01
1.18E−01

5.66E−06
2.86E−06

1.70E−03
4.06E−04

3.37E−18
8.09E−19

2.99E−20
2.15E−20

f 2 Mean
StdDev

2.16E−34
1.01E−34

8.23E−32
3.41E−32

6.66E−11
9.26E−11

4.73E−10
1.78E−10

1.66E−01
3.42E−02

2.00E−03
8.10E−04

4.53E−02
3.38E−02

8.92E−09
1.33E−09

1.42E−15
5.53E−16

f 3 Mean
StdDev

4.57E−09
1.47E−08

8.89E−04
8.73E−04

2.98E+00
2.28E+00

2.80E−11
3.68E−11

1.60E+03
8.34E+02

1.40E−03
6.10E−04

1.82E−02
6.40E−03

1.13E−01
1.27E−01

2.40E+03
6.57E+02

f 4 Mean
StdDev

1.29E−42
4.82E−42

2.86E−05
2.35E−05

8.00E+00
2.54E+00

2.22E−01
2.43E−01

7.97E+00
2.66E+00

3.24E+00
6.64E−01

5.54E−02
1.01E−02

9.93E−10
1.19E−10

1.85E+01
4.25E+00

f 5 Mean
StdDev

3.99E−01
1.18E+00

4.18E+00
2.16E+00

4.69E+01
3.80E+01

2.66E−01
1.03E+00

6.47E+01
3.63E+01

8.01E+00
1.92E+00

3.81E+01
3.04E+01

2.01E+01
1.72E−01

4.41E−02
7.07E−02

f 6 Mean
StdDev

0
0

0
0

3.69E−10
6.37E−10

4.50E−14
2.33E−14

3.70E−01
1.12E−01

5.43E−06
2.24E−06

1.70E−03
4.16E−04

3.34E−18
5.68E−19

3.09E−20
4.01E−20

f 7 Mean
StdDev

1.81E−03
5.31E−04

1.70E−03
4.71E−04

1.35E−02
4.10E−03

4.20E−03
1.40E−03

3.00E−03
1.20E−03

9.60E−03
2.80E−03

8.20E−03
9.30E−03

3.90E−03
1.30E−03

3.24E−02
5.90E−03

f 8 Mean
StdDev

−1.26E+04
1.85E−12

− 1.26E+04
1.24E−07

− 8.83E+03
6.11E+02

− 1.13E+04
1.81E+03

− 1.26E+04
5.76E−01

− 9.15E+03
2.53E+02

− 6.22E+03
7.72E+02

− 3.05E+03
3.39E+02

− 1.25E+04
6.11E+01

f 9 Mean
StdDev

0
0

0
0

1.83E+01
4.80E+00

1.35E+02
2.89E+01

3.85E−02
1.54E−02

5.12E+01
8.11E+00

2.35E+01
8.37E+00

7.28E+00
1.90E+00

0
0

f 10 Mean
StdDev

4.44E−15
0

4.44E−15
0

3.87E−06
2.86E−06

7.47E−08
3.11E−08

1.95E−01
4.61E−02

2.38E+00
1.12E+00

9.40E−03
1.40E−03

1.47E−09
1.44E−10

1.19E−09
5.01E−10

f 11 Mean
StdDev

0
0

0
0

1.68E−02
2.05E−02

0
0

2.77E−01
7.96E−02

4.49E−05
8.96E−05

2.50E−03
4.69E−04

1.27E−02
2.16E−02

0
0

f 12 Mean
StdDev

1.57E−32
5.89E−35

1.57E−32
2.81E−48

8.30E−03
2.87E−02

4.71E−15
3.26E−15

2.00E−03
2.30E−03

5.07E−01
2.66E−01

8.87E−06
2.80E−06

2.04E−20
4.53E−21

1.19E−21
1.08E−21

f 13 Mean
StdDev

1.35E−32
5.57E−48

1.35E−32
2.81E−48

4.67E−07
1.37E−06

3.16E−14
2.28E−14

2.18E−02
9.60E−03

4.70E−04
2.99E−04

1.28E−04
4.15E−05

5.70E−33
6.26E−33

2.30E−20
2.29E−20

The bold text refers to the best results

Table 3 Properties of the
classification datasets Dataset Attribute

number
Class number Training Test MLP

architecture
Vector size

Xor 3 2 8 8 3-7-1 36

Balloon 4 2 20 20 4-9-1 55

Iris 4 3 150 150 4-9-3 75

Breast Cancer 9 2 599 100 9-19-1 210

Heart 22 2 80 187 22-45-1 1081

Fig. 10 Convergence graphs of the algorithms on training data
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Table 4 Parameters of the algorithms

Algorithm Parameter Value

AMO/IAMO Lower bound − 10

Upper bound 10

Length of neighborhood 5

Threshold in IAMO 5

Population size 50 for xor and balloon, 200 for the others

Maximum Fes 12,500 for xor and balloon, 50,000 for the others

BAT Lower bound − 10

Upper bound 10

Loudness 0.5

Pulse rate 0.5

Minimum frequency 0

Maximum frequency 2

Population size 50 for xor and balloon, 200 for the others

Maximum Fes 12,500 for xor and balloon, 50,000 for the others

SMS Lower bound − 10

Upper bound 10

α, β, H, ρ (gas state) 0.3, 0.9, 0.9, 0.85

α, β, H, ρ (liquid state) 0.05, 0.5, 0.2, 0.35

α, β, H, ρ (solid state) 0, 0.1, 0, 0.1

Population size 50 for xor and balloon, 200 for the others

Maximum FEs 12,500 for xor and balloon, 50,000 for the others

BP Lower bound − 10

Upper bound 10

Learning rate 0.3

Momentum 0.8

Maximum epoch 12,500 for xor and balloon, 50,000 for the others

Table 5 Average and standard deviation of the MSE results on training data

Dataset IAMO-MLP AMO-MLP BAT-MLP SMS-MLP [26] BP

Xor 9.28E−04±9.68E−04 4.74E–03±4.24E–03 9.76E–02±6.74E–02 1.33E–01±3.39E–02 1.38E–01±1.65E–01

Balloon 4.24E−10±1.95E−09 3.47E–09±6.22E–09 8.59E–03±2.19E–02 1.11E–02±1.31E–02 7.68E–02±1.71E–01

