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Abstract: In the current study, we sought to examine the effects of curcumin in a specific type of breast cancer called triple negative breast 
cancer. These cancers lack expression of the estrogen and progesterone receptors and do not over-express HER2. Current treatment for 
triple negative breast cancers is limited to cytotoxic chemotherapy, and upon relapse, there are not any therapies currently available. We 
demonstrate here that the bioactive food compound curcumin induces DNA damage in triple negative breast cancer cells in association 
with phosphorylation, increased expression, and cytoplasmic retention of the BRCA1 protein. In addition, curcumin promotes apoptosis 
and prevents anchorage-independent growth and migration of triple negative breast cancer cells. Apoptosis and BRCA1 modulation 
were not observed in non-transformed mammary epithelial cells, suggesting curcumin may have limited non-specific toxicity. This 
study suggests that curcumin and potentially curcumin analogues should be tested further in the context of triple negative breast cancer. 
These results are novel, having never been previously reported, and suggest that curcumin could provide a novel, non-toxic therapy, 
which could lead to improved survival for patients with triple negative breast cancer. Curcumin should be studied further in this subset 
of breast cancer patients, for whom treatment options are severely limited.
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Introduction
Curcumin (diferuloyl methane) is a natural yellow-
pigmented polyphenol component of the spice 
turmeric, which is derived from the roots of the 
Curcuma longa plant indigenous to Southeast Asia. 
Curcumin has been used as an anti-inflammatory 
agent in traditional Indian Ayurvedic medicine for 
centuries.1 Anti-tumor effects of curcumin have been 
reported in numerous pre-clinical models of solid 
tumors including pancreatic, colorectal, prostate, 
and breast.2–7 In breast cancer cell lines, curcumin 
activated cell cycle arrest and apoptosis by inhibiting 
cyclin-dependent kinase (cdk) activity, suppressing 
cyclin D1 and cyclin E expression, increasing levels 
of cdk inhibitors p21 and p27, and inducing p53 
transcriptional activity.8–10 Many of the molecular 
effects of curcumin have been attributed to its ability 
to potently inhibit transcriptional activity of nuclear 
factor kappa B (NF-kB), leading to reduced expression 
of anti-apoptotic, proliferative, pro-angiogenic, 
and metastatic target genes of NF-kB, with 
subsequent inhibition of mammary tumorigenesis 
and metastasis in vivo.7 In addition, signaling from 
the epidermal growth factor receptor (EGFR) and 
human epidermal growth factor receptor 2 (HER2) is 
suppressed in EGFR- or HER2-over-expressing breast 
cancer cells, with reduced downstream ERK1/2, JNK, 
and Akt activity.11,12 Importantly, apoptosis in response 
to curcumin appears to be far more pronounced in 
cancer cell lines versus non-tumorigenic breast 
epithelial cells.12,13

In the current study, we sought to examine 
the effects of curcumin in breast cancer cells that 
lack expression of estrogen receptor (ER) and 
progesterone receptor (PR), and do not over-express 
HER2, thus, conferring so-called triple negative 
expression status.14 Triple negative breast cancers 
(TNBCs) occur more frequently in pre-menopausal 
females of African-American and Hispanic descent, 
and display very aggressive behavior with shorter 
post-relapse survival relative to other breast cancer 
types.15–17 Due to the absence of ER and lack of 
HER2 over-expression, TNBCs are not treated with 
endocrine or HER2-targeted therapies. Instead, 
standard first-line treatment for patients with TNBC 
is cytotoxic chemotherapy.

Common molecular changes observed in TNBC 
include p53 mutation, EGFR over-expression, and 

dysfunction in the BRCA1 pathway.14 The BRCA1 
tumor suppressor protein is a critical mediator of 
DNA repair in response to double-strand breaks.18–21 
Breast cancers with BRCA1 dysfunction show a 
high frequency of chromosomal abnormalities.22–24 
In addition, since BRCA1 mediates repair of DNA 
strand breaks, loss of BRCA1 makes cancer cells 
more susceptible to apoptosis after treatment with 
DNA damaging drugs such as anthracyclines and 
platinum agents.25

Patients with TNBC who achieve pathologic 
complete response (pCR) to chemotherapy tend to 
have a good prognosis.17 However, for TNBCs that 
do not show pCR, the likelihood of relapse is high. 
As additional effective therapies are not currently 
available, relapse carries a poor prognosis for 
patients with TNBC.15,17 We demonstrate here that 
curcumin induces DNA damage and apoptosis of 
triple negative breast cancer cells, but not of the non-
transformed mammary epithelial cell line MCF12A. 
In addition, curcumin promotes phosphorylation, 
total expression, and cytoplasmic retention of the 
BRCA1 protein. These results suggest that curcumin 
activates a DNA damage response in TNBC cells, 
leading to apoptosis, possibly in part because BRCA1 
is retained in the cytoplasm where it cannot repair 
DNA damage.

