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Simple Summary: Genes dictate the grounds of life by comprising molecular bases which encode
proteins. A mutation represents a gene modification that may influence the protein function. Cancer
occurs when the mutation triggers uncontrolled cellular growth. Judging by the cancer expansion,
mutations labelled as drivers confer a growth advantage, while passengers do not contribute to
this augmentation. The aim of this study is methodological, which assesses the usefulness of a
classification method for distinguishing between driver and passenger mutations. Based on 51
molecular characteristics of mutations and genes, including 3 novel features, multiple machine
learning algorithms were used to determine whether these characteristics biologically represent the
driver mutations and how they impact the classification procedure. To test the ability of the present
methodology, the same steps were applied to an independent dataset. The results showed that both
gene and mutation level characteristics are representative of the driver mutations, and the proposed
approach achieved more than 80% accuracy in finding the true type of mutation. The evidence
suggests that machine learning methods can be used to gain knowledge from mutational data seeking
to deliver more targeted cancer treatment.

Abstract: Sporadic cancer develops from the accrual of somatic mutations. Out of all small-scale
somatic aberrations in coding regions, 95% are base substitutions, with 90% being missense muta-
tions. While multiple studies focused on the importance of this mutation type, a machine learning
method based on the number of protein–protein interactions (PPIs) has not been fully explored. This
study aims to develop an improved computational method for driver identification, validation and
evaluation (DRIVE), which is compared to other methods for assessing its performance. DRIVE aims
at distinguishing between driver and passenger mutations using a feature-based learning approach
comprising two levels of biological classification for a pan-cancer assessment of somatic mutations.
Gene-level features include the maximum number of protein–protein interactions, the biological pro-
cess and the type of post-translational modifications (PTMs) while mutation-level features are based
on pathogenicity scores. Multiple supervised classification algorithms were trained on Genomics
Evidence Neoplasia Information Exchange (GENIE) project data and then tested on an independent
dataset from The Cancer Genome Atlas (TCGA) study. Finally, the most powerful classifier using
DRIVE was evaluated on a benchmark dataset, which showed a better overall performance compared
to other state-of-the-art methodologies, however, considerable care must be taken due to the reduced
size of the dataset. DRIVE outlines the outstanding potential that multiple levels of a feature-based
learning model will play in the future of oncology-based precision medicine.
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1. Introduction

Sporadic cancer develops from the accrual of somatic mutations that affect the physi-
ological function of genes [1]. Somatic mutations can be divided by size into small-scale
and large-scale somatic mutations. The largest proportion of small-scale somatic mutations
include point mutations, substitutions, inversions, insertions and deletions. If the point
mutations occur inside the coding region of the genome, they can be further categorised as
synonymous—which are silent, normally resulting in the same amino acid being produced
and nonsynonymous—which can result in a different amino acid or other abnormalities
affecting the protein structure [2,3]. Nonsynonymous mutations can be additionally par-
titioned into missense mutations, in which a different amino acid being produced may
impact the protein function, thus resulting in a pathogenic effect, and account for the
majority of the nonsynonymous mutations, nonsense mutations, where a stop or nonsense
codon is produced and essential splice site mutations, in which a change occurs in the site
where the splicing takes place [3,4]. Exploring missense mutations is of utmost importance,
since they account for more than 90% of the base substitutions present in the genome
coding regions [2].

The completion of large scale genome sequencing projects including The Cancer
Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) has
fostered the development of multiple bioinformatics algorithms for identifying the role
of somatic mutations in cancer [5,6]. Positive selection is the main evolutionary force in
cancer, leading to the accumulation of driver mutations in critical genes responsible for
tumour proliferation [3]. In contrast, passenger mutations are somatic mutations which
occur during cell division but have no functional consequence. The main challenge remains
the classification of mutations into driver mutations, which give a fitness advantage to the
cell and are under selective pressure and passenger mutations [7,8]. Cancer genomes are
also under the selective pressure of negative selection (or purifying selection) that sup-
presses mutations that are counterproductive for tumour growth (e.g., by eliciting immune
response or synthetic lethality) [3]. It was recently suggested that negative selection may
play a much more substantial role than was previously estimated [9]. A robust approach
has applied the ratio between nonsynonymous and synonymous substitutions in different
types of tumours to predict patterns of selection and catalogue cancer genes [3].