Iris 3.59E−02±4.82E−03 4.75E–02±4.42E––03 2.24E–01±1.32E––01 2.58E–01±5.12E–02 7.25E–02±1.57E–01

Breast Cancer 3.06E−03±5.37E−04 3.81E–03±5.64E–04 6.57E–03±6.59E–03 2.27E–02±4.33E–03 4.85E–02±1.67E–01

Heart 8.18E−02±8.63E−03 9.37E–02±9.27E–03 1.50E–01±3.56E–02 1.18E–01±3.13E–02 2.84E–01±1.27E–01

The bold text refers to the best results

Table 6 Average classification accuracy on test data and the average computational time of the algorithms

Dataset Classification Accuracy (%) Time (s)

IAMO-MLP AMO-MLP BAT-MLP SMS-MLP BP IAMO-MLP AMO-MLP BAT-MLP SMS-MLP BP

Xor 100.00 100.00 87.92 83.75 84.58 13.9 13.9 4.7 5.5 1.6

Balloon 100.00 100.00 99.17 99.17 92.33 46.7 43.7 19.5 20.2 1.7

Iris 98.00 97.27 83.22 86.78 86.84 1592.2 1443.0 798.9 881.6 9.7

Breast
Cancer

96.50 96.37 96.00 85.67 91.83 5338.8 5172.3 2657.1 2830.3 29.5

Heart 70.32 70.86 71.30 68.57 63.40 2033.5 1868.6 972.1 892.4 16.6

The bold text refers to the best results
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Table 7 Results of the performance metrics (Sensitivity, Specificity, Precision, F1-Score)

Algorithm Sensitivity (%) Specificity (%) Precision (%) F1-Score Sensitivity (%) Specificity (%) Precision (%) F1-Score

Xor Balloon

IAMO-MLP 100.00 100.00 100.00 1.0000 100.00 100.00 100.00 1.0000

AMO-MLP 100.00 100.00 100.00 1.0000 100.00 100.00 100.00 1.0000

BAT-MLP 86.67 89.17 90.89 0.8738 99.17 99.17 98.89 0.9894

SMS-MLP 81.70 86.70 88.90 0.8349 99.20 99.20 98.80 0.9894

BP 84.17 85.00 83.22 0.8222 91.67 92.78 91.63 0.9011

Iris Breast Cancer

IAMO-MLP 98.00 99.00 98.03 0.9800 91.59 97.81 91.88 0.9149

AMO-MLP 97.49 98.74 97.54 0.9749 91.75 97.59 91.18 0.9115

BAT-MLP 83.22 91.61 77.44 0.7896 88.25 98.06 92.60 0.8944

SMS-MLP 82.10 91.10 81.00 0.8002 50.20 95.10 83.70 0.5828

BP 86.84 93.42 83.25 0.8406 92.70 91.60 85.36 0.8700

Heart

IAMO-MLP 70.12 72.67 96.73 0.8113

AMO-MLP 70.81 71.33 96.61 0.8163

BAT-MLP 71.63 67.56 96.23 0.8192

SMS-MLP 68.39 70.67 96.41 0.7980

BP 64.22 54.00 91.52 0.7311

The bold text refers to the best results

Fig. 11 Boxplot charts of the classification rate results on test data

3.1 Benchmark Functions

To determine the success of the proposed IAMO algorithm,
13 benchmark functions shown in Table 1 were used in the
experiments. These functions have been widely used in the
literature. Functions f 1– f 5 are unimodal functions, and the
rest of the functions are multimodal. Moreover, Table 1 also
shows the dimension, the global minimum values, and the
search ranges.

The performance of the proposed IAMO algorithm was
compared with the performance of the following algorithms:
AMO [40], particle swarm optimization (PSO) [46], differ-
ential evolution (DE) [47], biogeography-based optimization
(BBO) [48], cuckoo search (CS) [49], the firefly algorithm
(FA) [50], the gravitational search algorithm (GSA) [51], and
artificial bee colony (ABC) [52]. The results of these algo-
rithms were taken from [40] and presented in Table 2. To
fairly compare the algorithms, each algorithm runs the same
function evaluations (FEs) at each run: 150,000 FEs for f 1,
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f 6, f 10, f 12 and f 13; 200,000 FEs for f 2 and f 11; 300,000
FEs for f 7, f 8 and f 9; and 500,000 FEs for f 3, f 4 and f 5.
The threshold and population size parameters of the IAMO
algorithm are set to 5 and 50, respectively. The IAMO algo-
rithm was independently run 30 times on each function. The
average values (mean) of the results and their standard devia-
tions (stdDev) in 30 runs are provided in Table 2. According
to the results of the algorithms on the benchmark functions in
Table 2, it is evident that the IAMOalgorithmoutperforms the
other algorithms in the majority of the test cases. The IAMO
algorithm provides the best results on ten of the benchmark
functions. It has also the second-best results on two of the
benchmark functions. According to Table 2, it is obvious that
the proposed IAMO algorithm has better performance than
the canonical AMO algorithm.

