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ABSTRACT
Pyroptosis is a newly discovered programmed cell death that is associated with tumor progression, 
prognosis, and treatment response. However, the potential roles of pyroptosis-related genes (PRGs) in 
the tumor microenvironment (TME) remain unclear. We described the alterations of PRGs in 1109 color-
ectal cancer (CRC) samples from genetic and transcriptional fields and evaluated their expression patterns 
from four independent datasets. We identified two distinct molecular subtypes and found that multi-layer 
PRG alterations were correlated with patient clinicopathological features, prognosis, and TME cell- 
infiltrating characteristics. Then, a PRG_score for predicting recurrence-free survival (RFS) was constructed 
and its predictive capability in CRC patients was validated. Consequently, we constructed a highly 
accurate nomogram for improving the clinical applicability of the PRG_score. A low PRG_score, character-
ized by increased microsatellite instability-high (MSI-H), mutation burden, and immunity activation, 
indicated favorable odds of RFS. Moreover, the PRG_score was significantly associated with the cancer 
stem cell (CSC) index and chemotherapeutic drug sensitivity. Our comprehensive analysis of PRGs in CRC 
demonstrated their potential roles in the tumor-immune-stromal microenvironment, clinicopathological 
features, and prognosis. These findings may improve our understanding of PRGs in CRC and pave a new 
path for the assessment of prognosis and the development of more effective immunotherapy strategies.
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Introduction

Pyroptosis, a form of inflammatory cell death, is exceptional 
compared to other types of programmed cell death.1 It is 
characterized by Gasdermin family-mediated pore formation, 
followed by cell swelling, lysis, and the release of pro- 
inflammatory intracellular cytokines including interleukin 
(IL)-18, IL- 1β, High mobility group box 1 (HMGB1), and 
adenosine triphosphate (ATP).2 In terms of mechanism, the 
canonical (caspase-1) and non-canonical inflammasome- 
induced pyroptosis (caspase-4/5/11) are involved in pyropto-
sis. Pyroptosis plays a crucial role in the pathogenesis and 
progression of various cancers, including colorectal cancer 
(CRC).3,4 CRC is characterized by inherent biological invasive-
ness and specific radiological and chemical resistance that 
result in high recurrence rates and progression. Gasdermin 
D (GSDMD) expression is decreased in CRC cells compared 
to that in adjacent normal cells, and low GSDMD expression is 
associated with a worse CRC prognosis. Pyroptosis induced by 
lipopolysaccharide can inhibit CRC tumorigenesis by promot-
ing GSDMD expression and N-terminal GSDMD membrane 
translocation to improve chemosensitivity in response to oxa-
liplatin in CRC cells.5 Knockdown of gasdermin C (GSDMC) 
can inhibit CRC cell proliferation and tumorigenesis, while 
GSDMC overexpression promotes cell proliferation, suggest-
ing that GSDMC may be a promising therapeutic target for 
CRC.6 Yu et al.7 reported that gasdermin E (GSDME) mediated 

lobaplatin-induced pyroptosis downstream of the ROS/JNK/ 
Bax-mitochondrial apoptosis pathway and caspase-3/-9 
activation.

Emerging evidence also indicates crosstalk between pyropto-
sis and the tumor immune microenvironment.8,9 The tumor 
microenvironment (TME) has been widely implicated tumor 
development and progression.10 In addition to tumor cells, the 
TME also includes fibroblasts, endothelial cells, immune and 
inflammatory cells, extracellular matrix elements, and diffusible 
cytokines and chemokines secreted from cancer and stromal 
cells. The complex crosstalk between tumor cells and nonmalig-
nant cells produces TME that affects cancer development and 
progression.11 Malignant cells that interact with surrounding 
cells through the circulatory and lymphatic systems to promote 
tumor angiogenesis, and induce immune tolerance by releasing 
cell signaling molecules. The TME can also influence tumor 
progression, and tumor-infiltrating immune cells (TIICs) within 
the TME can predict cancer prognosis.12 At present, due to 
technical limitations, most studies assess only one or two pyr-
optosis-related genes (PRGs) and cell types, while the anti- 
tumor effect is characterized by numerous genes interacting in 
a highly coordinated manner. Hence, a comprehensive under-
standing of the characteristics of TME cell infiltration mediated 
by multiple PRGs may provide important insights for under-
standing the underlying mechanism of CRC tumorigenesis and 
predicting the response to immunotherapy.
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This study comprehensively evaluated the expression 
profiles of PRGs and obtained a comprehensive overview 
of the intratumoral immune landscape using two computa-
tional algorithms; namely, CIBERSORT and ESTIMATE. 
First, 1109 patients with CRC were stratified into two dis-
crete subtypes according to PRG expression levels. Patients 
were then classified into three gene subtypes based on 
differentially expressed genes (DEGs) identified based on 
the two pyroptosis subtypes. We further established 
a scoring system to predict recurrence-free survival (RFS) 
and characterize the immune landscape of CRC, which 
accurately predicted patient outcomes and responses to 
immunotherapy.

Materials and methods

Data sources

Figure S1 shows a map of the process of the present work. 
Gene expression (fragments per kilobase million, FPKM) 
and the relevant prognostic and clinicopathological data of 
CRC were downloaded from the Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/) and The 
Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer. 
gov/) databases. Three GEO CRC cohorts (GSE39582, 
GSE17536, and GSE38832) and TCGA cohorts were 
obtained for subsequent analyses. We obtained the raw 
“CELL” files and performed background adjustment and 
quantile normalization. The FPKM values of TCGA-colon 
adenocarcinoma/rectum adenocarcinoma (COAD/READ) 
were transformed into transcripts per kilobase million 
(TPM), as previously described, and were believed to be 
identical to those from microarrays.13,14 Four datasets were 
combined, and batch effects were eliminated by applying 
the “Combat” algorithm. We excluded data from patients 
with no RFS information; thus, a total of 1109 CRC 
patients were included in the subsequent analyses. 
Detailed information on these 1109 patients with CRC is 
presented in Table S1. The clinical variables included age, 
sex, tumor location, TNM stage, KRAS mutation, BRAF 
mutation, follow-up time, and survival status.