Missense mutations have also been shown to selectively target protein–protein in-
teractions (PPIs) in cancer, possibly contributing to the tumour heterogeneity; therefore,
protein interaction interfaces may reveal new processes by which positive selection occurs
in cancer [10]. However, this particular area has been overlooked in recent analyses despite
its potential clinical relevance. Previous work had focused on generating statistical models
which are based on the frequency of the mutations, which are expected to occur at a much
higher rate compared to the background [11]. While this methodology generated valuable
insights by finding common drivers, because it is based on a gene-level investigation, it is
often impractical in finding rare driver mutations, since the long-tail hypothesis suggest
that cancer driver mutations include few frequent drivers and more unusual ones [12].
Therefore, a supervised feature-based learning methodology is generally regarded as the
most practical, since it can be used to extract insights from a biological feature perspective
using modern computational resources, while not being influenced by the drawbacks
of statistical methods. Nevertheless, distinguishing between a driver and a passenger
mutation still presents a classification challenge, due to a lack of a standard definition for a
driver mutation and no standard class labels that could be used for machine learning tasks.

The primary purpose of this study is methodological, aiming towards developing
a new machine learning approach for driver identification, validation and evaluation
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(DRIVE) that can predict if a somatic mutation is a driver or a passenger, based on features
at both gene and mutation levels integrating molecular characteristics derived from PPIs
and pathway analysis. Since passenger mutations are also found in well-established driver
genes [2], it has been suggested that more specificity could be achieved by shifting the
analysis from a gene perspective to a mutation level [13], without completely eliminating
the gene-level characteristics. Within the framework of these criteria, both level features—
including novel gene features such as the maximum number of PPIs, the biological process
it belongs to and the type of post-translational modifications (PTMs) that the protein
product is undergoing will be collected in an attempt to understand if they are a true
representation of the driver mutations. Ultimately, the integrative analysis of those features
within a machine learning framework may help to identify novel rare driver mutations and
discover patterns for patient-specific drivers that can be exploited for targeted therapeutics.

2. Methods

A simplified diagram of the main computational steps can be seen in Figure 1, while a
more detailed overview including all the pre-processing stages can be seen in Supplemen-
tary Figure S1: Detailed overview of the computational workflow.

Figure 1. Overview of the main steps of the current approach.

2.1. Data Acquisition and Pre-Processing

The pan-cancer mutation dataset was obtained from the Genomics Evidence Neoplasia
Information Exchange (GENIE) project (v6.0, variants having been aligned corresponding
to GRCh37 build of the reference genome), which is supported by the American Association
for Cancer Research (AACR) and employs 19 cancer centres on an international level [14].
It is currently the largest fully public registry of cancer, aiming to provide high-quality
mutational data based on gene panels, which are considered highly relevant within 80
major types of cancer. The original Mutation Annotation Format (MAF) file—initially
created for the TCGA project—comprises multiple types of somatic alterations along with
other descriptors which can be found in the GENIE data guide [15,16]. The sequencing
strategy involves targeting gene panels including hotspot regions and all exons coverage.
Since the type of analysis is pan-cancer based, all samples were considered and not filtered
by the cancer type. Additionally, due to the high-quality content of the GENIE dataset, all
the mutations are already passing all quality filter parameters.

2.2. Feature Extraction

The current approach utilises 51 features at both gene and mutation levels. A detailed
description of each feature, as well as the original source, can be found in the Supplementary
Table S1: Features, detailed description and the original data source.

