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Abstract

There is a growing interest among quantitative geneticists and animal breeders in the use of deep learning (DL) for genomic prediction.
However, the performance of DL is affected by hyperparameters that are typically manually set by users. These hyperparameters do not
simply specify the architecture of the model; they are also critical for the efficacy of the optimization and model-fitting process. To date,
most DL approaches used for genomic prediction have concentrated on identifying suitable hyperparameters by exploring discrete options
from a subset of the hyperparameter space. Enlarging the hyperparameter optimization search space with continuous hyperparameters is a
daunting combinatorial problem. To deal with this problem, we propose using differential evolution (DE) to perform an efficient search of
arbitrarily complex hyperparameter spaces in DL models, and we apply this to the specific case of genomic prediction of livestock pheno-
types. This approach was evaluated on two pig and cattle datasets with real genotypes and simulated phenotypes (N¼7,539 animals
and M¼ 48,541 markers) and one real dataset (N¼ 910 individuals and M¼ 28,916 markers). Hyperparameters were evaluated using
cross-validation. We compared the predictive performance of DL models using hyperparameters optimized by DE against DL models with
“best practice” hyperparameters selected from published studies and baseline DL models with randomly specified hyperparameters.
Optimized models using DE showed a clear improvement in predictive performance across all three datasets. DE optimized hyperpara-
meters also resulted in DL models with less overfitting and less variation in predictive performance over repeated retraining compared to
non-optimized DL models.
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Introduction
Over the past decades, there have been enormous gains in the

productivity of livestock, much of which was due to the rapid ge-

netic improvement of quantitative traits, e.g., growth rates, repro-

ductive traits, and feed conversion rates (Hill 2016). In recent

years, with the rise of DNA sequencing and high-throughput

genotyping technology as well as with the inception of genomic

prediction models (Meuwissen et al. 2001), single-nucleotide poly-

morphisms (SNPs) became widely used for genomic prediction

and genomic selection.
Genomic prediction refers to the use of statistical models to

estimate the genetic component of a phenotype by using data

from SNP markers (Meuwissen et al. 2001; VanRaden 2008).

The same models can also be used for phenotypic prediction by

associating an individual’s genotype to its phenotypes which

are commonly used to predict complex traits in humans (Yang

et al. 2010). For animal production, both genomic prediction and

phenotypic prediction have resulted in more accurate selection,

while genomic prediction has been useful for management deci-

sions (e.g., market allocation). The technology has also provided

a platform for the adoption of novel breeding approaches and

has led to new biological insights into the underpinnings of
complex quantitative traits (Hickey et al. 2017). For simplicity,
we will use only the term “genomic prediction” throughout
the text.

Several models have been proposed for genomic prediction
(VanRaden 2008; Corvin et al. 2010; Habier et al. 2011; Gianola
2013), and GBLUP is one of the most commonly used models
(Fragomeni et al. 2017). A common assumption across these mod-
els is that genomic effects are strictly additive; i.e., most models
do not explicitly consider interactions between alleles within
markers (dominance), nor between markers (epistasis) (Crossa
et al. 2019). More recently, deep learning (DL) (Lecun et al. 2015)
has been proposed as an alternative to genomic prediction mod-
els that do not depend on the typical assumptions of traditional
genomic prediction methods.

DL has dramatically improved state-of-the-art applications in
computer vision, speech recognition, and genomics (Lecun et al.
2015; Eraslan et al. 2019; Koumakis 2020). DL methods are flexible
and can potentially learn very cryptic data structures—even
interactions between predictors (Crossa et al. 2019). DL has
already been applied to genomic prediction in plants
(Montesinos-López et al. 2018b, 2019; Crossa et al. 2019), human
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traits (Bellot et al. 2018), and estimation of breeding values in
cattle (Abdollahi-Arpanahi et al. 2020).

DL models in genomic prediction are promising tools (Bellot
et al. 2018). However, one of the critical challenges of implement-
ing DL is the selection of appropriate hyperparameters since they
significantly affect the performance of the prediction algorithm.
Hyperparameter features are values or options typically set by
users before the model is fitted that impacts the algorithm’s
predictive performance by avoiding overfitting and underfitting
(Luo 2016). Each feature that is part of the hyperparameter set
can take a range of values or options, and they can interact with
each other to determine the properties of the final fitted model; a
properly specified hyperparameter set is fundamental for a DL
model to achieve a high prediction accuracy. But unfortunately,
there is no one-size-fits-all best way to optimize these hyperpara-
meters.

Several procedures have been used to select DL hyperpara-
meters for genomic prediction applications, e.g., grid search
(Crossa et al. 2019; Pérez-Enciso and Zingaretti 2019) and genetic
algorithms (Bellot et al. 2018). Grid search is only feasible for a
limited number of parameters and levels, which is not the case
for most DL applications. On the other side, genetic algorithms
are better suited for optimizing large and complex parametric
spaces, but currently available implementations of genetic
algorithms to tune DL hyperparameters for genomic prediction
require that the options of each hyperparameter are either al-
ready discrete or discretized before the optimization process
(Bellot et al. 2018).

An alternative to genetic algorithms is differential evolution
(DE), which is a population-based evolutionary heuristic well
suited for optimization of discrete and continuous search spaces
(Storn and Price 1997; Das et al. 2016). DE lies on the intersection
between real-valued genetic algorithms and evolution strategies.
DE uses the conventional population structure of genetic algo-
rithms and the self-adapting mutation of evolution strategies; in
a sense, DE can be loosely viewed as a population-based simu-
lated annealing algorithm in which the mutation rate decreases
as the population converges on a solution.

In this study, we propose to adapt DE to optimize the DL
hyperparameter set for genomic prediction and evaluate its effec-
tiveness to improve prediction accuracies in simulated and real
datasets for two classes of DL models: multilayer perceptron
(MLP) and convolutional neural network (CNN). We emphasize
that the focus of this paper is on optimization of DL hyperpara-
meters to identify a set suitable for a given specific genomic
prediction problem, rather than a comparison of DL with GBLUP
or other genomic prediction methods. As the predictive perfor-
mance depends on the architecture of the trait and the popula-
tion structure, we demonstrate the importance and the impact
of proper hyperparameter specification on genomic prediction
with DL.