Consensus clustering analysis of PRGs

Forty-eight PRGs were retrieved from the MSigDB Team 
(REACTOME_PYROPTOSIS) (http://www.broad.mit.edu/ 
gsea/msigdb/) and previous publications.15 The full details of 
these genes are shown in Table S2. The R package 
“ConsensusClusterPlus” was employed for consensus unsuper-
vised clustering analysis to classify patients into distinct mole-
cular subtypes according to PRG expression. This clustering 
was performed based on the following criteria: First, the cumu-
lative distribution function (CDF) curve increased gradually 
and smoothly. Second, no groups had a small sample size. 
Lastly, after clustering, the intra-group correlation increased, 
while the inter-group correlation decreased. To investigate the 
differences in PRGs in biological processes, gene set variation 
analysis (GSVA) was performed with the hallmark gene set (c2. 
cp.kegg.v7.2) derived from the MSigDB database.

Relationship between molecular subtypes with the clinical 
features and prognosis of CRC

To examine the clinical value of the two subtypes identified by 
consensus clustering, we compared the relationships between 
molecular subtypes, clinicopathological characteristics, and 
prognosis. The patient characteristics included age, sex, 
tumor location, TNM stage, KRAS mutation status, and 
BRAF mutation status. Furthermore, the differences in RFS 
among different subtypes were assessed using Kaplan–Meier 
curves generated by the “survival” and “survminer” R packages.

Correlations of molecular subtypes with TME, PD-1, and 
PD-L1 in CRC

We used the ESTIMATE algorithm to evaluate the immune 
and stromal scores of each patient. In addition, the fractions of 
22 human immune cell subsets of every CRC sample were 
calculated by the CIBERSORT algorithm.16 Furthermore, the 
levels of immune cell infiltration in the CRC TME were also 
determined using a single-sample gene set enrichment analysis 
(ssGSEA) algorithm.17 We also analyzed the correlations 
between the two subtypes of PD-1 and PD-L1 expression.

DEG identification and functional annotation

DEGs between the different pyroptosis subtypes were identi-
fied using the “limma” package in R with a fold-change of 1.5 
and an adjusted p-value of <0.05. To further explore the poten-
tial functions of pyroptosis pattern-related DEGs and identify 
the related gene functions and enriched pathways, functional 
enrichment analyses were executed on the DEGs using the 
“clusterprofiler” package in R.

Construction of the pyroptosis-related prognostic 
PRG_score

The pyroptosis score was calculated to quantify the pyroptosis 
patterns of the individual tumors. First, the DEGs were subjected 
to univariate Cox regression analysis to identify those linked to 
CRC RFS. Second, the patients were classified into different 
subtype groups (pyroptosis gene subtype A, pyroptosis gene 
subtype B, and pyroptosis gene subtype C) for deeper analysis 
using an unsupervised clustering method based on the expres-
sion of prognostic PRGs. Finally, all CRC patients were randomly 
categorized into training (n = 556) and testing (n = 553) sets at 
a ratio of 1:1, then used the former to construct the pyroptosis- 
related prognostic PRG_score. Briefly, based on pyroptosis- 
related prognostic genes, the Lasso Cox regression algorithm 
was used to minimize the risk of over-fitting using the “glmnet” 
R package. We analyzed the change trajectory of each indepen-
dent variable and then used 10-fold cross-validation to establish 
a model. Candidate genes were selected using multivariate Cox 
analysis to establish a prognostic PRG_score in the training set.

The PRG_score was calculated as follows:
PRG_score = Σ(Expi * coefi)
where Coefi and Expi denote the risk coefficient and expres-

sion of each gene, respectively. Based on the median risk score, 
a total of 556 patients in the training set were divided into low- 
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risk (PRG_score < median value) and high-risk (PRG_score > 
median value) groups and then subjected to Kaplan–Meier 
survival analysis. Then, principal component analysis (PCA) 
was performed using the “ggplot2” R package. Similarly, the 
testing and all sets were divided into low- and high-risk groups, 
each of which was subjected to Kaplan–Meier survival analysis 
and the generation of receiver operating characteristic (ROC) 
curves.

Tissue samples

Six pairs CRC and nearby non-tumor tissues were har-
vested from CRC patients at the Renmin Hospital of 
Wuhan University. The samples were preserved at −80°C 
till use. Written informed consents were offered by all 
individuals included in this study. The study was permitted 
by the Ethics Committee of the Renmin Hospital of Wuhan 
University.

RNA isolation and quantitative real-time polymerase 
chain reaction PCR (RT-qPCR)

Total RNA was extracted from CRC patient tissues using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
Complementary DNA (cDNA) was synthesized using the 
total RNA and a PrimeScript RT reagent kit (Takara). SYBR- 
Green assays (Takara) were used to perform the RT-qPCR on 
a CFX-96 instrument (Bio-Rad Laboratories, Inc., USA). The 
data were compulated through the 2-ΔΔC t strategy, normal-
izing with GAPDH. The primer sequences used for qRT-PCR 
in this study are listed in Table S3.

Clinical correlation and stratification analyses of the 
prognostic PRG_score

Chi-square tests were used to explore the relationships between 
the PRG_score and the clinical characteristics (age, sex, tumor 
location, TNM stage, KRAS mutation, and BRAF mutation). To 
assess whether risk scores were independent of other available 
clinicopathological features, we subjected the training and testing 
sets to univariate and multivariate analyses. In addition, we per-
formed a stratified analysis to determine whether the PRG_score 
retained its predictive ability in different subgroups according to 
age, sex, T stage, N stage, M stage, tumor stage, tumor location, 
KRAS mutation status, and BRAF mutation status.

Evaluation of immune status, microsatellite instability 
(MSI), and cancer stem cell (CSC) index between the high- 
and low-risk groups

To evaluate the proportions of TIICs in the TME, 
CIBERSORT was used to quantify the abundance of 22 
infiltrating immune cells in heterogeneous samples in the 
low- and high-risk groups. We explored the associations 
between the fractions of 22 infiltrating immune cells and 
seven genes in the PRG_score. We also used boxplots to 
examine the differential expression levels of immune check-
points between the low- and high-score groups. 
Furthermore, we analyzed the relationships between the 
two risk groups and MSI and CSC.