2.2.1. Gene-Level Features

The structural features include 3 broad categories. Firstly, the maximum number of
PPIs was extracted from the Integrated Structural Interactome and Genomic Data Browser
(Interactome INSIDER). The highest confidence interfaces include either interactions based
on their Protein Data Bank (PDB) structure, homology models or potential interfaces from
the Ensemble Classifier Learning Algorithm to predict the Interface Residues (ECLAIR)
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algorithm. ECLAIR is a machine learning framework that predicts interactions according
to biophysical, structural and docking-based metrics, having an estimated precision of
0.69 for high and very high confidence interfaces [17]. Secondly, the biological process
category to which the gene sets used for the PPIs interfaces belong to were extracted
from MSigDB (v7.1) using a msigdbr R package based on gene set enrichment analysis
(GSEA) [18,19]. The enrichment was performed with a 0.05 p-value cutoff using the
Benjamini–Hochberg adjustment method for multiple comparisons and a q-value cutoff of
0.05 [20]. The minimum gene set size for the enrichment was set to 20, while the maximum
was agreed at 500 based on literature evidence that a very small set size would include
redundant pathways, while a very large gene set size would lead to an overly imprecise
result [21]. This particular feature which comprises 9 biological processes (which can
be expanded to 50 hallmarks) was selected, since there is evidence of driver mutations
triggering certain molecular pathways. Nonetheless, these processes present different
properties due to tumour heterogeneity, suggesting that the mutation patterns can help
identify which pathway events are linked to causing cancer [22]. Thirdly, the types of
PTMs a certain protein undergoes were extracted from PhosphoSitePlus (v6.5.9.2). This
database comprises PTMs mostly determined from new mass spectrometry data, or having
been previously determined using at least 1,000,000 spectra [23]. Throughout the use of
PTM data, it was revealed that regions prone to lysine modifications showed a critical
functional impact in driving cancer and a potential tool for treatment or diagnosis [24],
therefore taking these modifications into account was geared towards their potential new
insights into cancer characterisation based on specific PTMs. Ratiometric features include
characteristics based on the structure of the mutations which were normalised by the
total mutations in a specific gene. These features were already extracted from the 20/20+
study founded on a simplification of the 20/20 rule, which is based on a decision tree that
classifies genes into oncogenes, tumour suppressor genes and passengers with regards to
the threshold scores [25]. They comprised multiple categories, including the length of the
reference transcript, the fraction of silent mutations, nonsense mutations proportion, splice
site mutations or recurrent missense mutations, ratios of missense to silent mutations and
non-silent to silent mutations. Furthermore, these scores include the gene prediction of
being an oncogene, tumour suppressor gene or a passenger which was generated using a
random forest approach.

2.2.2. Mutation-Level Features

Features on a mutation-level were computed using the web interface of Variant Effect
Predictor (VEP) based on Ensembl genome database (release 100, April 2020), which anno-
tates genomic variants based on their consequence [26]. Sorting Intolerant From Tolerant
(SIFT) and Polymorphism Phenotyping (PolyPhen) scores were chosen, as they show the
potential impact of amino acid substitutions on the protein function [27,28], while Con-
sensus Deleteriousness (Condel) scores indicate the probability of a single base mutation
of being deleterious [29]. Thus, a SIFT score of 0 represents the most deleterious variant
while a PolyPhen or a Condel score of 1 shows the variant with the highest deleterious
potential. Additional rank scores were extracted from the database for Nonsynonymous
SNPs’ Functional Predictions (dbNSFP), which provides pathogenicity scores from mul-
tiple popular algorithms [30]. The highest rank score for each mutation was chosen and
then the average value between all scores was calculated based on the rationale that the
highest rank score will show the potentially most damaging effect, while the arithmetic
mean will reflect the overall pathogenic consequence. A full list of all rank scores used for
the computation can be found in Supplementary Table S2: List of features used to compute
the average rank score.

2.3. Labels Compilation Using Statistical Modelling

Considerable care must be taken when generating the true class labels, since there
is no standard protocol for generating driver mutations labels, due to a lack of a uni-
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versal definition for what is regarded as a driver mutation. Therefore, the labels were
extracted from a frequency-based model study, which categorised the mutations as drivers
or passengers based on mutational hotspots [31]. During this study, it was determined
that more than half of the analysed tumours have a mutational hotspot, affecting at least
275 protein-coding genes. These regions are defined as specific positions of the amino acids
included in a gene that encodes a protein that suffers point mutations more frequently than
in the absence of the positive selection. The statistical significance is based on a binomial
probability including the mutation rate in cancer and patterns of mutational selection
which present gene specificity. This labelling system was regarded as the best procedure
for the proposed methodology, since it comprises hotspots not only at a whole-genome
level but encompassing a pan-cancer magnitude considered critical for the purpose of
this analysis.

2.4. Feature-Based Learning and Performance Evaluation
2.4.1. Addressing the Class Imbalance Problem

The initial dataset was imbalanced, with labels for driver mutations occurring in
a much less number compared to the passenger mutations. To address this problem,
undersampling was used, which included removing random rows from the majority class
until both classes have the same number of occurrences [32]. Although this method suffers
from losing important data, it was preferred, since the alternative solution is oversampling,
which can be prone to overfitting.