Materials and Methods
Materials
Curcumin (EMD; Gibbstown, NJ) was dissolved 
in ethanol at a stock concentration of 8 mM. IKK 
inhibitor wedelolactone (EMD) was dissolved in 
DMSO at 15 mM stock concentration.

Cell culture
Triple negative MDA-MB-468 (MDA468), HCC1937, 
and HCC1806 breast cancer lines, HER2-over-
expressing SKBR3 cells, ER-alpha-positive MCF7, 
and non-transformed mammary epithelial line 
MCF12A were purchased from ATCC (Manassas, 
VA). HCC1806 cells were maintained in RPMI 
with 5% fetal calf serum (FCS); MCF12A cells 
were maintained in DMEM/F12 supplemented with 
5% horse serum, 20 ng/mL EGF, 10 µg/mL insulin, 
and 0.5 µg/mL hydrocortisone; all other lines were 
maintained in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% FCS; all cell lines 
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were maintained on 1% penicillin/streptomycin and 
incubated at 37 °C with 5% CO2 in a humidified 
incubator.

Dose-response assays
Cells were treated with two-fold serial dilutions of 
curcumin for 72 hours (h), at which point cell survival 
was measured by trypan blue exclusion. Control 
cultures were treated with ethanol corresponding 
to the highest dose of curcumin, since curcumin is 
dissolved in ethanol. In addition, ethanol was added to 
lower dose curcumin treatment groups to make up the 
difference in volume of ethanol between the highest 
curcumin treatment group and the lower dose groups. 
Experiments were done at least in duplicate and 
performed at least twice. Cell viability is expressed 
as a percentage of control ethanol-treated cells per 
individual cell line; error bars represent standard 
deviation between replicates.

immunoblotting
Cells were lysed in RIPA buffer (Cell Signaling; Danvers, 
MA), which includes 0.1% NP40, supplemented with 
protease and phosphatase inhibitor cocktails (Sigma; 
St. Louis, MO). Total protein extracts (50 µg) were run 
on SDS-PAGE and immunoblotted using the following 
antibodies overnight at the indicated dilutions: from 
EMD, HER2 (erbb2/neu) monoclonal 3B5 used at 
1:1000; from Cell Signaling, p-p65 NF-kB monoclonal 
(93H1) used at 1:250, total p65 NF-kB monoclonal 
(C22B4) used at 1:250, PARP polyclonal used at 
1:200; from Bethyl Labs (Montgomery, TX), p-S1189 
and p-S1280 BRCA1 polyclonals used at 1:200 each; 
from Santa Cruz Biotechnology (Santa Cruz, CA), 
BRCA1 (C-20) and p-S988 BRCA1 polyclonals used 
at 1:200 each, ER alpha (G-20), survivin monoclonal 
D-8 used at 1:500; and from Sigma, β-actin 
monoclonal used at 1:20,000. Secondary antibodies 
were chosen according to the species of origin of the 
primary antibody. Protein bands were detected using 
the Odyssey Imaging System (Li-Cor Biosciences; 
Lincoln, NB).

Anchorage-independent growth assays
Cells were plated in duplicate at 15 × 105 in 6-well 
dishes in 1ml of matrigel (BD Biosciences; San 
Jose, CA) diluted 3:1 (media:matrigel). The matrigel 
cell suspension was allowed to solidify for at least 

2 h at 37 °C. Once the matrigel solidified, 2 ml of 
media containing the ethanol control or curcumin 
(5 or 15 uM) was added to each well. The cells were 
maintained for approximately 2 weeks, during which 
media containing either control or curcumin was 
replenished twice a week. Photographs were taken 
with an Olympus IX50 inverted microscope at 4X 
magnification. To quantify the cell number, matrigel 
was digested using dispase (BD Biosciences). Briefly, 
the media was removed from each well and 2 mL of 
dispase was added per well and incubated at 37 °C 
for 1 h. Each 3 mL sample was then transferred to 
a centrifuge tube and 10 mM EDTA was added to 
stop the enzymatic activity of dispase. Each sample 
was centrifuged at 1000 rpm for 5 minutes (min) 
and washed 3 times with phosphate-buffered saline 
(PBS). Cells were then counted by trypan blue 
exclusion.