Mutation and drug susceptibility analysis

To determine the somatic mutations of CRC patients between 
high- and low-risk groups, the mutation annotation format 
(MAF) from the TCGA database was generated using the 
“maftools” R package. We also calculated the tumor mutation 
burden (TMB) score for each patient with CRC in the two 
groups. To explore differences in the therapeutic effects of 
chemotherapeutic drugs in patients in the two groups, we 
calculated the semi-inhibitory concentration (IC50) values of 
chemotherapeutic drugs commonly used to treat CRC using 
the “pRRophetic” package.

Establishment and validation of a nomogram scoring 
system

The clinical characteristics and risk score were used to develop 
a predictive nomogram using the “rms” package based on the 
outcome of the independent prognosis analysis. In the nomo-
gram scoring system, each variable was matched with a score, 
and the total score was obtained by adding the scores across all 
variables of each sample.18 Time-dependent ROC curves for 3-, 
5-, and 10-year survivals were used to assess the nomogram. 
Calibration plots of the nomogram were used to depict the 
predictive value between the predicted 3-, 5-, and 10-year 
survival events and the virtually observed outcomes.

Statistical analyses

All statistical analyses were performed using R version 4.1.0. 
Statistical significance was set at p < .05.

Results

Genetic and transcriptional alterations of PRGs in CRC

This study included a total of 48 PRGs. Summary analysis of 
the incidence of somatic mutations in these 48 PRGs showed 
a relatively high mutation frequency in the COAD cohort 
(Figure 1a). Of the 399 COAD samples, 297 (74.44%) had 
mutations in the PRGs (Figure 1a). Among them, TP53 had 
the highest mutation frequency (55%), followed by NLRP7, 
while five PRGs (CYCS, TNF, PYCARD, PRKACA, and 
CASP6) did not have any mutations. Compared to the COAD 
cohort, the READ cohort had a higher PRG mutation fre-
quency (81.62%, 111/136 samples). Similarly, TP53 showed 
the highest mutation frequency, followed by NLRP7 
(Figure 1b). As TP53 showed the highest mutation frequency, 
we evaluated the relationship between TP53 mutation and PRG 
expression. The results showed that the expression levels of 25 
of the 48 PRGs were significantly associated with TP53 muta-
tion status (Figure S2).

Next, we explored somatic copy number alterations in these 
PRGs and discovered prevalent copy number alterations in all 48 
PRGs. Among them, GSDMD, GSDMB, GSDMC, HMGB1, 
CHMP4B, and PLCG1 had widespread copy number variation 
(CNV) increases, while CASP9, IRF2, CASP3, and CHMP7 
showed CNV decreases (Figure 1c). Figure 1d shows the locations 
of the CNV alterations in the PRGs on their respective chromo-
somes. We further compared the mRNA expression levels 
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Figure 1. Genetic and transcriptional alterations of PRGs in CRC. (a-b) Mutation frequencies of 48 PRGs in 399 and 136 patients with COAD and READ, respectively, from 
the TCGA cohort. (c) Frequencies of CNV gain, loss, and non-CNV among PRGs. (d) Locations of CNV alterations in PRGs on 23 chromosomes. (e) Expression distributions 
of 48 PRGs between normal and CRC tissues. PRGs, pyroptosis-related genes; CRC, colorectal cancer; COAD, colon adenocarcinoma; READ, rectum adenocarcinoma; 
TCGA, The Cancer Genome Atlas; CNV, copy number variant.
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between CRC and normal tissues and found that the expression 
levels of most PRGs were positively correlated with CNV altera-
tion. PRGs with CNV loss, such as CASP9, IRF2, and CASP3, 
were expressed at lower levels in CRC samples compared to those 
in normal colorectal samples, while PRGs with CNV gain, such as 
GSDMC and HMGB1, were significantly elevated in CRC samples 
(Figure 1e), suggesting that CNV might regulate the mRNA 
expression of PRGs. However, some PRGs with CNV gain, such 
as GSDMB, showed downregulated mRNA expression, while 
other PRGs with high frequencies of CNV gain or loss showed 
no differences between tumor and normal samples. Thus, while 
CNV can explain many observed changes in PRG expression, 
CNV is not the only factor involved in the regulation of mRNA 
expression.19 Other factors, including DNA methylation and 
transcription factors, can also regulate gene expression.20,21 The 
results of our analysis showed a significant difference in both the 
genetic landscape and expression levels of PRGs between CRC 
and control samples, indicating the latent function of PRGs in 
CRC oncogenesis.

Identification of pyroptosis subtypes in CRC

The analytical process in this study is illustrated in Figure S1. 
To fully understand the expression pattern of PRG involved in 
tumorigenesis, 1109 patients from four eligible CRC cohorts 
(TCGA-COAD/READ, GSE39582, GSE17536, and GSE38832) 
were integrated in our study for further analysis. Detailed 
information on the 1109 CRC patients is presented in Table 
S1. The results of univariate Cox regression and Kaplan–Meier 
analysis revealed the prognostic values of 48 PRGs in patients 
with CRC (Table S4), and p < .05 was selected as the threshold 
for filtering. Next, we performed a multivariate Cox regression 
analysis on 12 prognostic PRGs, four of which (IRF1, CASP6, 
NLRP1, and NLRP6) were identified as independent predictive 
factors (Table 1). The comprehensive landscape of PRG inter-
actions, regulator connections, and their prognostic value in 
patients with CRC patients was demonstrated in a pyroptosis 
network (Figure 2a and Table S5).