Material and Methods
Simulated datasets
Real genotypes from two livestock populations—pigs and cattle—
were used to create simulated datasets for testing purposes.
Genotypes from both species were edited to be of the same
dimensions, comprising a total of 48,541 SNP genotypes for 7,359
individuals, from which 6,031 (80%) and 1,508 (20%) were
randomly assigned to the discovery and validation populations,
respectively. Phenotypes were simulated for both species by
randomly assigning 1,000 SNP as quantitative trait loci (QTL)

with additive effects for a heritability of 0.4 using the R simula-
tion package GenEval (Cuyabano 2020).

Real dataset
The real data came from an experimental F2 cross of Duroc and
Pietrain pigs already previously described (Edwards et al. 2008).
Briefly, four Duroc sires were mated to 15 Pietrain dams to pro-
duce 56 F1 individuals (50 females and 6 males). F1 animals were
mated to produce a total of 954 F2 pigs that were phenotyped for
38 meat quality and carcass quality traits. For this study, pH
meat records measured 24 hours postmortem from 910 F2 pigs
were used. We purposely selected this trait as it is moderately
heritable (h2¼0.19 6 0.05), and for which, we have mapped puta-
tive QTL (Casiró et al. 2017). Two different SNP chips were used to
genotype the F2 pigs, but all SNP were imputed to a common set
of approximately 62,000 SNP (Gualdrón Duarte et al. 2013) with
high accuracy (R2> 0.97). SNP were pruned by filtering out SNP
with: (1) low genotyping rates (less than 90%), (2) lack of segrega-
tion, (3) inconsistent Mendelian inheritance with the pedigree
information, (4) low imputation accuracy (R2< 0.64; Casiró et al.
2017), and (5) high correlation between markers (larger than
0.99). A final set of 28,916 SNP was used for this study.

Phenotypic records were pre-adjusted for fixed effects:

yadj ¼ yobs � Xb;

where yadj is the adjusted response, yobs is pH measured 24 hours
postmortem, X is the incidence matrix with the fixed effects of
sex, slaughter group, and carcass weight, and b represents the
coefficients of fixed effects.

Deep learning and genomic prediction
DL methods are a set of representation learning methods, where
a machine can be fed with raw data and automatically discover
the representations needed for prediction or classification, with
multiple levels of simple but nonlinear modules that transform
the representation at one level into a representation at a higher,
slightly more abstract level (Lecun et al. 2015). In the context of
genomic prediction, we used DL to build a system that predicts
an animal’s phenotypic value given its genotype. DL computes
and minimizes a loss function that measures the error of predic-
tion. In this study, we used mean squared error (mse) as the loss
function:

mse ¼

PN
i¼1
ðyi � ŷ iÞ

2

N
;

where N represents the number of individuals in the training
dataset, yi represents the observed response of individual i, and ŷi

is the predicted response of individual i. Two types of DL models
were used in this study: MLP and CNN.

Multilayer perceptron
This model is also known as feed-forward artificial neural net-
work. In this paper, MLP (Figure 1) has an input layer with as
many nodes as SNP markers, a variable number of hidden layer(s)
with a certain number of nodes, and an output layer representing
the response. Since nodes between layers are fully connected,
MLP can potentially model complex and higher-order interac-
tions between predictor variables (Abdollahi-Arpanahi et al.
2020). A detailed explanation of how MLP models work is
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presented in the File S1 and also available at GitHub alongside
source code (https://github.com/jun-jieh/DE_DL).

As DL consists of transforming representations at a previous
layer into its next (more abstract) layer (Lecun et al. 2015), we
opted to adaptively set the number of nodes for each hidden layer
based on the depth of the network so that the next hidden layer
always has fewer nodes than the previous one. For instance, in
an MLP with two hidden layers (Figure 1), the first layer can only
have neurons ranging from 259 to 512, while the second layer can
have any number between 4 and 258. Table S1 summarizes the
number of nodes’ search space for MLPs with one, two, and up to
five layers. Other researchers may choose different adaptive rules
to impose restrictions on the possible number of neurons per
layer, or may even simply choose to use the same number of
nodes for all layers.

Convolutional neural network
CNN is designed to process data that comes as multiple-array
format (Lecun et al. 2015), e.g., 1d for an animal’s genotype, 2d for
images and 3d for videos. Typical CNN models consist of an input
layer, convolutional layer(s), pooling layer(s), a flattened layer,
and an output layer (Figure 2). In the context of genomic predic-
tion (Figure 2), the input layer for a single observation in a CNN is
a one-dimensional array that contains an animal’s genotype and
the number of units in the layer will be equal to the number of
markers. The output layer ŷn represents the predicted response
value for the phenotype or breeding value of the nth individual.

Between the input and output layers, a CNN contains a vari-
able number of convolutional layer(s) followed by pooling
layer(s). Full details on CNN architecture are given in the File S1
and at GitHub along with source code (https://github.com/jun-
jieh/DE_DL). In this study, each convolutional layer applied filters
of size f (a hyperparameter to be optimized) with the stride equal
to the filter size (nonoverlapping convolutions of the input).
In CNN, several restrictions are typically assumed regarding the

model architecture. When learning from a global level to a local
level, more details are required to obtain the pattern at the local
level (Lecun et al., 2015). Therefore, the number of filters
increases as the depth of the CNN increases, to detect local
motifs. To reflect this expectation, we adaptively set the number
of filters applied in each convolutional layer as a function on the
depth of the network. Specifically, we limited the number of fil-
ters in any convolutional layer to be between 4 and 128, but this
range is partitioned for each convolutional layer to make sure
that the next convolutional layer will always have a number of
filters larger than the previous layer. For example, in a CNN with
two convolutional layers (Figure 2), the first convolutional layer
can only have between 4 and 65 filters, while the second convolu-
tional layer can have between 66 and 128 filters. Examples of the
adaptive number of filters as a function of the depth of the CNN
is presented in Table S2. The hyperparameter space for filter size
was set as an integer between 2 and 20. Although the filter size is
specified by the user, the output feature (feature map in Figure 2)
has to conform to the minimum length (the length of feature
map needs to be equal to or larger than the filter size) of the fea-
ture maps in each convolutional layer and pooling layer, which is
illustrated in Table S3. If the condition is not satisfied, instead
of fixing the kernel size through all convolutional layers, we set
adaptive kernel size in order to successfully execute the model
fitting (see details in Figure S1). The adaptive kernel size is to en-
sure that CNN generates a valid output.