2.4.2. Pre-Processing

For all models, to account for variation due to different datasets being merged, scaling
was applied as a pre-processing step which subtracts the mean value and then divides by
the standard deviation, therefore transforming the mean to 0 and the standard deviation
to 1.

2.4.3. Resampling Method

K-fold cross-validation (k = 10) was used as the resampling procedure, based on the
fact that it is known to reduce selection bias and overfitting by retaining one subsample as
the validation data, while the other k − 1 subsamples are used for training [33]. Then, the
procedure is repeated k times until each subsample is used for validation.

2.4.4. Training

All models were trained using the caret R package and its dependencies for supervised
learning methods including random forest, decision tree, extreme gradient boosting (EGB),
support vector machines (SVM), k-nearest neighbours (KNN), logistic regression and
multilayer perceptron (MLP) [34]. A full list of all required packages can be found on the
GitHub repository. At this stage of the investigation, pruning techniques have not been
applied, so that all features were considered for assessing the ranked feature importance
for the most powerful classifier at a later point of the analysis.

2.4.5. Hyperparameters Optimisation

Hyperparameters optimisation steps were included automatically in the train function
of the caret package, where 10 random values were used for each parameter of each
model. At last, the values which showed the best performance adjudicating by the receiver
operating characteristics (ROC) metric were retained as the final model. A list of the final
hyperparameters chosen, as well as a brief description of each parameter, can be found in
Table S3: Final hyperparameters values and description.
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2.4.6. Performance Evaluation Measures

The performance was evaluated using multiple metrics including accuracy, preci-
sion, recall, F1-score, and area under the curve of a ROC curve (AUC-ROC), which were
computed using a confusion matrix between the predicted and the true class labels [35].

2.4.7. Feature Importance

To assess the feature weight of the classifier that showed the finest performance,
feature importance was computed using the mean decrease in accuracy (MDA) and the
mean decrease in impurity (MDI), using the varImp function of the caret package [34]. The
former evaluates the importance by removing the link between a specific feature and the
target classes while applying permutations and returning the increase in the error rate.
The latter calculates feature importance as the total number of occurrences of a feature
throughout all splits, however, it is also known that this importance weighting method
suffers from biases arising from multiple testing inside the splits since variables where more
splits are applied tend to appear more often inside the tree than is expected by chance [36].

2.5. Testing on an Independent Dataset

On the grounds of the model being trained only on the dataset presented above, it was
decided that the best approach would be to predict the results on an independent dataset
and further assess the performance. For this purpose, the same data format was extracted
from the CHASMplus study, a dataset that belongs to the TCGA project (v0.2.8) and
comprises somatic mutation calls commonly referred to as multi-center mutation calling
in multiple cancers (MC3) [13]. The same procedure for data pre-processing and feature
extraction was followed as stated in steps 1 and 2 of the methodology. After addressing the
class imbalance problem, the final dataset comprised 3914 mutations with equal numbers of
positive and negative classes. This dataset already included class labels that were based on
a semi-supervised approach following three conditions [13]. Firstly, the mutation needed
to occur in a curated set of 125 pan-cancer established genes [2]. Secondly, for a specific
type of cancer, the mutation ought to be in a significantly mutated gene for that cancer
type [37]. Thirdly, the mutation had to take place in an area with a mutation rate under
500 mutations, which has been defined as a hypermutator threshold. A critical point to
consider at this stage is that this semi-supervised procedure used for labels follows a cluster
adherence assumption based on the rationale that driver mutations occur in well-known
significantly mutated driver genes for specific cancer types [13]. Therefore, all mutations
fulfilling the aforementioned conditions were classified as drivers, while the remaining
mutations received a passenger label.

2.6. Performance Evaluation on the Benchmark Dataset

For assessing the performance of the highest-scoring classifier, a benchmark dataset
provided by the MutaGene computational framework was used [38]. This dataset com-
prises predictions for each mutation of being a potential driver or potential passenger,
which were assembled from various experimental studies of multiple mutational patterns
derived from large-scale projects such as TCGA and ICGC, which benefit from being
corrected for biases arising from mutational hotspots or background DNA mutation rates.
The combined annotation was mainly based on the Catalogue Of Somatic Mutations In
Cancer (COSMIC, v75), classifying mutations into neutral and non-neutral [39], thus for
the present evaluation, these represented the true class labels. Performance assessment
was done using the random forest model to predict on the benchmark dataset, while also
using CHASMplus (v1.2.0) through Open Custom Ranked Analysis of Variants Toolkit
(OpenCRAVAT) web server for extracting the mutation probability of being a driver [40].