To further explore the expression characteristics of PRGs in 
CRC, we used a consensus clustering algorithm to categorize 
the patients with CRC based on the expression profiles of the 
48 PRGs (Figure S3). Our results showed that k = 2 appeared to 
be an optimal selection for sorting the entire cohort into sub-
types A (n = 465) and B (n = 644) (Figure 2b). PCA analysis 
revealed significant differences in the pyroptosis transcription 
profiles between the two subtypes (Figure 2c). The Kaplan– 
Meier curves showed a longer RFS in patients with subtype 
A than that in patients with subtype B (log-rank test, p = .006; 
Figure 2d). Furthermore, comparisons of the clinicopathologi-
cal features of the different subtypes of CRC revealed signifi-
cant differences in PRG expression and clinicopathological 

characteristics (Figure 2e). As shown in Figure 2e, cluster 
A was preferentially related to left-sided CRC (p < .05), lower 
TNM stage (p < .05), without KRAS and BRAF mutations 
(p-value < 0.05), and lower recurrence risk (p < .05) compared 
to those in cluster B.

Characteristics of the TME in distinct subtypes

GSVA enrichment analysis showed that subtype A was signifi-
cantly enriched in immune fully-activated pathways, including 
natural killer cell-mediated cytotoxicity, T and B cell receptor 
signaling pathway, antigen processing and presentation, cyto-
kine receptor interaction, chemokine signaling pathway activa-
tion, RIG-I-like, NOD-like, and Toll-like receptor signaling 
pathways (Figure 3a; Table S6). To investigate the role of 
PRGs in the TME of CRC, we assessed the correlations between 
the two subtypes and 22 human immune cell subsets of every 
CRC sample using the CIBERSORT algorithm (Table S7). We 
observed significant differences in the infiltration of most 
immune cells between the two subtypes (Figure 3b). The infil-
tration levels of CD4 memory-activated T cells, CD8 + T cells, 
naive B cells, follicular helper T cells, activated NK cells, 
gamma delta T cells, M1 and M2 macrophages, resting mast 
cells, resting dendritic cells, eosinophils, and neutrophils were 
obviously higher in the subtype A than those in the subtype B, 
while resting CD4 memory T cells, memory B cells, plasma 
cells, regulatory T cells (Tregs), resting dendritic cells, resting 
NK cells, and activated mast cells had significantly lower infil-
tration in subtype A compared to those in subtype B. Similarly, 
analysis of two important immune checkpoints showed higher 
expression of PD1 and PD-L1 in subtype A (Figure 3c-d). We 
also evaluated the TME score (stromal score, immune score, 
and estimate score) of the two subtypes using the ESTIMATE 
package. For the TME score, higher stromal scores or immune 
scores represented higher relative contents of stromal cells or 
immunocytes in the TME, while estimate scores indicated the 
aggregation of stromal or immune scores in the TME. The 
results demonstrated higher TME scores in patients with sub-
type A (Figure 3e).

Identification of gene subtypes based on DEGs

To explore the potential biological behavior of each pyrop-
tosis pattern, we identified 409 pyroptosis subtype-related 
DEGs using the R package “limma,” and performed func-
tional enrichment analysis (Figure 4a-B; Table S8). These 
pyroptosis subtype-related genes were significantly enriched 
in biological processes that were correlated with immunity 
(Figure 4a). KEGG analysis indicated enrichment of 
immune and cancer-related pathways (Figure 4b), suggest-
ing that pyroptosis plays a vital role in the immune regula-
tion of the TME. We then conducted univariate Cox 
regression analysis to identify the prognostic value of 409 
subtype-related genes and screened out 129 genes related to 
RFS time (p < .05), which were used in the subsequent 
analysis (Table S9). To further validate this regulation 
mechanism, a consensus clustering algorithm was used to 
divide patients into three genomic subtypes based on prog-
nostic genes; namely, gene subtypes A–C (Figure S4). 

Table 1. Multivariate Cox regression analysis of 4 PRGs associated with RFS in CRC 
patients.

id HR 95.0% CI P value

IRF1 0.690585619 0.576–0.828 P < .001
CASP6 0.697606744 0.569–0.855 P < .001
NLRP1 1.315299061 1.059–1.634 0.013
NLRP6 0.844306984 0.719–0.991 0.038
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Kaplan-Meier curves showed that patients with gene sub-
type B had the worst RFS, whereas patients in gene cluster 
C showed a favorable RFS (log-rank test, p < .001; 

Figure 4c). In addition, pyroptosis gene subtype 
B patterns were associated with advanced TNM stage, 
KRAS and BRAF mutations, and higher recurrence risk 

Figure 2. PRG subtypes and clinicopathological and biological characteristics of two distinct subtypes of samples divided by consistent clustering. (a) Interactions 
among PRGs in CRC. The line connecting the PRGs represents their interaction, with the line thickness indicating the strength of the association between PRGs. Green 
and pink represent negative and pink positive correlations, respectively. (b) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (c) PCA 
analysis showing a remarkable difference in transcriptomes between the two subtypes. (d) Univariate analysis showing 48 PRGs related to the RFS time. (e) Differences 
in clinicopathologic features and expression levels of PRGs between the two distinct subtypes. PRG, pyroptosis-related gene; CRC, colorectal cancer; PCA, principal 
components analysis; RFS, recurrence-free-survival.
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(Figure 4d). The three pyroptosis gene subtypes showed 
significant differences in PRG expression, consistent with 
the expected results of the pyroptosis patterns (Figure 4e).

Construction and validation of the prognostic PRG_score

The PRG_score was established based on the subtype- 
related DEGs. Figure 5a illustrates the distribution of 
patients in the two pyroptosis subtypes, three gene sub-
types, and two PRG_score groups. First, we used the 
“caret package” in R to randomly classify the patients into 
training (n = 556) and testing (n = 553) groups at a ratio of 
1:1. LASSO and multivariate Cox analyses for 129 pyrop-
tosis subtype-related prognostic DEGs were performed to 
further select optimum prognostic signature. Followed by 
LASSO regression analysis, 20 RFS-associated genes 
remained according to the minimum partial likelihood 
deviance (Figure S5A-B). We then performed multivariate 
Cox regression analysis on 20 RFS-associated genes based 

on the Akaike information criterion (AIC) value to finally 
obtain seven (CXCL13, KLRD1, ICOS, MMP12, DPYD, 
ZBED2, and SLC2A3), including three high-risk genes 
(DPYD, ZBED2, and SLC2A3) and four low-risk genes 
(CXCL13, KLRD1, ICOS, and e) (Figure S5C). According 
to the results of the multivariate Cox regression analysis, 
the PRG_score was constructed as follows:

Risk score = (−0.1222* expression of CXCL13) + (−0.6623* 
expression of KLRD1) + (−0.3369* expression of ICOS) + 
(−0.1063* expression of MMP12) + (0.5528* expression of 
DPYD) + (0.2368* expression of ZBED2) + (0.3294* expression 
of SLC2A3).