Migration assays
Monolayers of 750,000 HCC1806 cells were plated 
and grown in a 6-well cell culture dish. Using a p200 
pipette tip, confluent cell cultures were scratched 
down the center. After scratching, the cells were 
treated with ethanol or 15 µM curcumin. Cell cultures 
were photographed (Olympus IX50 microscope, 4X 
magnification) at 0 and 24 h time points.

Immunofluorescence
Cells (100,000) were plated per chamber in 4-well 
chamber slides in 500 µl media and incubated 
overnight. The next day cells were treated with 
ethanol or curcumin for 24 h. After washing in 
PBS, cells were fixed with 4% paraformaldehyde 
and 0.2% gluteraldehyde for 20 min at room 
temperature with gentle shaking. After washing, 
cells were permeabilized with 0.5% Triton X for 
10 min at room temperature with gentle shaking. 
Cells were washed with PBS followed by blocking 
for 15 min with 5% normal goat serum at room 
temperature. After washing, cells were incubated 
overnight with the primary antibody (1:100) in 
5% NGS in PBS at 4 °C. The next day cells were 
washed 6 times, 5 min each time with PBS and 
incubated for 1 hour at room temperature in a light-
protected container with secondary antibody (1:250 
in 5% NGS) that was chosen according to the 
species of origin of the primary antibody. The cells 
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were washed 6 times for 5 min with PBS. The 
chamber was removed and one drop of the mounting 
medium which contains DAPI (Vectashield, Vector 
Laboratories, Inc. Burlingame, CA) was added 
then sealed with a coverslip. The slide was dried 
for 2 h in the dark at room temperature. Slides are 
stored at 4 °C. Photographs were taken using Zeiss 
Axioplan 2 Upright Microscope. Primary antibodies 
were BRCA1 (C-20) and phospho-gamma H2Ax 
polyclonal (both from Santa Cruz).

nF-kB transcription factor activity assay
HCC1806 cells were plated in 100-mm dishes and 
treated with ethanol or 10 µM curcumin for 6 h 
or 24 h. After incubation, the cells were lysed for 
nuclear proteins with Nuclear Extraction Kit per 
manufacturer protocol (Cayman Chemical, Ann 
Arbor, MI). Nuclear extracts were used to detect 
DNA binding activity of NF-kB by using NF-kB 
(p65) Transcription Factor Assay Kit (Cayman 
Chemical). Briefly, 10 µl of the nuclear extract was 
added to the wells coated with a consensus dsDNA 
sequence in duplicates together with 90 ul complete 
transcription factor buffer and incubated overnight 
at 4 °C. Blank wells, positive control (TNF alpha-
stimulated HeLa cell nuclear extract provided 
with kit), and non-specific binding (provided 
with kit) samples were also included on the plate. 
The next day the wells were washed 5 times and 
incubated with the NF-kB primary antibody (except 
the blank wells) for 1 h at room temperature. Wells 
were washed and incubated with HRP-conjugated 
secondary antibody (except the blank wells) for 
1 h at room temperature. After washing, 100 µl of 
developing solution was added and incubated for 
45 min at room temperature with gentle agitation 
followed by addition of 100 µl stop solution to 
each well. The absorbance was read at 450 nm. The 
reading for nonspecific binding was subtracted from 
each treatment, and the results were normalized to 
the nuclear extract concentration. Fold change of 
each sample relative to the average of untreated 
samples was determined.

statistical analysis
Results were analyzed using a two-tailed Student’s 
t test to assess statistical significance. Values of p  0.05 
were considered statistically significant.

Results
Curcumin induces BRCA1 protein 
expression and phosphorylation in triple 
negative breast cancer cells
ER-alpha and HER2 expression status of HCC1937, 
HCC1806, and MDA468 cell lines was assessed by 
immunoblot, using MCF7 cells as a positive control 
for ER-alpha and SKBR3 cells as a positive control 
for HER2 (Fig. 1). Relative to SKBR3 cells, which 
harbor amplification of the her2 gene with subsequent 
over-expression of the HER2 protein, HCC1937, 
HCC1806, and MDA468 express low levels of HER2. 
In addition, these three lines do not show expression 
of ER-alpha, similar to SKBR3 which are known to be 
ER-alpha-negative, and compared to MCF7 cells, which 
are ER-alpha-positive. PR expression was previously 
reported as being negative in each of these lines, and 
other reports have confirmed the ER-negative and 
low HER2 expression status of these lines.26–29 Thus, 
HCC1937, HCC1806, and MDA468 cells represent 
in vitro models of triple negative breast cancer.