DL model training
TensorFlow (Abadi et al. 2015) was used to train DL models. At
each iteration (epoch; a detailed description of epoch is presented
in File S1) of the training process TensorFlow randomly partitioned
the training data into an actual training set (80% of data), which
was used for updating the model weights, and a testing set
(20% of data), which was used to evaluate the updated model.
The data partition was performed by TensorFlow, and we did not

Figure 1 MLP for genomic prediction of a single trait with M SNP markers. The network has an input layer, two fully connected hidden layers, and an
output layer. Each node’s input in the hidden layers is a transformation of the weighted sum of the output from the previous layer. The number of
nodes in hidden layers decreases as the depth of the MLP increases, to facilitate the representation learning.
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have control over the random partitions. At the end of each ep-

och, an internal validation was performed by evaluating the cor-

relation between predicted and observed responses in the testing

set. A DL training procedure typically requires multiple epochs,

which was one of the hyperparameters optimized in our DE pro-

cedure (see below). We also introduced an early stopping when

the correlation did not change over 0.1 for ten consecutive

epochs, as it was assumed that fitness could not be improved

and further exploration was unnecessary.

Hyperparameter optimization
Table 1 presents the hyperparameters optimized in this study. A

plausible range of values for each hyperparameter was defined

based on ranges suggested by the literature for DL applied to

genomic prediction (additional details of each hyperparameter

can be found in the File S1). These ranges were then used as

constraints for the DE algorithm. It is important to indicate that

users can accordingly extend/reduce/modify the hyperparameter

space described in Table 1.

DE algorithm for deep learning
DE is an evolutionary algorithm that includes four steps: (1) ini-

tialization, (2) mutation, (3) crossover, and (4) selection

(Storn and Price 1997). A generic version of this algorithm is de-

scribed in pseudocode format (Figure 3). DE was used to evolve a

population of numeric vectors that can be recoded to represent

hyperparameter combinations through random keys. A toy

Figure 2 1-d CNN for genomic prediction of a single trait with M SNP markers. The network has an input layer, two convolutional layers with their
corresponding pooling layers, a fully connected hidden layer, and an output layer. Each convolutional layer applies a number of filters to the output of
the previous layer, and its output is subsequently summarized by a pooling layer, where filters are arrays for convolving input. The number of filters
generally increases as the network becomes deeper, and each filter learns a different abstract representation of the input data from a previous layer.

Table 1 – Parameter space for optimized hyperparameters

Hyperparameters Parameter space
(MLP)

Parameter space
(CNN)

Value Type

Number of layers [1,2,3,4,5] [1,2,3,4,5] Integer
Number of neurons [8-512] [8-512] Integer
Activation [’relu’, ‘elu’, ‘sigmoid’,

‘selu’, ‘softplus’, ‘linear’, ‘tanh’]
[’relu’, ‘elu’, ‘sigmoid’,
‘selu’, ‘softplus’, ‘linear’, ‘tanh’]

Categorical

Optimizer [’sgd’, ‘adam’, ‘adagrad’, ‘rmsprop’,
‘adadelta’, ‘adamax’, ‘nadam’]

[’sgd’, ‘adam’, ‘adagrad’, ‘rmsprop’,
‘adadelta’, ‘adamax’, ‘nadam’]

Categorical

Dropout rate [0-1] [0-1] Continuous
L2 penalty [0-1] [0-1] Continuous
Batch size [N�a1-N�a2] 32 Integer
Epoch [21-50] [21-50] Integer
Number of filters NA [2-128] Integer
Filter size NA [2-20] Integer
Pooling NA [’max’, ‘average’] Categorical

Hyperparameter space and range (see details in File S1). N represents sample size. a1¼0.001 for the simulated datasets and a1¼0.01 for the real pig dataset. a2¼0.01
for the simulated datasets and a2¼0.1 for the real pig dataset.
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example of the DE approach is provided at GitHub (https://
github.com/jun-jieh/DE_DL).

Random key
Random key is an encoding mechanism originally used in genetic
algorithms by Bean (1994). The core of this algorithm is a set of d
H-dimensional numeric vectors pop1, . . ., popd as a population.
Each numeric vector represents a solution that is linked or
mapped to a set of model hyperparameters through a mapping
function (random key). Suppose that there are K hyperpara-
meters to optimize, where K¼ 8 for the MLP and K¼ 10 for the
CNN (Table 1). Within each hyperparameter k¼ 1. . .K, there are
Hk loci, and if the parameter takes continuous values, then Hk ¼1.
So, the size H ¼

PK
k¼1

Hk. Each vector popi is partitioned into K sub-
blocks that contain Hk loci, where each single locus in H
represents a hyperparameter option or value. For categorical
hyperparameters, there is a mapping performed from the Hk

dimensional block of the numeric vector to an Hk dimensional
vector MAPk containing the names of the categories for the kth

hyperparameter as follows: the Hk elements are ranked according
to their values and the rank of the first element is used as an in-
dex for the MAPk vector to select the corresponding categorical
value. In this way, the evolutionary operators (mutation, cross-
over, and selection) can be applied directly on the numerical
vector popi but the results can always still be translated into a set
of categorical (and continuous) hyperparameter values. An ex-
ample of this with the hyperparameter number of layers (Hk ¼5)
is presented in Figure 4. So, in a nutshell, a random key is a vector
of real numbers that, once sorted, its ranking can be used to map
against a set of statically ordered features. The idea is that better
features will evolve to higher values in the key, while worse
features will evolve to lower values; the ranking of the sorted key
allows sorting the features from best to worst and provides a
smoother fitness surface for the DE to explore.