We observed a significant difference in PRG_score between 
pyroptosis gene subtypes. The PRG_score of subtype C was the 
lowest, while that of subtype B was the highest, indicating that 
a low PRG_score may be closely related to immune activation- 
related features, while a high PRG_score may be related to 
stromal activation-related features (Figure 5b). More impor-
tantly, compared to subtype A, subtype B had a significantly 

Figure 3. Correlations of tumor immune cell microenvironments and two CRC subtypes. (a) GSVA of biological pathways between two distinct subtypes, in which red 
and blue represent activated and blue inhibited pathways, respectively. (b) Abundance of 22 infiltrating immune cell types in the two CRC subtypes. (c-d) Expression 
levels of PD-1 and PD-L1 in the two CRC subtypes. (e-g) Correlations between the two CRC subtypes and TME score. CRC, colorectal cancer; GSVA, gene set variation 
analysis; TME, tumor microenvironment.
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Figure 4. Identification of gene subtypes based on DEGs. (a-b) GO and KEGG enrichment analyses of DEGs among two pyroptosis subtypes. (c) Kaplan–Meier curves for 
RFS of the two gene subtypes (log-rank tests, p < .001). (d) Relationships between clinicopathologic features and the two gene subtypes. (e) Differences in the 
expression of 48 PRGs among the two gene subtypes. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PRGs, 
PRGs, pyroptosis-related genes.
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higher PRG_score. The distributions of risk scores in the two 
subtypes are shown in Figure 5c. Patients with a PRG_score 
lower than the median risk score were categorized into the low- 
risk group (n = 278), whereas those with a PRG_score greater 
than the median risk score were placed in the high-risk group 
(n = 278). The distribution plot of the risk of PRG_score revealed 
that survival times decreased while recurrence rates increased 
with an increase in PRG_scores (Figure 5d-e). PCA analysis 
demonstrated discernible dimensions between the low- and 
high-PRG_score groups (figure 5f). The Kaplan–Meier survival 

curves revealed that patients with low scores had a significantly 
favorable overall survival compared to that in patients with high 
scores (log-rank test, p < .001; Figure 5g). In addition, the 1-, 3-, 
5-, and 10-year survival rates of PRG_score were represented by 
AUC values of 0.701, 0.724, 0.709, and 0.778, respectively 
(Figure 5h). The PRG_score predicted 1- year survival with 
a 74% sensitivity and 54% specificity, 3- year survival with 75% 
sensitivity and 59% specificity, 5-year survival with a 72% sensi-
tivity and 61% specificity, and 10- year survival with a 72% 
sensitivity and 65% specificity. We then specifically examined 

Figure 5. Construction of the PRG_score in the training set. (a) Alluvial diagram of subtype distributions in groups with different PRG_scores and survival outcomes. (b) 
Differences in PRG_score between gene subtypes. (c) Differences in PRG_score between pyroptosis subtypes. (d-e) Ranked dot and scatter plots showing the PRG_score 
distribution and patient survival status. (f) PCA analysis based on the prognostic signature. The high- and low-risk patients are represented by red and steel blue dots, 
respectively. (g) Kaplan–Meier analysis of the RFS between the two groups. (h) ROC curves to predict the sensitivity and specificity of 1-, 3-, 5-, and 10-year survival 
according to the PRG_score. (i) Survival analysis among four patient groups stratified by both PRG_score and treatment with adjuvant chemotherapy. ADJC, adjuvant 
chemotherapy. PCA, principal component analysis; RFS, recurrence-free survival; ROC, receiver operating characteristic.
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the ability of the PRG_score to predict the efficacy of adjuvant 
chemotherapy in patients with CRC. Patients with low scores 
showed significant therapeutic advantages among patients receiv-
ing adjuvant chemotherapy. Moreover, the predictive ability of 
the PRG_score was not affected by adjuvant chemotherapy. 
Regardless of whether chemotherapy was administered, the low- 
score group always showed a clear survival advantage (Figure 5i).

To validate the prognostic performance of the PRG_score, 
we calculated PRG_scores across internal (testing set) and three 
external validation groups (GSE39582, GSE17536, GSE38832) 
(Figures S6–9). The patients were also stratified into low- or 
high-risk groups according to the formula used for the training 
set. The PRG_scores, patient survival status, and PCA showing 
the variation tendencies of the low- and high-risk groups are, 
respectively, shown in Figures S6A-B, S7A-B, S8A-B, and S9A- 
B. Survival analysis revealed a significantly better prognosis in 
the low-risk group relative to that in the high-risk group (log- 
rank; p < .001; Figure S6-9 C). Analysis of the 1-, 3-, 5-, and 10- 
year prognostic prediction classification efficiencies showed that 
the PRG_score still had relatively high AUC values (Figure S6- 
9D), indicating that the PRG_score had excellent ability to 
predict the survival of CRC patients.

Validation of the expression levels of the seven PRGs use 
for the prognostic signature

The expression levels of seven prognostic genes were measured 
in six CRC tissues and six adjacent normal tissues by RT-qPCR. 
As shown in Figure S10, the expression levels of MMP12, 
ZBED2, and SLC2A3 were elevated while those of CXCL13, 
KLRD1, ICOS, and DPYD were downregulated in CRC tissues 
compared to the levels in the corresponding normal tissues.