BRCA1 dysfunction is often observed in TNBC. 
BRCA1 function is regulated in part by phosphorylation 
and in part by cellular localization. Since other 
dietary polyphenols including resveratrol and indole-
3-carbinol have been shown to induce expression 
of the BRCA1 protein in breast cancer cells,30,31 
we examined the effect of curcumin on BRCA1 
in TNBCs. Total BRCA1 protein expression was 

SK      MCF7     1937      1806        468

HER2

ER Alpha

Actin

TNBC lines

Figure 1. estrogen receptor alpha and HeR2 expression status of 
breast cancer cell lines. sKBR3, MCF7, hCC1937, hCC1806, and 
MDA468 cell lysates (50 µg) were immunoblotted for eR alpha, heR2, 
and actin. in comparison to eR+ MCF7 cells and heR2-over-expressing 
sKBR3 cells, hCC1937, hCC1806, and MDA468 are eR-negative and 
do not over-express heR2.
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induced in MDA468 and HCC1806 cells within 
6 h of treatment with 10 µM curcumin (Fig. 2A). 
Phosphorylation at serine 988, a chk2 kinase-specific 
phosphorylation site on BRCA1,32 was also increased 
in MDA468 and HCC1806 cells within 6 h of 
curcumin exposure. In contrast, curcumin did not 
alter expression or phosphorylation of BRCA1 in 
MCF12A non-transformed mammary epithelial cells. 
We examined two additional phosphorylation sites 
using MDA468 as a model of TNBC. Serine 1189 
and serine 1280 are ATM kinase phosphorylation sites 

on BRCA1.32 Curcumin induced a transient increase 
in phosphorylation at both sites, occurring within 6 h 
and back to baseline again by 24 h (Fig. 2B).

BRCA1 modulation appears to be 
independent of curcumin-mediated  
nF-kB inhibition
Many of the molecular effects of curcumin have been 
attributed to its ability to potently inhibit the NF-kB 
transcription factor. We confirmed that curcumin inhibits 
NF-kB in triple negative breast cancer cells using 
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B

Figure 2. curcumin induces BRcA1 expression and phosphorylation. (A) MDA468, hCC1806, and MCF12A cells were treated with curcumin 
(10 µM) for 6 or 24 h. As a control, cells were treated for 24 h with the volume of ethanol, E, equivalent to that present in 10 µM curcumin. Total 
cell lysates were immunoblotted (50 µg) for total BRCA1 and BRCA1 phosphorylated at serine 988 (p-S988), a chk2-specific phosphorylation site. 
Curcumin induced s988 phosphorylation and increased total levels of BRCA1 within 6 h in MDA468 and hCC1806 triple negative cells, but not in MCF12A 
non-transformed cells. (B) immunoblots for phosphorylated serine 1189 and serine 1280 (ATM phosphorylation sites) were performed on lysates (50 µg) 
from MDA468 cells treated with curcumin (10 µM) for 6 or 24 h or ethanol, E, for 24 h. Curcumin induced transient phosphorylation of both residues 
by 6 h, suggesting short-term activation of ATM by curcumin.
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the HCC1806 line as a model. Curcumin inhibited 
NF-kB transcription factor function (Fig. 3A) and 
phosphorylation of p65 NF-kB (Fig. 3B). Next, we 
compared an IKK inhibitor (wedelolactone) to curcumin 
for effects on BRCA1 phosphorylation and expression 
to determine whether curcumin-mediated changes in 
BRCA1 expression and phosphorylation may be due 
to IKK inhibition. IKK is an upstream kinase of NF-kB 
that inhibits NF-kB function; curcumin is thought to 
inhibit NF-kB via IKK activation. Wedelolactone did not 
induce phosphorylation or total expression of BRCA1 

in contrast to curcumin (Fig. 3C). Thus, since the IKK 
inhibitor wedelolactone did not induce modulation of 
the BRCA1 protein, curcumin-mediated changes in 
BRCA1 may be independent of IKK inhibition.