3.2 Classification Problems

To determine the success of the proposed IAMO-MLP
algorithm, five classification datasets were used in the exper-
iments: xor, balloon, iris, breast cancer, and heart. These
classification datasets are selected according to the differ-
ent levels of difficulty to effectively test the performance
of the IAMO-MLP algorithm. The properties (number of
attributes and classes, the number of training and test sam-
ples) of these five datasets are shown in Table 3. The training
and test subsets of the datasets are taken from the website
www.seyedalimirjalili.com and also used in [25]. Addition-
ally, Table 3 shows the architecture of theMLP and the vector
size of the candidate solutions. The number of neurons in the
hidden layer was determined by 2×n+1where n is the num-
ber of the neurons in the input layer. The length of the vector
is calculated using Eq. (11). The IAMO-MLP algorithm was
independently run 30 times on each dataset. 12,500 function
evaluations (FEs) for xor and balloon, and 50,000 FEs for
the remaining datasets were carried out at each run. The ini-
tial values of the weights and biases of MLP were randomly
determined in the range of [− 10, 10].

The proposed IAMO-MLP algorithm is also compared
with the algorithms AMO-MLP, BAT-MLP, SMS-MLP, and
BP. Table 4 shows the parameters of these algorithms. To
fairly compare all the algorithms, they have the same number
of FEs.

Table 5 shows the average and standard deviation of the
MSE results of the algorithms on training data. The lower
the MSE is, the better the performance of the algorithm is.
According to the results in Table 5, the IAMO-MLP algo-
rithm has the lowest MSE value for each dataset. Figure 10
shows the convergence graphs of the algorithms in terms
of the MSE value at each iteration. When the convergence
graphs are analyzed, it is seen that the IAMO-MLP algorithm
exhibits very good performance.

Table 6 shows the average classification accuracy on test
data and the average computational time of the algorithms.
The IAMO-MLP algorithm has a better classification accu-
racy than the other algorithms on the datasets xor, balloon,
iris, and breast cancer. On the dataset heart, the BAT-MLP
algorithm has a better classification accuracy than the other
algorithms.According to the average computational time, the
fastest algorithm is the BP algorithm, and the slowest algo-
rithm is the IAMO-MLP algorithm. Table 7 shows the results
of the performance metrics sensitivity, specificity, precision,
andF1-Score.According to the results, the IAMO-MLPalgo-
rithm has the highest percentage of sensitivity, specificity,
and precision on xor, balloon, and iris datasets among all the
algorithms. Additionally, the IAMO-MLP algorithm has the
highest percentage of specificity and precision on the heart
dataset among all the algorithms. In terms of the F1-Score,
the IAMO-MLP algorithm has better results than the other
algorithms on xor, balloon, iris and breast cancer datasets.
Overall, the IAMO-MLPalgorithm is successful according to
the performance metrics. Figure 11 shows the boxplot charts
of the classification rate results of the algorithms on test data.
Boxplot charts are an easy way to visually show the distri-
bution of data, particularly used to summarize data in terms
of the central location, spread, skewness, and kurtosis and to
identify outliers. Boxplot charts present the minimum value,
first quartile, median value, mean value, third quartile, and
maximum value of data. According to the boxplot charts in
Fig. 11, the IAMO-MLP algorithm generates more robust
results than the AMO-MLP, BAT-MLP, SMS-MLP, and BP
algorithmson eachdataset, although theBAT-MLPalgorithm
has a better average classification accuracy than the IAMO-
MLP and AMO-MLP algorithms on the heart dataset.

The IAMO-MLP algorithm is also compared with the
GWO-MLP, PSO-MLP, GA-MLP, ACO-MLP, ES-MLP, and
PBIL-MLP algorithms whose results are taken from [25].
Table 8 shows this comparison according to the best classifi-
cation accuracy (%). The results show that the IAMO-MLP
algorithm outperforms the other six algorithms on all the
datasets. On the xor dataset, the IAMO-MLP, GWO-MLP,
and GA-MLP algorithms have 100% classification accu-
racy. On the balloon dataset, all the algorithms have 100%
classification accuracy. On the iris dataset, the IAMO-MLP
algorithm has 99.33% classification accuracy, and the GWO-
MLP algorithm has the second-best result with 91.33%
classification accuracy. On the breast cancer dataset, the
IAMO-MLP algorithm and the GWO-MLP algorithm have
the same classification accuracy, namely 99%. On the heart
dataset, the IAMO-MLP algorithm has 79.14% classification
accuracy, and the GWO-MLP algorithm has the second-best
result with 75% classification accuracy.

The Friedman test is a nonparametric statistical test. In
the Friedman test, two or more samples are used to compare
the populations. This test also gives the ranking results of
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Table 8 Comparison of the
algorithms according to the best
classification accuracy (%)

Dataset IAMO-MLP GWO-MLP PSO-MLP GA-MLP ACO-MLP ES-MLP PBIL-MLP

Xor 100.00 100.00 37.50 100.00 62.50 62.50 62.50

Balloon 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Iris 99.33 91.33 37.33 89.33 32.66 46.66 86.66

Breast
Cancer

99.00 99.00 11.00 98.00 40.00 06.00 07.00

Heart 79.14 75.00 68.75 58.75 00.00 71.25 45.00

The bold text refers to the best results

Table 9 Average ranking of the
algorithms according to the
classification rate on the
classification dataset (Friedman
test)

Algorithm Ranking

IAMO-MLP 4.4

AMO-MLP 4.2

BAT-MLP 2.9

SMS-MLP 1.7

BP 1.8

The bold text refers to the best
results

the population. Table 9 shows the average ranking of the
algorithms according to the classification rate. Because the
aim is to maximize the classification rate, the higher values
in Table 9 are better. According to the Friedman test result
in Table 9, the IAMO-MLP algorithm ranks higher than the
other algorithmswith a ranking score of 4.4. TheAMO-MLP
algorithm has the second ranking with a ranking score of 4.2.
The BAT-MLP algorithm has the third rankingwith a ranking
score of 2.9. The BP algorithm has the fourth ranking with a
ranking score of 1.8. The SMS-MLP algorithm has the last
ranking with a ranking score of 1.7.