Clinical correlation analysis and stratification analysis of 
the prognostic PRG_score

To investigate the impact of the PRG_score on clinical char-
acteristics, we explored the correlation between PRG_score 
and different clinical features (age, sex, tumor location, TNM 
stage, KRAS mutation status, and BRAF mutation status). We 
observed significantly higher PRG_scores in patients in the 
stage III–IV subgroup relative to those in the stage I–II sub-
group (p < .05; Figure S11A). To determine whether this prog-
nostic PRG_score might independently predict RFS in patients 
with CRC, we combined the clinical features with the 
PRG_score of the prognostic PRG_score to perform univariate 
and multivariate analyses. As shown in Figure S11B-C, the 
TNM stage and PRG_score in the training set showed signifi-
cant differences, with consistent results observed in the testing 
(Figure S11D-E), GSE39582 (Figure S11F-G), and GSE17536 
(Figure S11H-I) groups. Moreover, a stratified analysis to eval-
uate whether the PRG_score retained its predictive ability in 
different subgroups, including age (≤60 and >60 years), sex 
(female and male), tumor location (left and right side), TNM 
stage (stage I–II and stage III–IV), and KRAS mutation (yes 
and no) showed significantly lower RFS in patients with high- 
risk scores compared to those in patients with low-risk scores 
for age (p < .001), sex (p = .014 in women and p < .001 in men), 
tumor location (p < .001 on the left side and p = .008 on the 

right side), TNM stage (p < .001), KRAS mutation (p = .002 for 
yes and p < .001 for no), and BRAF mutation (p = .043 for yes 
and p < .001 for no) (Figure S12).

Evaluation of TME and checkpoints between the high- and 
low-risk groups

We performed the CIBERSORT algorithm to assess the asso-
ciation between PRG_score and the abundance of immune 
cells. As shown in the scatter diagrams, the PRG_score was 
positively correlated with M0 macrophages, activated mast 
cells, M2 macrophages, neutrophils, and monocytes and nega-
tively correlated with activated memory CD4 + T cells, 
CD8 + T cells, M1 macrophages, naive B cells, follicular helper 
T cells, plasma cells, activated dendritic cells, resting dendritic 
cells, gamma delta T cells, and activated NK cells (Figure 6a). 
A low PRG_score was also closely associated with a high 
immune score, whereas a high PRG_score was associated 
with a high stromal score (Figure 6b). We also assessed the 
relationship between the seven genes in the proposed model 
and the abundance of immune cells. We observed that most 
immune cells were significantly correlated with the seven genes 
(Figure 6c). In addition, we investigated the associations 
between immune checkpoints and our risk model. Figure 6d 
shows that 33 immune checkpoints were differentially 
expressed in the two groups, including PD-1, PD-L1, and 
CTLA-4.

Relationship of PRG_score with MSI and CSC index

Increasing evidence suggests that patients with high microsa-
tellite instability (MSI-H) are more sensitive to immunother-
apy and can benefit from immunotherapy drugs.22 Correlation 
analyses revealed that a low PRG_score was significantly cor-
related with MSI-H status, while a high PRG_score was asso-
ciated with microsatellite stable (MSS) status (Figure 7a-b). To 
evaluate the influence of MSI status on RFS in patients with 
CRC, we performed survival analysis in the MSI and MSS 
groups. Although not significant, the MSI group showed 
a tendency for prolonged survival (p = .446; Figure S13A). 
However, the subsequent stratified survival analysis showed 
that the risk score could distinguish the survival of patients 
with CRC in both MSI and MSS subgroups and that the trend 
of survival advantage in the MSI group was reversed by the risk 
score (Figure S13B). In addition, we synthesized the 
PRG_score and CSC index values to assess the potential corre-
lation between the PRG_score and CSC in CRC. Figure 7c 
shows the results of the linear correlation between PRG_score 
and CSC index. We concluded that PRG_score was negatively 
correlated with the CSC index (R = −0.31, p < .001), indicating 
that CRC cells with lower PRG_score had more distinct stem 
cell properties and a lower degree of cell differentiation 
(Figure 7c).

Mutation and drug susceptibility analysis

Accumulative evidence shows that patients with a high TMB 
may benefit from immunotherapy due to their higher numbers 
of neoantigens.23 Our analysis of the mutation data from the 
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Figure 6. Evaluation of the TME and checkpoints between the two groups. (a) Correlations between PRG_score and immune cell types. (b) Correlations between 
PRG_score and both immune and stromal scores. (c) Correlations between the abundance of immune cells and seven genes in the proposed model. (d) Expression of 
immune checkpoints in the high and low-risk groups. TME, tumor microenvironment.
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Figure 7. Comprehensive analysis of the PRG_score in CRC. (a-b) Relationships between PRG_score and MSI. (c) Relationships between PRG_score and CSC index. (d) 
TMB in different PRG_score groups. (e) Spearman correlation analysis of the PRG_score and TMB. (f-g) The waterfall plot of somatic mutation features established with 
high and low PRG_scores. Each column represented an individual patient. The upper barplot showed TMB, the number on the right indicated the mutation frequency in 
each gene. The right barplot showed the proportion of each variant type. (h-l) Relationships between PRG_score and chemotherapeutic sensitivity. CRC, colorectal 
cancer; MSI, microsatellite instability; CSC, cancer stem cell; TMB, tumor mutation burden.
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TCGA COAD/READ cohort showed a lower TMB in the high 
score group than that in the low score group (Figure 7d), 
implying that the low-risk group might benefit from immu-
notherapy. Spearman correlation analysis demonstrated that 
the PRG_score was negatively associated with the TMB 
(p = .009; Figure 7e). We then analyzed the distribution varia-
tions of the somatic mutations between two PRG_score groups 
in the TCGA-COAD cohort. The top ten mutated genes in the 
high- and low-risk groups were APC, TP53, TTN, KRAS, 
SYNE1, PIK3CA, MUC16, FAT4, ZFHX4, and RYR2 (figure 
7f–G). Patients with a high PRG _score had markedly higher 
frequencies of APC, TP53, and KRAS mutations compared to 
those in patients with a low PRG _score. However, the exact 
opposite was observed regarding the mutation levels of TTN 
and MUC16 (figure 7f-g). We next selected chemotherapy 
drugs currently used for the treatment of CRC to evaluate the 
sensitivities of patients in the low- and high-risk groups to 
these drugs. Interestingly, we found that the patients in the 
high PRG_score group had lower IC50 value for shikonin, 
while IC50 values of chemotherapeutics such as gemcitabine, 
paclitaxel, gefitinib, and camptothecin were significantly lower 
in the patients with low PRG_score. Together, these results 
showed that PRGs were related to drug sensitivity 
(Figure 7h-l).