Curcumin induces DnA damage and 
cytoplasmic localization of BRCA1 in 
triple negative cells with wild-type brca1
Phosphorylation of ATM/chk2-specific sites on 
BRCA1 suggests that curcumin may be inducing 
DNA damage in TNBC cells. To test this hypothesis, 
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Figure 3. Modulation of BRcA1 in response to curcumin appears to be independent of nF-kB inhibition. (A) hCC1806 cells were untreated, 
treated with 10 µM curcumin or corresponding volume of ethanol for 6 h (6) or 24 h (24), and then lysed for nuclear protein. DnA binding activity of 
nF-kB was determined for nuclear extracts using nF-kB (p65) Transcription Factor Assay colorimetric kit (Cayman Chemical). samples were run in 
duplicate. Fold change of the average of each sample relative to the average of untreated samples was determined; error bars reflect standard deviation 
between duplicates. Curcumin inhibited nF-kB transcription factor activity in hCC1806 cells. (B) hCC1806 cells were treated with 10 µM curcumin 
(Curc) or corresponding volume of ethanol (E) for 6 h or 24 h. Total protein lysates (50 µg) were immunoblotted for phosphorylated and total p65 nF-kB. 
Curcumin inhibited phosphorylation of p65 nF-kB consistent with inhibition of nF-kB function. (c) hCC1806 cells were treated with 10 µM of iKK inhibitor 
wedelolactone (Wedelo) or corresponding volume of solvent DMso for 6 h or 24 h. Total protein lysates (50 µg) were immunoblotted for phosphorylated 
and total BRCA1. in contrast to curcumin, wedelolactone did not induce phosphorylation of s988 on BRCA1 or expression of total BRCA1, suggesting that 
modulation of BRCA1 may occur independently of iKK inhibition.
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we examined phosphorylation of serine 139 on histone 
H2Ax (gamma-H2Ax), which occurs in response 
to DNA double-strand breaks. Immunofluorescence 
showed gamma-H2Ax (GFP) foci in curcumin-treated 
MDA468 cells but not in control ethanol-treated cells 
(Fig. 4A). Collectively, these results indicate that 
curcumin induces DNA damage in triple negative breast 
cancer cells, which is associated with phosphorylation 
and expression of the BRCA1 DNA repair protein.

Nuclear localization of BRCA1 is necessary 
for activation of its transcription factor and DNA 
repair activity. In response to a DNA damaging 
agent, cytoplasmic retention of BRCA1 may occur, 
preventing DNA repair and promoting apoptosis. 
Immunofluorescence showed that BRCA1 is expressed 
in both the cytoplasm and nucleus in 80%–100% of 
control (ethanol-treated) HCC1806 and MDA468 
cells (Figs. 4B and 4D). However, in the presence of 
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Figure 4. curcumin induces DnA damage and cytoplasmic localization of BRcA1. (A) MDA468 cells were treated with ethanol, E, or curcumin, 
C (10 µM), for 24 h. Cells were fixed, stained with phospho-gamma H2Ax antibody followed by secondary antibody conjugated to green fluorescent 
protein (GFP). Phospho-gamma H2Ax foci (arrow) and DAPI nuclear staining were detected by immunofluorescent microscope. Representative DAPI, 
GFP (phospho-gamma H2Ax), and merged DAPI plus GFP photographs are shown using 100X objective lens. (B) hCC1806 and MDA468, and (c) 
hCC1937 and MCF12A cells were treated with ethanol or curcumin (10 µM) for 24 h. Cells were fixed, stained with anti-BRCA1 mouse antibody, followed 
by secondary GFP-conjugated anti-mouse antibody. BRCA1 localization was detected by immunofluorescent microscope. Representative photographs 
are shown using 4X objective lens. (D) Cells from (B) and (C) above that were in the ethanol, E, and curcumin, C, treatment groups were counted in five 
random non-overlapping fields for nuclear + cytoplasmic, N + C, versus cytoplasmic, C, staining only. error bars represent standard deviation between the 
five fields per treatment group per line. Curcumin increased BRCA1 localization in the cytoplasm in HCC1806 and MDA468 cells (p  0.001), but did not 
show statistically significant changes in localization in HCC1937 and MCF12A cells.
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curcumin (10 µM), the percentage of cells showing 
only cytoplasmic localization of BRCA1 is increased 
by 3-fold for MDA468 cells and 6-fold for HCC1806 
cells. Both lines showed at least 60% of cells with 
cytoplasmic sequestration of BRCA1 protein upon 
treatment with curcumin, a statistically significant 
(p  0.001) change versus the control cells (Fig. 4D). 
On the other hand, 60% of control HCC1937 cells 
showed BRCA1 localized to the cytoplasm, and 
curcumin exposure did not change that percentage 
(Figs. 4C and 4D). Similarly, MCF12A cells did not 
show statistically significant changes in cytoplasmic 
localization of BRCA1 in response to curcumin. 
Thus, BRCA1 localization is shifted to the cytoplasm 
upon curcumin treatment in the triple negative 
cell lines MDA468 and HCC1806, which have 
wild-type brca1, but not in the mutant brca1 cell 
line HCC1937, nor in non-transformed mammary 
epithelial MCF12A cells. These results indicate that 
curcumin promotes cytoplasmic retention of BRCA1 
in triple negative breast cancer cells that have 
functional BRCA1.