The main steps for the DE algorithm are as follows:

1) Initialization
We initialized d¼50 H-dimensional parameter vectors pop1. . .pop50

as a population pop (line 5 Figure 3) from a uniform [0,1] distri-
bution, and we mapped the numeric vector to a set of hyper-
parameter values as described before (Table 1) to obtain 50

hyperparameter sets. Then we fitted 50 models using each set

of hyperparameters and recorded their correlations between

predicted and observed response values. An individual of the

population refers to one of the H-dimensional vectors in pop and

its encoded hyperparameter set. From now on, we use the term

“individual” to refer to a hyperparameter solution in DE.

2) Mutation
To generate a mutation, indices of two random individuals are

selected from the population: r1, r2, 2 1; 2; . . . ; df g; and the target

H-dimensional vectors popr1
and popr2

are extracted. Then vectors

p and popr2
are mutated using

mu ¼ l � ðpopr1
� popr2

Þ

where mu is the mutant vector and l is the mutation parameter

(l 2 ½0; 1�). Storn and Price (1997) recommended that 0.5 is usu-

ally a good initial choice for the mutation. In this study, we set

l ¼ 0:5:

3) Crossover
To increase the diversity in hyperparameter combinations repre-

sented in the population parameters, crossover function is used

to combine the mutant vector mu with other individual vectors.

First, an H-dimensional vector RN with uniformly random

numbers 2 ½0; 1� is generated. The crossover rate is defined by

parameter a (a 2 ½0; 1�). Gämperle et al. (2002) suggested that a

good choice for the crossover constant is a value between 0.3 and

0.9. In this study, we set a ¼ 0:5: Another H-dimensional vector

(CR) with logical variables (True/False or 1/0) is then generated

according to

CRi ¼
1 if RNi < a
0 if RNi � a

; i ¼ 1; 2; . . . ; H:
�

Then, two more individual vectors popr3
and popr4

are selected,

and crossover generates a new individual according to

Figure 3 Pseudocode for DE algorithm

Figure 4 Summary of the random key (mapping function) used to
transform numeric vectors into discrete levels of hyperparameters.
The numeric vector can be subject to mutation and recombination.
The mapping is used to transform the result into a meaningful set of
hyperparameters that can be used to fit a model and obtain a fitness to
select numeric vectors.
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Challengeri ¼
popr3 ; i if CRi ¼ 0

popr4 ; i �mui if CRi ¼ 1 ; i ¼ 1; 2; . . . ; H;

(

where Challenger is the newly generated individual and i is the ith

element of popr3
, popr4

, mu, and Challenger. For convenience, we

name popr3
Titleholder.

4) Selection
To decide whether or not the Challenger should replace the

Titleholder in population pop, both vectors of numeric values

Challenger and Titleholder were mapped into hyperparameter sets

using the random key. The models were fitted based on mapped

hyperparameters, and Pearson’s correlation coefficient c

between the predicted and the observed values was computed.

We averaged the correlations over epochs, as the testing sets

varied in epochs. The averaged correlation was defined as

the fitness of the DL model (given a hyperparameter set).

Additionally, we applied a penalized fitness if any of the follow-

ing three scenarios happened during model fitting: exhausted

memory when fitting a specified model, a constant generated

for all predicted responses, and exploding/vanishing gradient

which led to an unstable model-fitting procedure (convergence

issue). A penalized individual had its fitness set to -1. If

cTitleholder < cChallenger, we replaced Titleholder by Challenger in pop;

otherwise, we retained Titleholder in pop. Finally, steps (2)–(4)

are repeated for d iterations. For the simulated pig dataset and

the simulated cattle dataset, d of both datasets was 2,000, while

d ¼ 10; 000 was used for the real pig dataset (after d iterations,

there was no further significant improvement). It is worth not-

ing that the initial population does not need to be random, it

can be based on prior information or can even be the results

from a previous run-in effect, the DE can continue evolving a

population that has already optimized for some iterations if,

e.g., the run did not converge.
As shown in the results section, if a DL model is run multiple

times with the same dataset and hyperparameters, the predictive

performance differs slightly from run to run. This means that a

model trained once can get a slightly higher/lower prediction ac-

curacy compared to the average prediction accuracy that would

be obtained over multiple retrainings. This effect is more

pronounced in more complex models, which are more prone

overfitting. To mitigate this problem, we introduced a variation

to the traditional DE algorithm by refitting the Titleholder each

time and updating its fitness value. Specifically, in each iteration,

the Titleholder was refitted, and if the Titleholder won the contest,

the updated fitness was retained.

Top model selection
At the end of the DE run, each individual solution in the popula-

tion was refitted 30 times to select the best model based on two

criteria to evaluate model stability through repeated training of

each DL model. The best model was selected based on two meas-

ures obtained from this repeated training: mean fitness and stan-

dard deviation (SD) of the fitness obtained by refitting each

model 30 times. This is necessary because as explained above,

the refitting of the selected models resulted in slightly different

predictive performance. The details on how this bivariate criteria

selection was performed can be found in GitHub (https://github.

com/jun-jieh/DE_DL).

Optimized model assessment through external
validation
Each dataset was partitioned into five training sets and five
validation sets (80% and 20% for training and validation, respec-
tively). The DE was applied to each of the training sets to optimize
hyperparameter sets for both MLPs and CNNs. Note that the
training data used for optimization was not part of the validation
set. The final MLP and CNN models (2x5) from the DE runs were
then refitted 30 times (with the training sets only), and each refit-
ted model was evaluated by predicting the corresponding valida-
tion set and computing the correlation between the predicted
and the observed response. The average correlation, also known
as external validation, of the 30 refits as well as the SD of correla-
tions was then calculated. This external validation is distinct
from the internal validation (described in the DL model training)
utilized by the DE to optimize the fitness and should be differenti-
ated. In short, the external validation was performed using
validation sets, while the internal validation was performed uti-
lizing testing sets (described in DL model training). GBLUP was
used to estimate the response variable and its prediction accu-
racy as a comparison reference to the optimized MLPs and CNNs
(GBLUP details can be found in File S1).