3. Results

Training data were collected from the GENIE project [14], and after filtering comprised
357,778 missense mutations across 59,692 samples. Based on the evidence that missense
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mutations can target PPIs [10], the maximum number of high-quality interactions for each
protein were extracted from the computationally curated Interactome INSIDER structural
database ranging from 1 to 290 interactions [17]. This feature was chosen because it
has been shown that missense mutations linked to cancer can target PPIs, conceivably
contributing to tumour heterogeneity [10]. For investigating the impact of biological
processes disturbed in cancer [22], 1390 groups of genes linked by known interactions were
extracted from MSigDB, comprising 9 non-redundant biological processes which were
extracted based on the GSEA [18,41] and an additional number of 50 molecular signatures
which could extend the analysis to gene-specific pathways. A number of 13 different PTMs
occurring on 9 types of residues were manually extracted from PhosphoSitePlus, based
on the rationale that certain amino acid residues such as lysine are specifically affected
in driver genes [24]. Based on the 20/20+ study, an additional number of 24 ratiometric
features were added to the dataset, since previous research has shown that ratios such as
missense to silent mutations may play a distinctive role in driver mutation classification [25].
Finally, VEP was used to extract mutation-level features including SIFT, PolyPhen and
Condel rank scores. Moreover, the computed average based on other pathogenicity scores
was added to the mutation-level features based on the rationale that this feature may
improve driver detection by eliminating the false positives arising due to driver gene
labelling [13,42]. After adding the labels based on mutational hotspots, undersampling
was used for addressing the imbalanced class problem. Therefore, an equal number of
12,297 of both driver and passenger mutations was used, since an imbalanced dataset
can show discrepancies between different iterations and it is also prone to overfitting [32].
Features at both levels were collected, each level being expected to reveal distinct molecular
characteristics which could potentially be exploited in the context of cancer driverness. The
current approach utilises a total number of 51 features across gene and mutation levels. On
the final dataset, multiple state-of-the-art supervised machine learning algorithms were
applied, of which the results from the ones with the highest performance were presented
including random forest, logistic regression, EGB, KNN, SVM, logistic regression and MLP.

3.1. Performance Evaluation of the Machine Learning Models

For each machine learning approach, a set of 10 hyperparameter combinations, which
are model parameters set before starting the machine learning procedure, were used to
determine the best variables. The full set of hyperparameters values and their description
can be found in Supplementary Table S3. Thus, by resampling each combination, estimates
for the performance measure were extracted and those corresponding to the best outcome
were used for the 10-fold cross-validation learning process. For each final model, the
confusion matrix was used to extract the performance metrics which show the average
performance across all folds. As it can be seen in Table 1, from all models, the random forest
has the best AUC-ROC, while the decision tree model shows the best performance based
on the other performance metrics. Broadly speaking, random forest, logistic regression
and decision trees show better performance compared to the other models. Nevertheless,
the MLP classifier did not present an adequate performance for this type of classification
problem compared to the other ensemble methods. Multiple variants of MLP were trained
on the same dataset, but their performance was significantly lower, therefore due to the
nature of the data, it was considered that this category of artificial neural networks was not
suitable for this classification purpose.

For a better visual representation of the true positive rate (TPR) over the false positive
rate (FPR), the ROC curves for each model were plotted using pROC R package [43], as can
be seen in Figure 2. Random forest classifier indicates the best performance (AUC-ROC =
0.819) which is regarded as in almost 82% of the cases, the model will correctly assign a
driver to its true label category.
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Table 1. Performance evaluation of training the supervised classification models. The performance
metrics (accuracy, precision, recall, F1-score and AUC-ROC) show how well each classifier performed
using the full set of 51 features. Based on AUC-ROC, the random forest model had the leading
performance after 10-fold cross-validation and hyperparameter optimisation. A default threshold of
0.5 was used for computing the two-class summary. A detailed description of each hyperparameter
(such as the randomly selected predictors, splitting rule and the minimal node size for the random
forest classifier) can be found in Supplementary Table S3. The R code used to produce the performance
metrics and the hyperparameter values can be found in the GitHub repository: https://github.com/
ccgenomics/DRIVE-ML (accessed on 24 April 2021).