Curcumin promotes cell death  
and inhibits anchorage-independent 
growth and migration of triple negative 
breast cancer cells
Cytoplasmic retention of DNA repair protein BRCA1 
suggests that TNBC cells MDA468 and HCC1806 
may be unable to repair curcumin-mediated DNA 
damage and may undergo apoptosis in response to 
curcumin exposure. In addition, lack of functional 
BRCA1 suggests that HCC1937 cells may have 
an impaired ability to repair DNA damage, and 
may undergo apoptosis upon treatment with a 
DNA damaging agent. We examined the biological 
response of TNBC cell lines to curcumin using trypan 
blue exclusion viability assays (Fig. 5A). Curcumin 
induced dose-dependent cell death within 72 h of 
treatment in all three TNBC lines. In contrast to TNBC 
cells, the non-transformed mammary epithelial line 
MCF12A did not display dose-dependent cell death 
in response to curcumin. Statistical analysis showed 
that each of the three TNBC lines showed significantly 
higher response to curcumin at all doses examined 
(p  0.005 at 10 µM, p  0.05 at 5 µM and 20 µM) 
in comparison to MCF12A cells. Non-TNBC lines 

MCF7 (ER-positive), SKBR3 (HER2-positive), and 
BT474 (ER-positive and HER2-positive) also respond 
to curcumin in a dose-dependent manner. However, 
the TNBC lines HCC1806 and HCC1937 showed 
statistically significant (p  0.007) higher responses 
to 10 µM curcumin in comparison to non-TNBC lines 
(Fig. 5B). MDA468 cells showed a trend toward being 
more sensitive than MCF7, SKBR3, and BT474, but 
this was not statistically significant (p = 0.16, p = 0.14, 
p = 0.06, respectively). These dose-response profiles 
indicate that curcumin induces cell death in breast 
cancer cells, with triple negative breast cancer cells 
showing a trend toward increased sensitivity versus 
ER-positive/HER2-over-expressing cells.

To further examine if curcumin induces apoptosis 
of TNBC cells, cleavage of poly (ADP-ribose) 
polymerase (PARP) (Fig. 5C) and expression of 
anti-apoptotic protein survivin (Fig. 5D) in response to 
curcumin were measured in MDA468 and HCC1806 
cells by immunoblotting. During apoptosis, the 
full-length 116-kDa PARP protein is cleaved in a 
caspase-dependent manner into an 89-kDa fragment. 
Curcumin induced cleavage of PARP at 5 µM and 
15 µM doses in both MDA468 and HCC1806 cells. 
In contrast, PARP cleavage was not observed in 
MCF12A cells, consistent with dose-response assays 
indicating that curcumin does not induce death of non-
transformed MCF12A cells. In addition, curcumin 
(10 µM) reduced expression of survivin in MDA468 
and HCC1806 cells within 24 h, consistent with 
induction of apoptosis.