Hardware and software
The computer processor used in this study was Intel(R) Core
i7-8750H CPU @ 2.20 GHz with 16GB of RAM memory and
Microsoft(R) Windows 10 operating system. The GPU (graphic
card) was NVIDIA(R) GeForce GTX 1070 with 8 GB GDDR5 mem-
ory. All the analyses were implemented in R (R Core Team 2020).
For GBLUP, we used the gwaR R package (Steibel 2015), and for
DL, the R Keras package (Chollet et al. 2017), which is a high-level
neural network API on top of TensorFlow (Abadi et al. 2015) with
GPU computing enabled.

Results and discussion
As reported in many published applications of DL in genomic
predictions (Bellot et al. 2018; Abdollahi-Arpanahi et al. 2020;
Zingaretti et al. 2020), we observed that retraining of a certain DL
model with the same hyperparameter configuration and the
same dataset produced slightly different predictions. This forced
us to consider the variation in the predictive performance under
the retraining in DE and post-DE model selection (see the meth-
ods section). It also had an impact in the results presented below.

Optimization runtime profiles
The DE’s optimization runtime profiles (mean fitness and SD of
fitness) for the three datasets (simulated cattle, simulated pig,
and real pig) and the two DL models (MLP and CNN) are shown in
Figures 5-7 and Table 2. The mean fitness increased during the
DE run, but it is important to note that it can—and did—also de-
crease at some points due to the stochastic sampling of individ-
ual subsets that we used for model testing to avoid overfitting
(panels A and C of Figures 5-7). A similar short-term decrease in
fitness was observed when using DE to optimize model hyper-
parameters in the context of emotion recognition (Nakisa et al.
2018). In our case, the occasional drop in the mean fitness was
due to the retraining of the models as the refitting of the same
model could yield a lower fitness. Thus, sometimes, even if a cur-
rent Titleholder won the challenge, its new fitness could be lower
than before due to the refitting. Alternatively, when a new
Challenger won the contest, its fitness could have been higher
than the refitted fitness of the Titleholder but still lower than the
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Figure 5 History of DE by algorithm and data partition in the simulated pig dataset over 2,000 iterations. Mean and SD of the fitness (correlation
between the predicted and true phenotype) were computed given each population. (A) Mean fitness of five populations by fitting MLP models. (B) SD of
fitness within each population (MLPs). (C) Mean fitness of five populations by fitting CNN models. (D) SD of fitness within each population (CNNs).

Figure 6 History of DE by algorithm and data partition in the simulated cattle dataset over 2,000 iterations. Mean and SD were computed given each
population. (A) Mean fitness of five populations by fitting MLP models. (B) SD of fitness within each population (MLPs). (C) Mean fitness of five
populations by fitting CNN. (D) SD of fitness within each population (CNNs).
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previously estimated fitness for that Titleholder, which resulted in
a new candidate solution in the population but also in a lower fit-
ness.

In general, DE for CNNs converged faster (reached the maxi-
mum possible average fitness) compared to DE for MLPs (panels
A/C of Figures 5-7). For CNNs, DE converged after approximately
600, 700, and 1,500 iterations for the simulated pig, simulated
cattle, and real pig datasets, respectively. For MLPs, DE converged
in approximately 1,000, 1,000, and 2,500 iterations for the three
datasets, respectively. One possible explanation is that MLP dis-
regards spatial information and uses each neuron as an inde-
pendent predictor, while CNN tends to learn from a global
pattern at the beginning and then summarize the features into
a local level (Lecun et al. 2015). In genomic data, linkage disequi-
librium is a nonrandom relationship of alleles at different phys-
ical locations, which is a sensitive indicator that structures a
genome (Slatkin 2008). Also, Tang and Sun (2019) argued that
CNN could be utilized to extract motifs from homologous
sequences, where motifs are essential features for distinguish-
ing different sequence families. Given a dataset with spatial
structure, CNN potentially has advantage over MLP that CNN
can deal with local connectivity.

For each dataset, evolved MLPs and CNNs converged to the
similar mean fitness but varied across data partitions (panels A/C
of Figures 5-7). The mean fitness in the simulated pig dataset
ranged from 0.27 to 0.31, and the range was (0.31, 0.33) for the
simulated cattle dataset, while the real pig dataset had a range of
(0.19, 0.29). Mitchell et al. (2015) trained networks with permuted
datasets and also reported varying predictive performance given
different data partitions.

Most evolved populations had a fitness SD smaller than 0.05.
However, one exception was population 5 with CNNs in the simu-
lated cattle dataset (panel D of Figure 6). Only this population
had a large SD of 0.19 and the population contained a CNN hyper-
parameter set with penalized fitness, indicating its failure to re-
move a penalized individual in 2,000 iterations. DE performance
is sensitive to the number of iterations set by the user, and gener-
ally, solutions can evolve further when the iteration number is
increased (Gämperle et al. 2002; Kok and Rajendran 2016). Thus,
the solution with penalized fitness should be removed by intro-
ducing more DE iterations. On the other hand, the post-DE refit-
ting (described in top model selection) would further exclude this
solution. Overall, the within-population SDs for both MLP and
CNN models were reduced over DE iterations (panels B/D of

Figure 7 History of DE by algorithm and data partition in the real pig dataset over 10,000 iterations. Mean and SD were computed given each
population. (A) Mean fitness of five populations by fitting MLP models. (B) SD of fitness within each population (MLPs). (C) Mean fitness of five
populations by fitting CNN models. (D) SD of fitness within each population (CNNs).