Algorithm Accuracy Precision Recall F1-Score AUC-ROC

Random forest 0.734 0.741 0.718 0.729 0.819
KNN 0.414 0.435 0.570 0.493 0.795
EGB 0.659 0.971 0.327 0.489 0.783
SVM 0.478 0.483 0.614 0.541 0.777

Decision tree 0.702 0.724 0.650 0.685 0.757
Logistic regression 0.697 0.739 0.607 0.667 0.735

MLP 0.647 0.713 0.492 0.582 0.689

Figure 2. Performance evaluation using the average AUC-ROC of 10-fold cross-validation. The
abscissa reflects the False Positive Rate (FPR) and displays a function of expressing a Type I error by
which a mutation is classified as a driver when in fact it is a passenger. The ordinate shows the true
positive rate (TPR) and reflects the prospective rate of detecting a positive signal when it is a real
positive, thus classifying a real driver mutation as a driver. A perfect classification model is deemed
as approaching the top right corner with an AUC-ROC = 1, while a random classifier is generally
regarded as finding the class due to random chance (AUC-ROC = 0.5) and is represented by the
diagonal line.

https://github.com/ccgenomics/DRIVE-ML
https://github.com/ccgenomics/DRIVE-ML
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3.2. Feature Importance of Random Forest

Since the performance of random forest was considered the most significant in the
proposed approach based on the AUC-ROC metric, feature importance was computed for
assessing the impact of each independent feature within the full set of 51 features, as well
as the overall impact of both feature levels. The results based on the MDI and MDA can be
observed in Figure 3. Since there is evidence that MDI biases may be influenced by multiple
testing, feature significance was also computed based on MDA, from which it can be seen
that not only gene-level features are of utmost importance, but also mutation-level features.

Figure 3. Feature importance of the random forest classifier across all 51 features. The feature
significance was addressed using two methods. Firstly, the importance was calculated based on
the MDI (a). Secondly, the MDA was used (b) which is regarded as a method that is less prone to
biases arising due to multiple testing [36]. All importance levels were scaled on a 0-100 range, with 0
representing the least important feature, while 100 signifies a vital characteristic.

The most significant gene-level features highlighted by the current methodology are
the gene length, the measure of the positional clustering, the mean Variant Effect Scoring
Tool (VEST) score and the ratio of missense to silent mutations. From a mutation-level
perspective, the average across all rank scores shows great importance, while other features
are not regarded as significant based on the permutations metric method.

3.3. Prediction on an Independent Dataset

The training dataset includes sequencing data from the GENIE project, which used all
exons or mutational hotspots as sequencing strategies, depending on the research institu-
tion and the cancer-causing genes [14]. The gene panels are focused on the most mutated
genes with known oncogenic potential [44], therefore this may affect the performance
of the model due to the selection of different variants and the influence of the sequenc-
ing technique. Thus, the model was further validated on an independent dataset that
comprised whole-exome data. As can be seen in Table 2, logistic regression had the best
overall performance across all metrics, including a remarkably high value for AUC-ROC.
Before interpreting the results, it is important to mention that the true class labels were
obtained using a different approach than in the training dataset. For visually inspecting
the performance, a plot of the AUC-ROC metric of each model prediction can be observed
in Figure 4.



Cancers 2021, 13, 2779 10 of 16

Table 2. Assessment of DRIVE using the prediction on an independent dataset across all 51 features.
The performance metrics (accuracy, precision, recall, F1-score and AUC-ROC) indicate that the
features spanning multiple biological levels are an adequate representation of the driver mutations.
The default threshold of 0.5 was used for computing the two-class summary. The hyperparameters
values used, as well as their description, can be found in Supplementary Table S3. The R code which
was used to extract the performance metrics and the final hyperparameters values can be found in
the GitHub repository.

Algorithm Accuracy Precision Recall F1-Score AUC-ROC

Logistic regression 0.781 0.795 0.756 0.775 0.885
MLP 0.786 0.983 0.582 0.731 0.876

Decision tree 0.723 0.723 0.723 0.723 0.847
KNN 0.753 0.750 0.758 0.754 0.833
EGB 0.699 0.687 0.732 0.708 0.789

Random forest 0.706 0.696 0.731 0.713 0.785
SVM 0.680 0.672 0.706 0.688 0.741

The results indicate that the best model of the prediction on the new dataset (having
an AUC-ROC of 0.885) will accurately allocate a driver mutation to its genuine category in
almost 90% of the cases.