We next evaluated the effect of curcumin on 
anchorage-independent growth of TNBCs (Fig. 6A). 
In comparison to ethanol-treated control cultures, 
15 µM curcumin resulted in statistically significant 
prevention of anchorage-independent growth of 
all TNBC cell lines (Fig. 6B). To assess the ability 
of curcumin to prevent migration of TNBCs, we 
performed in vitro wound healing or “scratch” 
assays on HCC1806 (Fig. 6C) cells. (MDA468 and 
HCC1937 cell lines do not migrate well in vitro, and 
thus were not used for this assay). Curcumin (15 µM) 
inhibited HCC1806 cell migration in comparison 
to ethanol-treated control cells, which migrated to 
close wounds almost completely within 24 h. Thus, 
curcumin promotes apoptosis and blocks anchorage-
independent growth and migration of triple negative 
breast cancer cells.
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Figure 5. curcumin promotes cell death of triple negative breast cancers. (A) Triple negative MDA468, hCC1806, and hCC1937, and eR+/heR2-
over-expressing BT474, heR2-over-expressing sKBR3, eR+ MCF7, and non-transformed MCF12A cells were treated with 5, 10, or 20 µM curcumin for 
72 h. Control cells were treated with ethanol corresponding to the highest dose of curcumin, since curcumin is dissolved in ethanol. surviving cells were 
counted by trypan blue exclusion. For each treatment group, cell viability is shown as a percentage of the ethanol control group per line. experiments 
were done in duplicate or triplicate at least twice. error bars represent standard deviation between replicates. in comparison to MCF12A non-transformed 
mammary epithelial cells, curcumin inhibited viability of all cancer lines (**p  0.005 at 10 µM and 20 µM). (B) Results from the experiment in (A) are shown 
for the 10 µM curcumin dose for comparison of triple negative breast cancer (TnBC) and non-TnBC cells. TnBC cells hCC1806 and hCC1937 showed 
statistically significant (**p  0.007) higher sensitivity to curcumin versus non-TnBC lines. MDA468 cells showed a trend of being slightly more sensitive 
to curcumin than non-TNBC cells, although this difference was not statistically significant (p = 0.16, p = 0.14, p = 0.06, respectively for MDA468 versus 
MCF7, sKBR3, BT474). (c) Cells were treated with ethanol, E, corresponding to highest dose of curcumin, 5 µM curcumin, or 15 µM curcumin for 24 h. 
Total lysates (50 µg) were immunoblotted for PARP and actin. HCC1806 and MDA468 showed significant cleavage of PARP consistent with induction of 
apoptosis within 24 h of curcumin treatment. MCF12A cells did not show evidence of PARP cleavage in response to curcumin, consistent with trypan blue 
results in (A) which demonstrate that MCF12A non-transformed mammary epithelial cells are not sensitive to curcumin at these doses and time points. 
(D) hCC1806 and MDA468 cells were treated with ethanol, E, as a control or 10 µM curcumin for 6 or 24 h. Total lysates (50 µg) were immunoblotted for 
survivin and actin. Curcumin suppressed expression of the anti-apoptotic protein survivin within 24 h, consistent with induction of apoptosis.

Discussion
The current study demonstrates that curcumin 
induces DNA damage and apoptosis in triple negative 
breast cancer cells in association with increased 
expression, phosphorylation, and cytoplasmic retention 
of the BRCA1 protein. Phosphorylation occurred on 
ATM- and chk2-specific sites of BRCA1, consistent 
with activation of a DNA damage response. In addition, 
phospho-gamma H2Ax foci were detected in curcumin-
treated cells, indicating that the type of  DNA lesion 
produced by curcumin is a double-strand break. Ultimately, 
although curcumin-mediated DNA damage caused 

increased expression and phosphorylation of the DNA 
repair protein BRCA1, the cytoplasmic retention of 
BRCA1 likely prevents DNA repair from occurring. 
Thus, cells ultimately undergo apoptosis in response 
to curcumin.

In contrast to TNBC cells, DNA damage and 
apoptosis were not observed in curcumin-treated 
non-transformed mammary epithelial MCF12A 
cells. These results suggest that curcumin may 
target cancer cells, with limited non-specific toxicity 
toward non-cancerous cells. The mutant brca1 
HCC1937 line did not show increased cytoplasmic 
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Figure 6. curcumin inhibits anchorage-independent growth and migration of triple negative breast cancer cells. Cells plated in matrigel were 
treated with ethanol, E, corresponding to highest dose of curcumin, 5 µM curcumin, or 15 µM curcumin. Media plus drug (or ethanol) was changed twice a 
week for two weeks. Experiments were done in duplicate and performed twice. (A) Representative photographs are shown using 4X objective lens with a 
202-µm magnification bar shown at the right of photo. (B) For HCC1806 and MDA468 cells, matrigel was dissolved using dispase and cells were counted 
by trypan blue exclusion. Because of clumping, hCC1937 colonies were counted by microscopic examination. number of viable colonies is shown as a 
percentage of the control per line. error bars represent standard deviation between replicates. Curcumin inhibited anchorage-independent colony growth 
in a dose-dependent manner in HCC1806, MDA468, and HCC1937 cells, with statistically significant (*p  0.05) inhibition at 15 µM curcumin in all three 
lines. (C) HCC1806 cells were plated at confluence. The next day cells were scratched down the middle and then treated with ethanol or 15 µM curcumin 
for 24 h. Representative photos taken with 4X objective lens are shown for 0 h (no curcumin or ethanol treatment) and 24 h. Arrow shows closed wound in 
control cells, indicating migration of hCC1806 cells within 24 h in presence of ethanol, whereas curcumin prevented migration of hCC1806 TnBC cells.