Table 2 – Runtime profile for the DE approach

Model type Dataset Avg. runtime Num. iterations Total runtime

MLP
Simulated pig 3.95 min 2,000 131.78 hr
Simulated cattle 4.01 min 2,000 133.67 hr
Real pig 0.30 min 10,000 49.81 hr

CNN
Simulated pig 2.36 min 2,000 77.67 hr
Simulated cattle 2.73 min 2,000 87.73 hr
Real pig 0.24 min 10,000 40.15 hr

MLP, multilayer perceptron; CNN, convolutional neural network; Avg. runtime, average runtime for one DE iteration (each iteration fits two models); Num.
iterations, the total number of iterations used in DE; min, minutes; hr, hours.
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Figures 5-7), suggesting evolved models in each population had
similar performance. Kim and Lee (2019) reported that DL models
with different hyperparameters could have the same predictive
performance, which indicated that the best solution may not be
unique. Zhang et al. (2020) also indicated that superior solutions
would prefer the closest candidates in evolutionary optimization
algorithms. Therefore, we argue that DE evolves a population to
where candidate solutions are increasingly similar to each other.
Furthermore, distributions of evolved models showed similarities
in hyperparameter options, e.g., activation function, number of
layers, filter size, optimizer, dropout, and pooling, while the
hyperparameters were less similar in number of nodes (filters),
fully connected layer in CNN, batch size, and L2 regularization
(Tables S4-S15). Yu and Zhu (2020) have mentioned that in
the process of optimization, hyperparameters with greater im-
portance received preferential treatment, whereas it was difficult
to quantitatively determine the significance of the hyperpara-
meters. We argue that the heterogeneity/homogeneity in the
hyperparameters resorts to the less/more important hyperpara-
meters.

Table 2 presents the runtime of DE approach in the three
datasets. We observed that the models fitted with the real pig
dataset were approximately 10 times faster compared to the two
simulated datasets as there were fewer SNP loci in the real pig
dataset. We also observed that CNNs fitted faster than MLPs.
Depending on the dataset, the average runtime for one iteration
(two DL models) ranged from 0.30 to 4.01 minutes for MLPs and
0.24 to 2.73 minutes for CNNs. As a reference, Montesinos-López
et al. (2018a) reported that training a DL model with their dataset
required 3.60 hours. It is important to point out that we utilized
the GPU computing that parallelized the computation in DL with
thousands of graphic computing units, and this will be the major
impact on computational speedup compared to the default
setup (CPU computing). For comparison, we fitted GBLUP models
with gwaR (Steibel 2015) package, and it required 1.77 hours,
1.90 hours, and 19.08 seconds to fit the simulated pig, simulated
cattle, and real pig datasets, respectively. It is important to point
out that the runtime increases quadratically with samples and
linearly with markers using gwaR package. Furthermore, we
estimated the time budget for grid searches with GPU computing
enabled. An exhaustive search is estimated to cost 9,352,875-
404,278,022 hours according to the defined hyperparameter space
(Table 1) and dataset, which results in up to 4,594,067 times more
computing resource compared to DE approach used in this study.

Characteristics of selected hyperparameters
Table 3 shows the top MLPs from each population (one hyper-
parameter solution from each population, 15 in total). Activation
functions of MLPs optimized for the simulated datasets varied in
“elu,” “selu,” “relu,” “softplus,” and “linear,” while in optimized
MLPs for the real pig dataset, the “sigmoid” function was fixed
across all selected individuals. Noteworthy: In this study, the
input of the DL model was the allelic count of one of the alleles
(coded as 0, 1, and 2); thus, all the input nodes were non-negative
values. Interestingly, “elu,” “selu,” and “relu” are almost identical
when the input is a non-negative value, and the “linear” activa-
tion is very similar to those functions too (differing only in the
slope). Moreover, “softplus” and “sigmoid” are the most different
activation functions compared to the elu-linear family. The acti-
vation functions of the top models are described by Goodfellow
et al. (2016). Our finding agrees with Bellot et al. (2018) who sug-
gested “elu,” “softplus,” and “linear,” and also “relu” recom-
mended by Pérez-Enciso and Zingaretti (2019). Moreover, as the
simulated datasets were generated by only considering additive
genetic effects, we speculate that the optimized DL models
for the simulated datasets unveiled the additive nature of the
trait effect by selecting predominantly linear-like activation func-
tions. For the real dataset, optimized MLPs fixed the nonlinear ac-
tivation function “sigmoid.” We argue that the selected nonlinear
activation reflects the increased complexity of polygenic inheri-
tance in real datasets. Regarding this perspective, Zingaretti et al.
(2020) indicated that in a real dataset, DL could model complex
relationships by employing nonlinear functions, and they also
observed that sigmoid-like hyperbolic tangent (“tanh”) was a
safer choice overall. In line with these assumptions, our models
for the simulated datasets selected one-layer, two-layer, and
three-layer MLPs, while all MLPs for the real pig data were three-
layer models. The optimizers of selected MLPs for the simulated
datasets focused on “adam” and “adamax,” while for the real
dataset “sgd” was further included. Dropout rates of MLPs were
between 0 and 0.034 for the simulated datasets and were be-
tween 0.182 and 0.617 for the real pig dataset. Compared to the
model architectures selected by Bellot et al. (2018) and Pérez-
Enciso and Zingaretti (2019), we had similar hyperparameter
options in number of layers and activation function. But we se-
lected different optimizers and the dropout in our case tended to
be larger in the real pig dataset. Penalty weights for L2 regulariza-
tion of MLPs had a range of (0.01, 0.16) for the simulated datasets

Table 3 – Hyperparameters of selected MLP models from each population

Dataset DE No. Activation No. layer(s) No. neurons Batch Epoch Optimizer Dropout L2