Figure 4. Prediction assessment on an independent dataset. Based on the grounds that the GENIE
project used a targeted sequencing approach [14], the model was additionally validated on a subset
of TCGA data. The true class labels within this dataset were generated using a semi-supervised
approach based on a cluster adherence assumption [13]. Due to the initial shape of the ROC curves,
a binormal smoothing procedure was applied based on the presumption that both positive and
negative classes are normally distributed, therefore following a linear relationship defined by a
regression curve [43].
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Apart from a slight discordance with regards to the best performing algorithm and a
different approach used in generating the true class labels, the result is a confirmation of the
good representation of driver mutations by both gene and mutation-level features. Of the
newly extracted features, the maximum number of PPIs appears to play the most important
role, accounting for 25% of the overall importance. However, it shall be considered that
only high-quality based interactions were extracted, therefore their contribution might be
higher than it can be observed if medium confidence intervals were added. The biological
process presents modest importance, however, a new analysis including all 50 molecular
signatures may offer a better characterisation of the driver mutations. PTMs also show
moderate importance and this could be attributed to the fact that the general PTMs did
not include the specific residues and only the general modification type. Nevertheless, if
all the aforementioned steps would have been added to the training procedure, a higher
computational power, as well as a much higher analysis time, need to be considered.

3.4. Performance Evaluation on the Benchmark Dataset

The initial benchmark dataset was provided by the MutaGene mutation analysis tool
and comprised an initial set of 5276 mutations. Nevertheless, since the mutations did not
include genomic coordinates, these were extracted using TransVar annotator (v2.4.0) [45].
Consequently, all features were extracted again using the above-mentioned methodology,
comprising 4244 mutations with a complete feature set. These mutations were inputted
into CHASMplus (v1.2.0) classifier via OpenCRAVAT web server [40], this approach being
considered one of the best scoring state-of-the-art models which has outclassed other
methodologies [13]. The output comprised 1578 mutations and a score that represents
the probability of a mutation of being a driver. Moreover, to extract the performance
measures for the comparison between these approaches, the random forest model was used
to predict driver mutations in the final benchmark dataset. Then, the probabilities based
on the CHASMplus model were generated using the hmeasure R package for extracting
the performance scores using a 0.5 threshold [46]. A raw comparison can be seen in
Table 3, showing that overall, DRIVE scored higher than CHASMplus, while a better visual
comparison is represented in Figure 5. Given that our results are based on a limited number
of mutations with the full feature set, the results from this analysis should therefore be
treated with considerable caution.

Table 3. Performance evaluation on the benchmark dataset. The current approach (DRIVE) is
compared to the state-of-the-art model (CHASMplus) based on multiple performance metrics, both
methodologies having been applied to the MutaGene computational framework. Overall, DRIVE
outclassed CHASMplus, however, the limited size of the benchmark dataset has to be taken into
consideration.

Model Accuracy Precision Recall F1-Score AUC-ROC

DRIVE 0.852 0.843 0.866 0.854 0.919
CHASMplus 0.743 0.672 0.952 0.788 0.872
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Figure 5. Visual representation of the performance metrics after using DRIVE and the current state-
of-the-art model (CHASMplus). However, extreme caution must be exercised when interpreting the
results, since the size of the benchmark dataset was limited.

4. Discussion

Cancer genomics studies still face an ongoing challenge due to the presence of several
types of mutations occurring with different phenotypic effects. Substitution mutations
account for 95% of all somatic mutations, out of which 90% are missense mutations [2].
Mutations can be further divided into driver and passenger mutations based upon the
fitness advantage conferred to the cancer growth. The emergence of driver mutations
as well as cancer heterogeneity are key elements in overcoming treatment resistance and
failure [47,48].