3.3 A Real-World Engineering Problem

In this section, the IAMO-MLP algorithm is applied to solve
a real-world problem in the civil engineering area in which
waste tires are added into cement with the result that both
waste tires are recycled, and the strength of the concrete is
increased [53–55].However, the compressive strength of rub-
berized concrete varies according to the amount of substances
added into it. To find the optimum value of the compres-
sive strength, the amount of substances added is empirically
determined. Recently, somemodels based on soft computing
techniques have been created such as ANN [45, 56] to esti-
mate the compressive strength. In this study, the IAMO-MLP
algorithmwas used to estimate the compressive strength. The
dataset of the real-world problem was taken from [45]. It
has three attributes (water–cement ratiow/c, superplasticizer
sp, and granular squeleton gs), one output (comprehensive
strength fc), and 112 instances. Some of the data are shown
in Table 10. The 95 instances of them are used for training,
and the remaining 17 instances are used for the test.

Table 10 Civil engineering dataset [45]

No W/C SP GS Fc

1 0.42 13.5 1743.02 81

2 0.44 13.5 1735.97 82.7

… … … … …

… … … … …

… … … … …

111 0.4 4.95 1410.9 19.4

112 0.47 3.25 1335 20.2

The IAMO-MLP algorithm was compared to the AMO-
MLP, BAT-MLP, SMS-MLP [26], and BP algorithms. In the
previous section, the number of neurons in the hidden layer
was calculated by 2×n+1, where n is the number of neurons
in the input layer. In this section, we compared the algorithms
usingdifferent numbers of neurons in the hidden layer. There-
fore, the numbers (H) of neurons in the hidden layer were
set from 7 up to 20. We also compared the algorithms using
different numbers of population size (P) and maximum iter-
ation number (I): P 50 and I 250, P 50 and I 500, P 100, and
I 250. To fairly compare the algorithms, the number of func-
tion evaluations of each algorithmwas kept equal. Therefore,
the maximum epoch number of the BP algorithmwas 12,500
for 50 population–250 iterations, and 25,000 for 50 popula-
tion–500 iterations and 100 population–250 iterations. The
other parameters are shown in Table 4. The algorithms were
independently run 30 times.

Table 11 shows the results of the algorithms on the training
data according to the MSE for P 50 and I 250. It is seen that
the IAMO-MLP algorithm outperforms the other algorithms
for all H values. The IAMO-MLP algorithm has both the
best average values and the best standard deviations. On the
other hand, theBP algorithm has both theworst averageMSE
results and the worst standard deviations. Table 12 shows
the results of the algorithms on the test data according to
the MSE for P 50 and I 250. Figure 12 shows the boxplot
charts of the MSE results on test data for P 50 and I 250.
As seen from the table and boxplot charts, the IAMO-MLP
algorithm outperforms the other algorithms for all H values
exceptH 8, 11, and 15. Besides, the results of theAMO-MLP
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Table 11 Comparison of the algorithms on training data according to the MSE results for P 50 and I 250

Neurons (H) IAMO-MLP AMO-MLP BAT-MLP SMS-MLP BP

Avg Std Min Avg Std Min Avg Std Min Avg Std Min Avg Std Min

7 50.0 8.5 35.6 64.0 8.1 51.8 172.3 95.1 71.4 157.6 32.2 93.4 495.5 682.4 16.4

8 52.2 8.6 34.7 61.1 7.6 43.7 169.8 100.7 55.0 155.6 33.9 92.7 636.4 895.8 16.7

9 51.4 8.5 29.7 60.5 8.9 40.5 139.0 85.2 47.2 170.7 40.7 94.2 712.3 970.8 15.3

10 48.7 8.7 33.7 61.5 8.9 46.2 238.3 184.2 43.0 160.9 28.8 107.8 323.8 631.8 6.7

11 49.3 9.2 34.2 62.5 8.4 43.5 211.9 153.5 46.7 176.3 45.9 103.3 809.3 929.1 12.4

12 50.1 7.1 32.3 65.0 7.1 53.2 200.8 141.0 58.3 173.5 41.5 80.3 859.2 1000.5 10.9

13 49.1 9.5 28.6 64.1 9.2 42.0 199.2 162.6 34.1 188.2 44.1 117.3 721.9 1021.3 7.7

14 49.4 9.7 29.3 67.3 7.1 53.5 225.8 170.2 38.7 175.3 56.4 48.8 474.4 753.9 7.7

15 49.7 10.3 29.4 67.8 10.7 48.4 243.1 147.8 59.4 179.5 44.0 102.8 579.2 895.8 4.9

16 49.8 9.7 28.0 70.6 10.7 45.6 237.7 200.0 53.4 216.5 58.0 116.6 714.6 926.2 7.7

17 46.6 8.3 22.4 66.5 13.3 31.5 193.8 150.8 40.2 197.5 58.9 97.0 472.8 814.5 7.3

18 54.4 10.4 29.4 71.2 10.3 56.0 206.7 137.6 47.2 204.9 55.6 61.7 697.8 869.9 6.6