Development of a nomogram to predict survival

Considered the inconvenience clinical utility of PRG_score in 
predicting RFS in patients with CRC, a nomogram incorporat-
ing the PRG_score and clinicopathological parameters was 
established to predict the 1-, 3-, 5-, and 10-year RFS rates 
(Figure 8a). The predictors included PRG_score and patient 
stage. The results of our AUC experiments on the nomogram 
model showed higher accuracy for RFS at 1, 3, 5, and 10 years 
in the training set, testing set, and two external validation sets 
(Figure 8b-e). Our comparison of the predictive accuracy of the 
nomogram with that of the TNM stage in the five sets (Figure 
S14) showed 1-, 3-, 5-, and 10-year AUC values of the nomo-
gram in the training set of 0.801, 0.763, 0.760, and 0.818, 
respectively, whereas those of the TNM stage were 0.740, 
0.706, 0.703, and 0.683, respectively (Figure S14A–D). In the 
testing set, the 1-, 3-, 5-, and 10-year AUC values of the 
nomogram were 0.788, 0.758, 0.739, and 0.801, respectively, 
while those of the TNM were 0.734, 0.710, 0.681, and 0.693, 
respectively (Figure S14E–H). Furthermore, the AUC values of 
the nomogram in two external validation sets (GSE29582 and 
GSE17536) were also higher than that of the TNM stage 
(Figure S14 I–O), suggesting that the nomogram exhibited 
superior survival predictive ability compared to the TNM 
stage. The subsequent calibration plots suggested that the pro-
posed nomogram had a similar performance in both the train-
ing and testing sets compared to an ideal model (figure 8f–I).

Discussion

Numerous studies have revealed the indispensable role of pyr-
optosis in innate immunity and antitumor effects.24,25 

However, most studies have focused on a single PRG or 
a single type of TME cell; thus, the overall effect and TME 

infiltration characteristics mediated by the combined effects of 
multiple PRGs have not yet been fully elucidated. The results of 
the present study revealed global alterations in PRGs at the 
transcriptional and genetic levels in CRC. We identified two 
distinct molecular subtypes based on 48 PRGs. Compared to 
patients with subtype A, patients with subtype B had more 
advanced clinicopathological features and worse RFS. The 
characteristics of the TME also differed significantly between 
the two subtypes. The CRC subtypes were also characterized by 
a significant immune activation, including antigen processing 
and presentation, T and B cell receptor signaling pathway, 
natural killer cell-mediated cytotoxicity, RIG-I-like, NOD- 
like, and the Toll-like receptor signaling pathways. 
Furthermore, differences in mRNA transcriptomes between 
different pyroptosis subtypes were significantly related to 
PRG and immune-related biological pathways. We identified 
three gene subtypes d based on the DEGs between the two 
pyroptosis subtypes. Thus, our findings indicate that PRGs 
might serve as a predictor for evaluating the clinical outcome 
and immunotherapy response of CRC. Therefore, we con-
structed the robust and effective prognostic PRG_score and 
demonstrated its predictive ability. The expression levels of 
seven genes included the PRG_score in CRC tissues were also 
explored. The pyroptosis patterns characterized by immune 
activation and inhibition showed lower and higher 
PRG_scores, respectively. Patients with low- and high-risk 
PRG_scores showed significantly different clinicopathological 
characteristics, prognosis, mutation, TME, immune check-
points, MSI, CSC index, and drug susceptibility. Finally, by 
integrating the PRG_score and tumor stage, we established 
a quantitative nomogram, which further improved the perfor-
mance and facilitated the use of the PRG_score. The prognostic 
model can be used for prognosis stratification of patients with 
CRC, will assist in better understanding the molecular mechan-
ism of CRC, and will provide new ideas for targeted therapies.

The prognosis of CRC after conventional chemotherapy is 
poor, with higher levels of tumor-infiltrating lymphocytes, 
tumor neoantigens, and checkpoints. Despite recent advances 
in immunotherapy, patients with CRC still show heterogeneity 
in their outcomes, highlighting the crucial role of TME in CRC 
tumorigenesis and progression. Immune cells, such as granulo-
cytes, lymphocytes, and macrophages are major cellular compo-
nents of TME. These cells participate in various immune 
responses and activities, such as the inflammatory response 
coordinated by tumors to promote survival.26 The TME that 
surrounds tumor cells comprises TIICs, blood vessels, extracel-
lular matrix (ECM), fibroblasts, lymphocytes, bone marrow- 
derived inflammatory cells.27 Evidence has also shown the sig-
nificant effects of the TME on tumor development, progression, 
and therapeutic resistance.28 In the present study, the pyroptosis 
pattern characterized by immune inhibition (subtype B) was 
associated with a higher PRG_score, while the pattern character-
ized by immune activation (subtype A) was associated with 
a lower PRG_score. We discovered that the characteristics of 
the TME and the relative abundance of 22 TIICs differed sig-
nificantly between the two molecular subtypes and different 
PRG_scores. This finding suggests the critical role of PRGs in 
CRC progression. Increasing evidence has shown that effector 
T cells, memory T cells, and T cell differentiation play a vital role 
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Figure 8. Construction and validation of a nomogram. (a) Nomogram for predicting the 1-, 3-, 5-, and 10-year RFS of CRC patients in the training set. (b-e) ROC curves for 
predicting the 1-, 3-, 5-, and 10-year ROC curves in the training, testing, GSE29582, and GSE17536 sets. (f-i) Calibration curves of the nomogram for predicting of 1-, 3-, 
5-, and 10-year RFS in the training, testing, GSE29582, and GSE17536 sets. RFS, recurrence-free survival; CRC, colorectal cancer; ROC, receiver operating characteristic.
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in the immune defense of CRC.29 Gamma delta T cells can 
effectively recognize and kill CRC cells, thereby suppressing 
tumor progression via multiple mechanisms.30 The densities of 
tumor-infiltrating T cells in CRC tissues were higher than those 
in normal tissues, with higher densities indicating a good 
prognosis.30–32 Subtype A and low PRG_score, with a better 
prognosis, showed higher infiltration of activated memory 
CD4+ and CD8 + T cells and gamma delta T cells, suggesting 
that they play a positive role in CRC development. The infiltra-
tion of Tregs, which suppress the anti-cancer immune response, 
was associated with poor prognosis.33 This corresponds to our 
finding of more Tregs in the TME for patients with subtype 
B and high PRG_scores compared to those in the low-risk group. 
Recent studies revealed that B cells also participate in the 
immune response.34,35 Petitprez et al.36 suggested that B cell 
enrichment was the strongest prognostic factor for prolonged 
survival and was positively correlated with the response to PD-1 
blockade in soft-tissue sarcomas. Meanwhile, Helmink et al. 
reported that the levels of the B cell-related genes MZB1, 
JCHAIN, and IGLL5 were markedly higher in patients who 
responded to immune checkpoint blockade compared to those 
in non-responders.35 Moreover, tumor-infiltrating B cells were 
associated with a favorable prognosis in CRC.37,38 In metastatic 
CRC, patients with high B cell infiltration have a significantly 
lower risk of disease recurrence and prolonged overall survival.38 