Although previous approaches focused on the frequency of mutations, this study
is based on incorporating mutation-level and gene-level features by using a supervised
machine learning method to determine if the features are representative of the driver
mutations and if they can be further used to detect new drivers. The results indicated that
ensemble learning methods perform better than other models, random forest achieving
the most striking performance (with an accuracy of 0.734 and AUC-ROC of 0.819). This
demonstrates that the proposed features are a good representation of the driver mutations,
thus providing a powerful tool for drivers detection which is not limited to only identifying
the most common ones. The feature importance based on the mean decrease in accuracy
shows that the most important feature on a gene-level is the gene length. The current
findings appear to be well supported by the DriverFinder study, which states that variants
tend to occur more in longer genes [49], yet this study is concentrated on driver genes
and not driver mutations. Therefore, there is a high chance of including false positive
driver mutations during the extraction phase based on driver genes, which are regarded
as being a driver for the reason that they are inside a driver gene [8]. As anticipated,
the mutation-level features also present an important role, the average rank showing
substantial importance. There is a satisfactory agreement of this result and description
of the dbNSFP, since they are expected to show critical pathogenic consequences, as the
dataset is based on a pan-cancer analysis [30].

Further prediction using DRIVE on an independent dataset reinforces the useful-
ness of a feature-based learning method achieving a better performance compared to the
training dataset (where the logistic regression classifier had an accuracy of 0.781 and an
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AUC-ROC of 0.885). However, given that these findings are based on a different method of
generating class labels, the results should be therefore treated with considerable caution,
since categorising mutations based on gene scores could be prone to false positives. De-
spite these shortcomings, the findings are still substantial, since the independent dataset
was generated using whole-exome sequencing and not gene panels based on the most
relevant genes within 80 major cancers, thus having the potential of new driver mutations
discovery. The evaluation of DRIVE on the benchmark dataset and the comparison with
the CHASMplus state-of-the-art model show that the current approach has a comparable
overall performance. Nevertheless, the small size of the final benchmark dataset compared
to the training data size needs to be taken into account, since overfitting may be plausible.
Despite this small shortcoming, the current methodology is still regarded as a potential
clinical tool that is expected to be used in a clinical oncology setting in the near future.

The present study has only investigated the status and the effect on the cancer growth
of somatic missense mutations, therefore the interpretation of the findings was limited
in several ways. The first limitation is that DRIVE does not predict clinical outcomes. In
fact, drug response and progression may be affected by different subclones conferring
treatment resistance. The second limitation is based on the interplay between driver and
passenger mutations. It has been suggested that due to environmental conditions and
selection type, driver mutations can switch to becoming passenger mutations [50]. Thus,
there is some likelihood that this classification may only show the real status of a mutation
at a given time and not a coherent whole of mutation characterisation, which can be applied
from personalised medicine from beginning to the end of the cancer treatment. The third
limitation is that given the limited size of the benchmark dataset, caution must be exercised
when interpreting the comparison results between DRIVE and CHASMplus. Therefore,
further validation on a larger dataset has to be demonstrated for the final validation
of DRIVE.

Further work will concentrate on improving the approach, particularly by adding
more features, since there is evidence that certain protein domains present in tumour
suppressor proteins tend to suffer mutations in specific domains [51] and it is expected
that these additional features are likely to improve the performance of DRIVE. Updating
the benchmark dataset so that its size will increase, as well as matching it according to the
most recent version of COSMIC represent further tasks that will need to be undertaken.
Other features which may potentially improve the classification performance include how
driver mutations affect the enzyme function, as well as the protein–DNA interactions
and intracellular location of the protein. Additionally, the prospect of being able to apply
DRIVE on new cancer datasets and potentially discover new driver mutations serves as a
continuous incentive for providing an application programming interface (API) for general
public use. This API will benefit from being able to take mutations as the input, while
the DRIVE pipeline will extract features at both mutation and gene levels and predict the
status of the mutations.

5. Conclusions

This study emphasised the valuable insights which can be gained using DRIVE, a
feature-based learning approach for distinguishing between driver and passenger mu-
tations. The results suggest that not only do gene-level features play a critical role in
being representative for the driver mutations, but mutation-based features which seem to
improve the characterisation of the mutational pathogenic impact also have a large part
to play. Furthermore, the current model showed a better performance on the limited size
of the benchmark dataset than other state-of-the-art models, suggesting the importance
of including features at multiple levels. Taken together, a machine learning approach
represents a better alternative for distinguishing between driver and passenger mutations
compared to classic frequency-based models, aiming towards the final goal of delivering a
more efficient personalised treatment and improving the patient’s outcome.
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