19 51.6 9.4 29.4 70.1 15.1 30.6 237.9 175.0 25.3 200.9 54.4 101.7 921.1 962.0 6.9

20 53.3 9.9 31.3 71.3 11.5 51.4 283.5 227.2 39.5 214.1 54.1 127.2 634.8 780.6 7.0

The bold text refers to the best results
Avg average, Std standard deviation, Min minimum

Table 12 Comparison of the algorithms on test data according to the MSE results for P 50 and I 250

Neurons (H) IAMO-MLP AMO-MLP BAT-MLP SMS-MLP BP

Avg Std Min Avg Std Min Avg Std Min Avg Std Min Avg Std Min

7 112.4 36.5 64.2 121.8 42.7 51.3 217.8 99.3 96.5 196.0 71.6 72.6 547.9 665.3 55.6

8 105.8 37.7 48.9 104.8 27.4 50.3 243.2 122.5 63.0 198.0 86.9 77.1 751.7 969.6 57.0

9 116.8 38.3 67.1 118.7 45.5 42.7 193.7 104.4 87.2 216.4 100.8 70.2 826.8 1051.4 65.8

10 102.2 28.6 45.4 114.5 35.9 69.2 271.9 182.6 84.9 180.5 70.6 28.5 408.8 618.0 68.0

11 126.7 35.9 73.8 115.7 39.2 41.4 259.2 165.2 40.4 211.9 86.0 96.7 924.5 1002.5 65.9

12 117.2 34.9 40.9 120.2 48.8 66.0 268.4 170.5 80.8 237.4 106.0 103.7 993.1 1073.3 74.4

13 121.9 43.8 44.3 116.2 45.9 46.6 269.7 207.7 45.2 220.1 79.0 76.0 876.7 1098.1 79.9

14 118.8 43.0 45.1 122.8 49.1 44.1 269.0 164.3 56.8 221.0 97.3 79.9 574.1 750.9 75.7

15 135.5 55.9 68.9 131.3 37.9 67.6 312.8 167.5 70.3 219.3 63.6 104.3 711.7 922.1 59.7

16 133.5 44.8 59.4 134.0 57.7 78.1 314.4 204.5 67.8 233.9 137.7 31.9 850.3 1004.4 54.6

17 124.8 50.6 62.6 130.9 41.2 69.4 267.5 163.8 79.9 200.8 76.9 50.5 601.6 833.1 82.7

18 131.2 42.1 66.0 122.5 50.7 44.4 250.4 165.5 39.4 236.5 107.6 83.9 788.4 863.1 80.2

19 124.5 42.3 48.1 145.0 72.8 61.9 318.4 201.1 76.7 252.1 91.8 101.2 1073.9 1015.7 99.2

20 140.0 54.1 52.4 143.5 64.7 46.8 328.1 206.6 77.0 252.9 115.5 102.0 733.0 754.4 87.1

The bold text refers to the best results

algorithm are better than the SMS-MLP algorithm, the BAT-
MLP algorithm, and the BP algorithm. The BP algorithm has
the worst results.

Table 13 shows the results of the algorithms on the train-
ing data according to the MSE for P 100 and I 250. It is
seen that the IAMO-MLP algorithm outperforms the other
algorithms for all H values. The IAMO-MLP algorithm has
both the best average values and low standard deviations. On
the other hand, the BP algorithm has both the worst aver-
age MSE results and the worst standard deviations. Table 14

shows the results of the algorithms on the test data according
to the MSE for P 100 and I 250.

Figure 13 shows the boxplot charts of the MSE results on
test data for P 100 and I 250. As seen from the table and
boxplot charts, the IAMO-MLP algorithm outperforms the
other algorithms for all H values except H 8, 10, 12, and 13.
The BP algorithm has the worst results.

Table 15 shows the results of the algorithms on the train-
ing data according to the MSE for P 50 and I 500. It is seen
that the IAMO-MLP algorithm outperforms the other algo-
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Fig. 12 Boxplot charts of the MSE results on test data for P 50 and I 250

rithms for all H values. The IAMO-MLP algorithm has both
the best average values and low standard deviations. On the
other hand, theBP algorithm has both theworst averageMSE
results and the worst standard deviations. Table 16 shows the
results of the algorithms on the test data according to theMSE
for P 50 and I 500. Figure 14 shows the boxplot charts of the
MSE results on test data for P 50 and I 500. As seen from
the table and boxplot charts, the IAMO-MLP algorithm out-
performs the other algorithms for allH values exceptH 8, 9,
and 11. The AMO-MLP algorithm also has the second-best
results. Besides, the BP algorithm has the worst results.

Table 17 shows the Friedman test results. Because the goal
was tominimize theMSE, the lower values in the result of the
Friedman test are better. For P 50 and I 250, the IAMO-MLP
algorithm ranked higher than the other algorithms according
to the Friedman test results with a ranking score of 1.36. The
AMO-MLP algorithm has the second ranking with a ranking
score of 1.64. The SMS-MLP algorithm has the third ranking
with a ranking score of 3.07. TheBAT-MLPalgorithmhas the
fourth rankingwith a ranking score of 3.93. TheBP algorithm
has the last ranking with a ranking score of 5.0.