The results of these studies demonstrated that B cells are not just 
bystanders in anti-tumor immunotherapy; rather, B cells provide 
a new target for immunotherapy and could be a strong weapon 
against tumors. In our study, we observed no significant differ-
ence in memory B cell infiltration between the two subtypes and 
PRG_score groups, while the abundance of naive B cells in 
subtype B and high PRG_score with worse overall survival 
were significantly lower than those in subtype A. Therefore, 
infiltration of B cell inhibited tumor progression in CRC, con-
sistent with the findings of previous studies.37,38 Tumor- 
associated macrophages are categorized into two main pheno-
types: M1 macrophages (which inhibit cancer progression) and 
M2 macrophages (which promote cancer progression). M1 
macrophages produce type I pro-inflammatory cytokines and 
have anti-tumor function.39 In this study, macrophages M1 were 
higher in the low PRG_score group, suggesting that patients with 
low PRG_ scores might benefit from immunotherapy. M2 
macrophages are immunosuppressive, contribute to the matrix- 
remodeling, and hence favor tumor growth.39,40 CRC has a high 
level of MMP-9, which can degrade collagen in the type IV 
basement membrane, thereby promoting metastasis.41 Previous 
researches have demonstrated that M2 macrophages are related 
to EMT and the infiltration of M2 macrophages in TME 
enhances the metastasis of CRC.42,43 Furthermore, high tumor 
stromal density of M2 macrophages have been associated with 
worse cancer-specific survival in patients with CRC, and patients 
with high M1:M2 density ratio in tumor stroma have a higher 
survival rate.44 Consistent with previous publications, we 
noticed an increased infiltration of M1 macrophages in subtype 
A and low PRG_score groups with a favorable prognosis, while 
increased infiltration of M2 macrophages and high PRG_score 
group in subtype B with a worse prognosis.

With in-depth research on tumor immunology and mole-
cular biology, immunotherapy has provided a new direction 
for tumor treatment. This immunotherapy includes immune 
checkpoint inhibitors (ICIs), therapeutic antibodies, and cell 
therapy. The research of ICIs targeting CTLA-4, PD-1, and 
PD-L1 is blooming and clinical studies have demonstrated 
their safety and efficacy.45,46 ICIs have recently been used to 
treat CRC.47 In the present study, we observed higher expres-
sion levels of PD-1 and PD-L1 in the subtype A and low 
PRG_score groups. Patients with MSI showed a higher 
response to PD-1 treatment. Mismatch repair defective 
(dMMR) CRC accounts for 14% of all CRCs.48 The presence 
of dMMR-MSI-H disease is prognostic, as the recurrence risk 
of dMMR-MSI-H tumors is lower than that of dMMR-MSI-L 
tumors, with a hazard ratio for overall survival associated with 
MSI of <1.49 In the present study, the proportion of patients 
with MSI-H was higher in the subtype A and low PRG_score 
groups with a poor prognosis. The expression levels of PD-1, 
PDL-1, and CTLA4 were significantly upregulated in patients 
with dMMR-MSI-H.50 Thus, dMMR-MSI-H CRC may 
respond well to immune checkpoint blockade. Immune check-
point therapy was approved by regulatory agencies in 2017 for 
the treatment of severely mutated CRC tumors (dMMR or 
MSI-H).22 Nivolumab (anti-PD-1) provides clinical benefits 
for previously treated dMMR/MSI-H metastatic CRC, includ-
ing improved objective response rates, disease control rates, 
and 12-month overall survival. Furthermore, nivolumab plus 
ipilimumab can improve these outcomes (43). Tremelimumab 
(anti-CTLA-4) was well tolerated by patients with CRC who do 
not respond well to other immunotherapies.51 We concluded 
that patients with low PRG_score; higher expression of PD-1, 
PD-L1, and CTLA-4 expression; and MSI-H might be inclined 
to respond to immune checkpoint blockade.

This study had several limitations. First, all analyses 
were conducted solely on data from public databases, 
and all samples used in our study were obtained retro-
spectively. Therefore, an inherent case selection bias may 
have influenced the results. Large-scale prospective studies 
and additional in vivo and in vitro experimental studies 
are needed to confirm our findings. Furthermore, data on 
some important clinical variables such as surgery, neoad-
juvant chemotherapy, and chemoradiotherapy were una-
vailable for analysis in most datasets, which may have 
affected the prognosis of the immune response and pyr-
optosis state.

Conclusions

Our comprehensive analysis of PRGs revealed an extensive 
regulatory mechanism by which they affect the tumor- 
immune-stromal microenvironment, clinicopathological fea-
tures, and prognosis. We also determined the therapeutic lia-
bility of PRGs in targeted therapy and immunotherapy. These 
findings highlight the crucial clinical implications of PRGs and 
provide new ideas for guiding personalized immunotherapy 
strategies for patients with CRC.
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