SP 1 elu 2 [446,87] 51 37 adam 0.006 0.06
SP 2 elu 2 [412,150] 41 45 adam 0.020 0.16
SP 3 elu 2 [470,155] 46 44 adam 0.015 0.06
SP 4 selu 2 [474,145] 54 45 adam 0.032 0.13
SP 5 softplus 2 [397,87] 54 45 adam 0 0.13
SC 1 elu 3 [429,330,57] 44 28 adam 0.030 0.04
SC 2 relu 2 [411,106] 48 41 adamax 0.002 0.06
SC 3 elu 3 [401,269,93] 11 27 adamax 0.001 0.01
SC 4 relu 1 409 56 21 adam 0.034 0.14
SC 5 relu 1 444 47 33 adam 0.020 0.16
RP 1 sigmoid 3 [374,192,25] 10 40 sgd 0.352 0.85
RP 2 sigmoid 3 [476,193,69] 54 42 adam 0.480 0.52
RP 3 sigmoid 3 [483,291,8] 44 46 adamax 0.182 0.12
RP 4 sigmoid 3 [457,234,79] 31 41 adamax 0.465 0.03
RP 5 sigmoid 3 [386,251,148] 8 40 sgd 0.617 0.75

SP, simulated pig dataset; SC, simulated cattle dataset; RP, real pig dataset; DE No., differential evolution of different data partition; No. layer(s), number of hidden
layers; No. neurons, number of neurons according to the number of hidden layers.
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and a range of (0.03, 0.85) for the real pig dataset. We did not find
any suggested L2 weight applied to genomic prediction studies.

Table 4 shows top CNNs. Optimized CNNs had three options
for activation function: “linear,” “elu,” and “relu” (Goodfellow et al.
2016). Similar to our results, top CNNs selected by Bellot et al.
(2018) also included “linear” and “elu,” while Pérez-Enciso and
Zingaretti (2019) used “relu.” The number of convolutional layers
varied from one to three, while all CNNs for the simulated data-
sets fixed with one. Notably, Bellot et al. (2018) also selected one-
layer and three-layer CNNs. The filter sizes tended to be larger in
the selected models. The large filter sizes were different from
other studies that suggested two or three (Bellot et al. 2018; Pérez-
Enciso and Zingaretti 2019). Optimizers of selected CNNs were
“adamax,” “rmsprop,” and “adam,” while CNNs for the real pig
data fixed “adam,” and this finding is different from the “nadam”
obtained by Pérez-Enciso and Zingaretti (2019). Most CNNs across
the three datasets used average pooling for the pooling layer. For
genomic prediction studies, we did not find a suggested pooling
option in the literature. Dropout rates of CNNs ranged from 0.008
to 0.827, and the range was smaller (0.021, 0.277) for the real pig
dataset. However, our finding in dropout differed from the small
dropout (5-10%) recommended by Pérez-Enciso and Zingaretti
(2019). Most L2 penalty weights were smaller than 0.16, while
there were three exceptions (0.52, 0.75, and 0.85).

Despite our evolved hyperparameter sets being similar to
those described in the literature (Bellot et al. 2018; Pérez-Enciso
and Zingaretti 2019), part of hyperparameter configurations, e.g.,
number of nodes (filters), optimizer, and dropout, differed from
those described in the existing studies. This is likely due to that
the optimal hyperparameter configuration depends on the spe-
cific genomic dataset, and a hyperparameter’s relevance may de-
pend on another hyperparameter’s value (Luo 2016). As Bellot
et al. (2018) worked on a human dataset and Pérez-Enciso and
Zingaretti (2019) investigated a wheat dataset, we attribute the
variation among optimized hyperparameters to the specific
dataset. It is also possible that our extended hyperparameter
space searched for more instances, which led to the differences
in some hyperparameters compared to other studies. While other
researchers optimized hyperparameters by discretizing the
parameter space, we regarded the number of neurons (filters),
dropout, L2 regularization, batch size, epoch, and filter size as
continuous values, which considerably expanded the hyperpara-
meters search space.

Performance of optimized models under cross-
validation
The objective of this paper is to provide a framework to optimize
DL hyperparameters for genomic prediction and not to compare
the optimized DL with GBLUP. It is, however, still relevant to use
GBLUP as a baseline of reference prediction methods to contextu-
alize our results (see Figure S2). For the simulated datasets,
GBLUP was the slightly better than the rest of the models. A simi-
lar result was presented by Abdollahi-Arpanahi et al (2020). This
is not surprising in our study because GBLUP (described in File S1)
is a model well suited for the simulated data, which is entirely
additive and composed of a large number of very small effects
that approximate the infinitesimal model. However, for the real
pig dataset, the pattern was somewhat different, and the best-
performing model was dependent on the data partition. As
explained later in this section, we attribute this phenomenon to
the small sample size of the real pig dataset. D’souza et al. (2020)
argued that for a small dataset (e.g., N< 5000), the presence
of substructure or even a few outliers may have a profound
influence on the predictive performance under a specific data
partition, skewing the overall estimate of the predictive perfor-
mance and affecting the outcome of any optimization method
that is used.

As DL is a methodology that relies on a learning process condi-
tioned on the problem that it is solving (Montesinos-López et al.
2018b), it is less likely that a DL model can achieve its best possi-
ble prediction accuracy using a hyperparameter set optimized
from other independent studies. To investigate this, we trained
MLPs and CNNs with hyperparameters selected for predicting hu-
man traits (Bellot et al. 2018) and for a wheat dataset (Pérez-
Enciso and Zingaretti 2019), across the three datasets in this
study. Table S16 shows hyperparameters of MLPs and CNNs
obtained from the two studies. Figures 8-10 show the predictive
performance of random DL models, optimized DL models, and
top DL models selected by Pérez-Enciso and Zingaretti (2019).
These models were applied to all three datasets. Randomly se-
lected DL models and optimized DL models differed in training
data partitions due to independent DE optimizations performed
within each partition, while the models suggested by the two pre-
vious studies (Bellot et al. 2018; Pérez-Enciso and Zingaretti 2019)
were fixed in all partitions. Prediction accuracy of external (cross)
validations was obtained by refitting each model 30 times.
The panels in Figures 8-10 represent the predictive performance

Table 4 Hyperparameters of selected CNN models from each population

Data DE No. Activation No. layers No. filters Filter size Epoch FCL Optimizer Dropout L2 Pooling