For P 100 and I 250, the IAMO-MLP algorithm ranked
higher than the other algorithms with a ranking score of 1.36.
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Table 13 Comparison of the algorithms on training data according to the MSE results for P 100 and I 250

Neurons (H) IAMO-MLP AMO-MLP BAT-MLP SMS-MLP BP

Avg Std Min Avg Std Min Avg Std Min Avg Std Min Avg Std Min

7 44.8 9.5 25.4 57.7 5.5 48.7 87.8 52.7 19.3 140.1 31.4 71.5 210.8 545.0 11.8

8 48.7 5.9 39.8 56.8 6.8 40.9 74.4 52.6 17.4 140.8 27.0 104.4 569.8 925.6 8.7

9 45.6 9.3 23.8 57.1 7.8 39.7 78.3 60.8 20.1 140.4 32.9 77.0 746.2 982.3 10.4

10 43.3 9.6 23.3 56.0 6.4 43.6 84.8 67.5 18.0 147.8 31.2 67.8 305.3 680.1 7.5

11 43.6 9.0 24.8 57.4 6.2 41.2 87.4 108.0 14.2 152.8 28.5 93.2 600.5 857.0 6.8

12 45.7 7.7 33.9 58.3 6.0 46.7 98.1 98.8 16.4 159.8 38.2 66.5 561.8 930.3 7.4

13 45.3 9.4 28.2 58.8 6.2 43.8 90.7 83.1 11.0 150.7 33.2 81.3 533.8 889.5 6.0

14 44.4 8.9 30.6 58.9 7.8 44.7 112.0 106.7 17.6 157.2 37.3 92.6 509.7 785.4 5.6

15 46.1 7.9 28.6 59.3 8.4 44.6 84.0 66.2 22.4 164.2 39.2 100.2 686.3 921.2 5.2

16 49.3 9.4 32.1 61.7 8.5 39.0 129.8 123.1 11.4 160.5 38.6 80.7 394.0 773.1 6.4

17 44.4 10.3 24.4 61.0 7.3 47.9 78.1 89.0 15.5 171.6 45.1 117.2 274.7 654.6 4.4

18 43.2 7.6 19.1 60.9 8.3 48.1 80.0 77.6 10.5 163.8 35.0 114.8 823.3 971.3 5.3

19 48.1 9.4 30.5 61.9 5.2 47.9 113.2 104.6 21.5 180.2 39.3 79.9 602.3 893.4 4.9

20 46.3 9.6 21.1 59.7 8.3 38.6 134.5 143.3 16.3 168.0 39.1 93.6 445.5 820.7 4.7

The bold text refers to the best results

Table 14 Comparison of the algorithms on test data according to the MSE results for P 100 and I 250

Neurons (H) IAMO-MLP AMO-MLP BAT-MLP SMS-MLP BP

Avg Std Min Avg Std Min Avg Std Min Avg Std Min Avg Std Min

7 105.3 23.9 65.3 106.8 45.9 38.2 155.2 74.3 62.0 167.0 70.7 40.1 289.4 560.0 58.5

8 122.5 35.3 50.0 106.3 31.2 57.0 140.0 67.4 68.8 173.4 62.4 62.8 700.8 991.1 51.9

9 105.2 31.6 40.0 122.7 45.3 36.0 146.5 81.2 31.0 169.4 62.8 68.6 869.4 1047.6 72.6

10 112.5 31.9 56.3 104.1 33.1 33.6 143.6 87.4 50.5 157.5 70.2 35.0 431.5 704.5 65.5

11 110.1 29.2 51.6 116.0 37.1 63.1 166.1 107.3 39.4 180.5 65.9 65.7 703.0 861.1 70.0

12 124.5 50.9 56.2 114.7 40.0 52.0 174.1 98.7 49.4 200.5 79.2 90.8 703.4 989.2 70.5

13 140.6 54.4 48.9 125.2 42.8 58.5 183.9 121.4 68.9 201.0 86.2 78.8 679.3 962.1 55.1

14 119.4 36.7 48.0 147.9 64.5 59.1 193.7 106.9 65.7 179.8 84.6 51.1 602.9 772.6 59.9

15 115.5 36.6 36.8 132.1 54.9 47.4 185.5 96.7 45.7 189.1 90.6 62.4 814.1 955.0 70.1

16 114.6 43.3 37.4 129.3 36.1 56.8 229.9 175.9 29.9 212.6 92.6 70.6 527.0 812.4 72.6

17 124.1 43.1 37.4 139.2 46.4 61.6 188.3 99.5 69.6 208.5 102.4 75.8 418.0 684.8 84.2

18 119.3 41.0 62.7 144.0 65.8 38.2 166.3 85.8 57.7 201.4 72.7 70.9 976.6 1045.0 60.1

19 117.8 33.0 53.5 142.0 57.7 61.5 199.3 127.4 47.0 231.2 104.1 83.8 733.1 917.0 111.8

20 137.4 43.3 45.0 131.3 64.9 34.4 204.1 165.9 55.2 201.4 99.6 77.1 590.0 833.6 72.5

The bold text refers to the best results

The AMO-MLP algorithm has the second ranking with a
ranking score of 1.64. The BAT-MLP algorithm has the third
ranking with a ranking score of 3.21. The SMS-MLP algo-
rithm has the fourth ranking with a ranking score of 3.79.
The BP algorithm has the last ranking with a ranking score
of 5.0.

For P 50 and I 500, the IAMO-MLP algorithm ranked
higher than the other algorithms with a ranking score of 1.21.
The AMO-MLP algorithm has the second ranking with a
ranking score of 1.79. The SMS-MLP algorithm has the third
ranking with a ranking score of 3.14. The BAT-MLP algo-

rithm has the fourth ranking with a ranking score of 3.86.
The BP algorithm has the last ranking with a ranking score
of 5.0.