retention of BRCA1 in response to curcumin, 
most likely because BRCA1 is non-functional in 
these cells and does not need to be shuttled to the 
cytoplasm in order to prevent its activity. HCC1937 
cells did undergo significant apoptosis upon 
curcumin treatment, however, indicating that mutant 
brca1 TNBC (usually the inherited form) may 
also benefit from curcumin-based therapy. Since 
most sporadic TNBCs have down-regulated wild-
type brca1, similar to HCC1806 cells, a majority of 
TNBCs may benefit from curcumin-based treatment 
strategies.

Curcumin has been well-studied as a potential 
anti-cancer agent for the past decade.1 Multiple 
mechanisms of action including inhibition of 
NF-kB and STAT3 transcription factor activities 
have been proposed. Ours is the first study to show 
that curcumin actually promotes DNA damage 
with subsequent effects on the BRCA1 DNA repair 
protein. Interestingly, these results are consistent 
with other studies showing that indole-3-carbinol 
(derived from cruciferous vegetables) and resveratrol 
(derived from red grapes) induce expression of 
BRCA1.30,31 Collectively, these studies point toward 
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a trend of diet-derived polyphenol compounds in 
modulating the BRCA1 protein in cancer cells. 
Since BRCA1 dysfunction is linked to TNBC, and 
since our results show apoptotic effects of curcumin 
in TNBC, a potential role for dietary compounds in 
prevention or complimentary treatment of TNBC 
warrants further study.

Our findings also showed a trend of triple negative 
breast cancer cells being more sensitive to curcumin 
than non-TNBCs, suggesting a potential new line of 
therapy for this subset of breast cancers. In addition 
to inducing cell death, curcumin prevented migration 
and anchorage-independent growth of TNBCs. 
Anchorage-independent growth is a hallmark of 
transformed cells, representative of the fact that 
cancer cells can proliferate in the absence of cell 
adhesion,33 and in vitro migration may predict the 
metastatic potential of a cancer cell line. Inhibition 
of anchorage-independent growth and migration are 
thus considered important pre-clinical support for the 
potential efficacy of an experimental therapeutic. Based 
on these results, curcumin has potential anti-cancer 
efficacy against TNBCs. Curcumin may also benefit 
non-TNBCs, as shown by our dose-response data; 
however, the results for TNBCs are particularly 
exciting, as currently available treatments for TNBCs 
are extremely limited.

A significant limitation for the clinical use of 
curcumin is its poor bioavailability.1 Several analogues 
of curcumin have been chemically synthesized and 
show increased potency and bioavailability relative 
to the parental compound.34,35 In addition, strategies 
for modified delivery of curcumin including polymeric 
nanoparticle-encapsulated curcumin (“nanocurcumin”), 
liposomal preparations, and phospholipid complex 
formulations are being developed and tested for 
improved bioavailability and potency in vivo.36,37 Based 
on our results, studies examining curcumin analogues 
and improved approaches for delivering curcumin to 
triple negative breast cancers are warranted. These 
future studies should include in vivo xenograft studies 
of the efficacy of curcumin analogues against TNBCs, 
which we have not done with the parental compound 
due to the issue of limited bioavailability. In addition, 
combination effects of curcumin analogues with 
currently used chemotherapeutic agents (taxanes, 
cisplatin, and anthracyclines) in TNBC should be 
examined.

In summary, we report here that curcumin induces 
DNA damage and modulates BRCA1 protein 
expression, phosphorylation, and cellular localization 
in triple negative breast cancer cells with wild-type 
brca1, but not in a cell line with mutant brca1, 
nor in non-transformed mammary epithelial cells. 
DNA damage and cytoplasmic retention of BRCA1 
post-curcumin treatment are associated with apoptosis 
of TNBC cells. Treatment options for patients with 
TNBC who relapse after chemotherapy are currently 
limited. Identification of novel anti-cancer agents 
such as curcumin and potentially curcumin analogues 
could provide a novel, non-toxic therapy for patients 
with TNBCs, which could lead to improved survival.
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