SP 1 linear 1 110 19 25 17 Adamax 0.197 0.21 Average
SP 2 Elu 1 16 15 32 110 rmsprop 0.146 0.03 Average
SP 3 Elu 1 15 8 44 79 rmsprop 0.692 0.02 Average
SP 4 linear 1 59 20 24 49 adamax 0.496 0.23 max
SP 5 linear 1 109 13 27 109 adam 0.827 0.01 Average
SC 1 linear 1 116 20 30 16 adam 0.370 0.10 Average
SC 2 linear 1 87 12 25 12 adam 0.086 0.13 Average
SC 3 linear 1 32 8 42 24 adam 0.250 0.19 Average
SC 4 linear 1 79 20 44 27 adamax 0.666 0.06 Max
SC 5 linear 1 98 16 40 153 adam 0.151 0.17 Average
RP 1 elu 2 [51,113] 18 22 50 adam 0.277 0.67 Average
RP 2 relu 3 [24,81,121] 12 27 268 adam 0.067 0.11 Average
RP 3 elu 2 [64,112] 13 45 278 adam 0.021 0.87 Average
RP 4 relu 3 [44,73,106] 13 47 326 adam 0.008 0.18 Average
RP 5 elu 3 [41,71,128] 5 41 238 adam 0.051 0.35 Average

SP, simulated pig dataset; SC, simulated cattle dataset; RP, real pig dataset; DE No., differential evolution of different data partitions; No. layers, number of
convolutional layers; No. filters, number of filters applied based on No. layers; FCL, size (number of neurons) of the fully connected layer after flattened layer.
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of competing DL models for each data partition within each data-
set. Noteworthy, the optimized models using DE were consis-
tently the best when compared to randomly chosen models or to
models taken from the literature, which have been optimized for
other datasets.

Models with hyperparameters chosen by Bellot et al. (2018) did
not converge in any data partition and so they are not shown in
Figures 8-10. This was likely due to exploding gradients or vanish-
ing gradients (as previously discussed). Another observed case
was that the model predicted every individual with the same
value, making it impossible to compute the correlation between
the predicted and the observed response. This also confirmed the
observation by Bellot et al. (2018) that convergence problems per-
sisted after reinitializations of the algorithm.

For the simulated pig dataset, the MLP and the CNN suggested
by Pérez-Enciso and Zingaretti (2019) was slightly worse than the
optimized MLPs and CNNs that we obtained with DE. However,
their performance was much worse in the simulated cattle and
the real pig datasets. Again, the optimal hyperparameter configu-
ration is problem dependent, and thus, it is important to search
for the proper hyperparameters in DL genomic prediction appli-
cations given a specific dataset.

The variations in the predictive performance under retraining
observed in all models indicated that DL models were likely

overfitting the data. Abdollahi-Arpanahi et al. (2020) showed vari-
ance in predictive performance (in terms of accuracy and mean
squared error) of MLPs and CNNs over 10 replicates of cross-
validation, which is in agreement with our results. In general, the
SD of the correlation between predicted and observed phenotypes
for the optimized MLPs/CNNs and those proposed by Pérez-
Enciso and Zingaretti (2019) were smaller in the simulated data-
sets, while the SD in the real pig dataset was larger (Figure 10
compared to Figures 8 and 9). We speculate that there are two
possible reasons for the variation: DL models are initialized with
random weights at starting points and a relatively small sample
size for training. For the random weights at baseline, Bellot et al.
(2018) explained that the performance of MLPs and CNNs
depended on initialization values. For the training sample size,
Abdollahi-Arpanahi et al. (2020) indicated that larger sample
sizes improved the predictive ability of DL methods.
Furthermore, in the field of image classification, Shahinfar et al.
(2020) showed the increased prediction accuracy and reduced
variation in the performance of DL models as the sample size
grew. Based on the results in Figures 8-10, the merit in terms of
less variation over replicates of external (cross)-validations was
clearer in the simulated datasets that had larger sample sizes
(N¼ 7,539 for both the simulated pig and the simulated cattle
datasets). In the real pig dataset that had a smaller sample size

Figure 8 Boxplots for the predictive performance of MLPs and CNNs using different hyperparameters (simulated pig dataset). Models were tested on
five data partitions of the simulated pig dataset. Statistics represent the external (cross) validations by fitting the same model 30 times. The left three
boxes are for MLP models, and the right three boxes are for CNN models. Null box means the model did not converge. Random, random
hyperparameters; Perez, hyperparameters recommended by Pérez-Enciso and Zingaretti (2019); Opt, optimized hyperparameters using DE.
Abbreviations stand for the same meaning in Figure 9 and Figure 10.

J. Han et al. | 11



(N¼ 910), SD was larger compared to those in the simulated data-

sets. Therefore, we argue that both the predictive ability and the

variation in the same DL models are associated with training

sample size. Montesinos-López et al. (2018 b) also mentioned that

DL method may fail to learn a proper generalization of the knowl-

edge contained in the data, given small datasets.

Conclusions
Overall, DL can be adapted to perform genomic prediction of

complex traits, but it requires some effort to select appropriate

hyperparameters. Any hyperparameter optimization will likely

be dataset-specific, and characteristics such as population struc-

ture and genetic architecture of the predicted trait may well re-

quire different DL model hyperparameters. In this study, we

implemented DE as a method to simultaneously identify optimal

combinations of multiple hyperparameters. Compared to ran-

domly selected models, our optimized MLPs and CNNs showed a

significant improvement in the predictive performance. In com-

parison with DL models with hyperparameters selected from

other studies, optimized MLPs and CNNs also yielded better pre-

dictive accuracy. DE is an efficient and semi-automatic algorithm

that can be used to select an optimal hyperparameter set that

leads to a better predictive performance. Moreover, overparame-

terization of DL can be mitigated by refitting models and

selecting those that produce more consistent (less variable) pre-

diction accuracies. We showed that this is more important when

working with small datasets.
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Montesinos-López OA, Martı́n-Vallejo J, Crossa J, Gianola D,
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