Finally, the IAMO-MLP algorithm achieves good perfor-
mance on the real-world problem according to the MSE, the
boxplot charts, and Friedman test results. From the experi-
mental results, it is demonstrated that the IAMO algorithm
is successful in training the MLP, and the IAMO-MLP algo-
rithmhas the ability to escape successfully from local optima.
Moreover, the independent 30 runs prove that the randomly
generated initial positions do not affect the performance of
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Table 15 Comparison of the algorithms on training data according to the MSE results for P 50 and I 500

Neurons (H) IAMO-MLP AMO-MLP BAT-MLP SMS-MLP BP

Avg Std Min Avg Std Min Avg Std Min Avg Std Min Avg Std Min

7 41.5 9.0 24.6 49.4 7.7 26.1 120.7 81.0 34.2 145.6 26.0 96.1 312.9 669.5 10.3

8 39.8 6.3 22.0 50.6 6.2 36.9 126.4 125.0 25.4 143.5 28.8 78.9 359.3 771.2 7.3

9 41.6 7.3 22.8 48.5 7.7 33.6 126.7 166.2 16.0 141.1 32.6 82.7 742.3 931.7 6.4

10 36.7 7.3 19.4 47.8 6.6 34.0 153.0 146.4 23.4 134.3 25.7 83.9 457.0 814.7 5.4

11 37.7 7.8 22.1 51.7 6.6 35.3 134.4 93.5 18.7 137.3 28.2 89.3 592.3 889.1 7.5

12 39.3 7.9 25.5 50.0 7.5 31.6 119.1 87.3 20.0 144.1 29.3 91.6 607.3 941.4 5.5

13 39.1 7.2 21.4 51.3 5.3 35.8 86.8 70.7 25.6 133.2 26.6 79.2 506.1 869.8 5.2

14 38.8 6.6 22.3 51.7 7.8 33.6 133.2 140.0 20.8 148.0 35.0 90.7 596.7 780.3 5.4

15 38.8 7.8 21.6 51.7 8.4 40.3 151.9 154.1 16.0 145.1 37.6 78.8 576.2 897.7 6.1

16 37.4 6.9 24.1 52.6 6.6 40.3 164.2 148.4 14.5 140.5 32.0 79.9 504.4 870.7 5.6

17 38.0 7.5 16.2 52.2 6.8 41.0 196.7 203.4 19.6 154.1 30.3 106.8 667.5 838.2 7.1

18 38.3 7.2 23.5 53.8 6.9 36.6 173.9 179.6 15.4 151.7 27.1 95.1 446.8 820.0 4.7

19 38.7 8.2 23.4 54.7 8.2 37.3 150.7 145.8 19.2 149.1 39.3 78.5 1113.7 1077.3 4.5

20 40.0 7.6 25.0 54.6 8.0 40.8 181.0 190.6 25.9 161.7 41.0 81.3 755.2 982.5 4.3

The bold text refers to the best results

Table 16 Comparison of the algorithms on test data according to the MSE results for P 50 and I 500

Neurons (H) IAMO-MLP AMO-MLP BAT-MLP SMS-MLP BP

Avg Std Min Avg Std Min Avg Std Min Avg Std Min Avg Std Min

7 99.0 32.7 43.0 106.4 33.6 39.3 180.6 103.2 69.9 175.0 60.9 40.9 406.9 706.7 60.4

8 111.4 31.6 65.5 103.1 26.5 60.5 187.6 130.3 53.9 175.1 74.2 73.7 471.1 824.3 61.8

9 118.6 51.0 64.1 107.8 35.3 59.4 209.1 162.4 57.5 188.6 77.6 57.6 839.4 986.6 65.5

10 111.3 34.4 68.1 112.6 39.0 55.9 206.9 134.1 58.3 164.9 58.9 64.8 569.8 843.7 74.5

11 123.6 45.0 38.0 110.5 37.2 44.7 184.2 103.3 36.9 187.9 63.0 99.1 701.7 929.4 53.7

12 119.0 41.0 62.1 119.1 38.9 62.6 192.5 120.4 46.8 183.5 66.5 57.4 746.6 990.9 88.7

13 117.8 25.7 73.3 130.1 42.6 63.0 170.9 82.4 49.2 185.5 76.3 69.4 643.5 912.4 73.0

14 122.5 41.2 58.4 124.2 49.2 46.5 195.9 132.0 64.9 179.3 85.4 57.1 673.1 769.6 58.4

15 117.5 47.3 44.2 120.6 38.6 62.5 230.0 130.0 50.2 169.7 81.4 49.5 698.0 930.0 98.2

16 109.4 32.1 58.8 143.1 57.4 66.3 226.7 128.8 76.9 190.8 89.0 66.3 645.5 910.8 82.9

17 114.1 44.2 33.2 145.8 65.8 55.7 272.7 205.0 46.0 188.9 102.5 60.5 768.1 837.1 78.8

18 121.0 38.7 74.7 124.4 40.3 42.9 244.9 170.8 59.8 197.5 98.1 53.6 578.9 839.3 79.1

19 114.6 39.7 60.3 135.3 59.3 62.1 251.9 146.0 79.4 182.1 80.4 58.2 1307.9 1160.3 85.4

20 124.8 35.4 64.7 130.6 48.1 54.6 294.6 266.4 63.9 182.5 86.7 56.2 903.7 1028.0 115.3

The bold text refers to the best results

Table 17 Average ranking of the
algorithms according to the
MSE on the civil engineering
dataset (Friedman test)

Algorithm P 50—I 250 P 100—I 250 P 50—I 500

IAMO-MLP 1.36 1.36 1.21

AMO-MLP 1.64 1.64 1.79

BAT-MLP 3.93 3.21 3.86

SMS-MLP 3.07 3.79 3.14

BP 5.00 5.00 5.00

The bold text refers to the best results
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Fig. 13 Boxplot charts of the MSE results on test data for P 100 and I 250

the IAMO-MLP algorithm. Different numbers of neurons in
the hidden layer were also investigated, and the performance
of the IAMO-MLP algorithm is also satisfactory for different
structures of the MLP. The IAMO-MLP algorithm was also
used in solving a real-world problem in the civil engineering
area. The results indicate that the proposed IAMO-MLPalgo-
rithm is successful in predicting the compressive strength of
the rubberized concrete with an acceptable degree of accu-
racy.

3.4 Discussion

In order to achieve an efficient method for training neu-
ral networks, the improved animal migration optimization
algorithm with the Lévy flight feature was developed. The
proposed approachwas tested on several datasets. The results
showed that this method was able to achieve the best training
performance for most of the datasets. The proposed IAMO
algorithm was compared with the original AMO algorithm
and seven algorithms in the literature. The experimental
results proved that the IAMOoutperformsother algorithms in
terms of both local optima avoidance and convergence speed.
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Fig. 14 Boxplot charts of the MSE results on test data for P 50 and I 500

The high local optima avoidance is due to the intense explo-
ration of this algorithm. The Lévy flight strategy assists this
algorithm in avoiding the many local solutions in the prob-
lem of training MLPs. Also, the AMO and IAMO have the
neighbor cluster feature in which an individual searches the
space around its neighbors.Moreover, AMOand IAMOhave
the population updating process which covers how some ani-
mals leave the herd and how new animals are added to the
herd. Thanks to the population updating process, the AMO
and IAMO have a good ability on global exploration. The
superior convergence speed of the IAMO-MLP algorithm
originates from the Lévy flight strategy, migration process,

and population updating process of the IAMO algorithm.
Therefore, the IAMO and IAMO-MLP algorithms manage
to outperformother algorithms onmost of the datasets.More-
over, the convergence graphs, boxplots charts and Friedman
tests show that the initial positions do not affect the perfor-
mance of the IAMO-MLP algorithm.

According to this comprehensive study, the IAMO algo-
rithm is highly recommended to be used in hybrid intelligent
optimization schemes such as trainingMLP. This recommen-
dation is made because of its exploration behavior which
results in high local optima avoidance when training MLP.
The exploitation behavior is another reason why the IAMO-
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MLP can converge rapidly toward the global optimum for
different datasets.

The IAMO-MLP algorithm was compared with the BP
algorithm in the experiments, and the results of the IAMO-
MLP algorithm showed that it was very promising since it
was able to obtain better results in almost all datasets. On
the other hand, IAMO-MLP requires a higher computational
load than BP because the fitness update of each individual
in IAMO-MLP needs to be evaluated under an MLP archi-
tecture. Thus, this process during iterations takes a longer
time to find the most suitable values for the weights in the
network architecture. It is usually expected that more itera-
tions and individuals would provide better results, but such
a process comes at the price of a higher computational bur-
den. Therefore, it should be noted here that IAMO is highly
recommended only when the dataset and the number of
attributes are very large. Small datasets with very few fea-
tures can be solved much faster by gradient-based training
algorithms and without extra computational cost. In contrast,
the IAMO algorithm is useful for large datasets due to the
extreme number of local optima that makes the conventional
training algorithm almost ineffective.

4 Conclusions

The most important and demanding part of the artificial neu-
ral network (ANN) is the training process of the network.
The training of the ANN is the process of finding the most
suitable values for the weights in the network architecture,
and this is a very difficult optimization problem. Therefore,
this study set out to optimize the values of the weights
and biases of the multilayer perceptron (MLP) using the
proposed improved animal migration optimization (IAMO)
algorithm called IAMO-MLP. The original AMO algorithm
was designed inspired by the animal migration behavior of
individuals that can be found in all major animal groups
including birds, mammals, and insects. The main contribu-
tions of this article are: (1) The proposed IAMO algorithm
has theLévyflight strategy. (2) This article employs theAMO
and IAMO algorithms for training ANN for the first time. (3)
The IAMO-MLP algorithm has the ability to escape success-
fully from local optima. (4) The initial positions do not affect
the performance of the IAMO-MLP algorithm. (5) The fea-
tures of the IAMO-MLP algorithm are simplicity, requiring
only a few parameters, and solving a wide array of problems.

In the experiments, datasets with different difficulty levels
and different featureswere used. These datasets are 13 bench-
mark functions, five classification datasets taken from the
UCI Machine Learning Repository, and a real-world prob-
lem taken from the literature. The IAMO-MLPalgorithmwas
compared with the original AMO-MLP algorithm and nine
algorithms in the literature in terms of mean squared error,

classification accuracy, nonparametric statistical Friedman
test, boxplot charts, and convergence graphs. The experimen-
tal results indicate that the proposed IAMO-MLP algorithm
is successful not only in solving classification problems, but
also in predicting the compressive strength of the rubberized
concrete with an acceptable degree of accuracy. In conclu-
sion, this study has shown that the proposed IAMO-MLP
algorithm is successful in training the MLP. The proposed
IAMO-MLPalgorithmcan be successfully used in areas such
as classification, face recognition, speech recognition, pat-
tern recognition, prediction, and optimization.

In future work, the IAMO-MLP algorithm can be applied
to different datasets such as covid-19. Further research
regarding the role of the activation function and threshold
parameter would be worthwhile. Some of the most represen-
tative computational intelligence algorithms such as the krill
herd algorithm [57], themonarch butterfly optimization [58],
the earthworm optimization algorithm [59], the elephant
herding optimization [60], the moth search algorithm [61],
the slime mould algorithm [62], and the Harris hawks opti-
mization [63] can be used to train theANN in solving the civil
engineering problem. Besides, the IAMO-MLP algorithm
can be hybridized with another meta-heuristic algorithm to
increase its success.
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