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Abstract

Patterns of non-uniform usage of synonymous codons vary across genes in an organism

and between species across all domains of life. This codon usage bias (CUB) is due to a

combination of non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for

translation efficiency/accuracy) evolutionary forces. Most models quantify the effects of

mutation bias and selection on CUB assuming uniform mutational and other non-adaptive

forces across the genome. However, non-adaptive nucleotide biases can vary within a

genome due to processes such as biased gene conversion (BGC), potentially obfuscating

signals of selection on codon usage. Moreover, genome-wide estimates of non-adaptive

nucleotide biases are lacking for non-model organisms. We combine an unsupervised learn-

ing method with a population genetics model of synonymous coding sequence evolution to

assess the impact of intragenomic variation in non-adaptive nucleotide bias on quantifica-

tion of natural selection on synonymous codon usage across 49 Saccharomycotina yeasts.

We find that in the absence of a priori information, unsupervised learning can be used to

identify genes evolving under different non-adaptive nucleotide biases. We find that the

impact of intragenomic variation in non-adaptive nucleotide bias varies widely, even among

closely-related species. We show that the overall strength and direction of translational

selection can be underestimated by failing to account for intragenomic variation in non-

adaptive nucleotide biases. Interestingly, genes falling into clusters identified by machine

learning are also physically clustered across chromosomes. Our results indicate the need

for more nuanced models of sequence evolution that systematically incorporate the effects

of variable non-adaptive nucleotide biases on codon frequencies.

Author summary

Codon usage bias (CUB), or the unequal usage of codons of the same amino acid (i.e. syn-

onymous codons), has been observed in species across all domains of life. CUB is known

to be shaped by both non-adaptive (e.g. mutation biases) and adaptive (e.g. natural
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selection for translation efficiency/accuracy) evolution. A key challenge for researchers is

disentangling the role of various processes shaping codon usage, often for the purpose of

identifying codons favored by natural selection, sometimes referred to as “optimal” or

“preferred” codons. Despite large variation in non-adaptive nucleotide biases within a

genome, most methods to quantify natural selection typically ignore this variation for the

sake of simplicity. Here, we combine a population genetics model with unsupervised

machine learning to identify genes evolving under different non-adaptive nucleotide

biases across 49 budding yeasts species. We find that ignoring for variation in non-adap-

tive nucleotide biases can obfuscate signals of selection on codon usage. Our results indi-

cate the need for more nuanced models of coding sequence evolution.

Introduction

Patterns of nucleotide composition vary widely across a genome and are typically thought to

be shaped by the interplay between adaptive and non-adaptive evolutionary processes. One

common pattern observed in genomes across all domains of life is codon usage bias (CUB),

the non-uniform usage of synonymous codons in coding sequences of genes [1–5]. Although

synonymous nucleotide changes are often treated as neutral (i.e. codon frequencies are deter-

mined primarily by mutation bias and genetic drift) various lines of evidence indicate that

synonymous changes are also subject to natural selection [6–12]. Coevolution between

codon frequencies and the tRNA pool, as well as the bias towards translationally efficient

codons in highly expressed genes suggests translational selection is a major factor shaping

genome-wide codon patterns [8, 9, 13–19]. Other selective forces, including selection against

missense error [10, 20], selection against ribosome drop-off [21, 22], and selection to avoid

mRNA secondary structure near the translation initiation site [23, 24], are also hypothesized

to shape adaptive CUB. Although evidence indicates strong purifying selection can act on

synonymous changes [12, 25], codon usage is generally thought to be subject to weak selec-

tion (i.e. Nes�1) with genome-wide codon frequencies at selection-mutation-drift equilib-

rium [16, 26, 27].

Selection on codon usage related to mRNA translation is expected to be strongest in highly-

expressed genes. Based on this assumption, various approaches for identifying the most effi-

cient codon and quantifying selection on codon usage rely on comparing coding frequencies

in highly-expressed genes to the remaining genome [15, 17, 19]. In contrast, other approaches

quantify selection via the changes in codon frequencies as a function of gene expression,

assuming that codon frequencies are at selection-mutation-drift equilibrium [16, 28, 29]. As

selection on codon usage related to mRNA translation efficiency is expected to produce a cor-

relation between CUB and gene expression, a weak correlation between codon usage and gene

expression could indicate overall weak selection on codon usage.

Failing to account for mutational biases can weaken or completely obfuscate signals of

selection on codons usage, resulting in the development of various methods for separating

the effects of selection from mutation bias [16, 29–34]. Although current approaches often

account for mutational biases when estimating selection on codon usage, these models often

assume non-adaptive nucleotide biases (which included mutation bias) are constant across

the genome. However, various processes cause the direction and strength of non-adaptive

nucleotide biases to vary within the genome, potentially weakening signals of translational

selection [17, 19, 35, 36]. Mutation rates can be context-dependent, varying based on the

identity of adjacent nucleotides in bacteria [37], yeast [38], and primates and humans [39,
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40]. Lateral gene transfer events, including introgressions, can result in genes with distinct

CUB being incorporated into a genome [41, 42]. Mutation biases are also known to vary

between leading and lagging DNA strands in some prokaryotic species, leading to different

CUB dependent upon the strand of a coding sequence [43–45]. Notably, long stretches of

DNA with relatively homogeneous nucleotide composition (e.g. GC-rich or GC-poor) are

found in eukaryotic species ranging from yeasts to humans [46–49]. Various non-adaptive

hypotheses are proposed to explain these long stretches of relatively GC-rich or GC-poor

regions [46]. Gene conversion (BGC)—the transfer of genetic information from intact

homologous sequences during repair of double-strand breaks [50]—has been observed to be

GC-biased in various species. Previous work has hypothesized that gBGC could lead to the

increased GC content in recombination hotspots and the correlation between recombina-

tion rates and GC content [17, 51–53]. Another potential hypotheses pertains to the timing

of genome replication. As concentrations of free G and C nucleotides can vary during S-

phase and this has been shown to impact misincorporation rates, mutation biases could

arise as a result of replication timing [46, 54]. Finally, previous work has hypothesized that

GC-rich and GC-poor regions could emerge due to a positive feedback loop between the

rate of spontaneous deamination of C to T mutations and GC content [55, 56]. We know rel-

atively little about the impact of variation in non-adaptive nucleotide biases on the relation-

ship between codon usage and gene expression, and how this impacts estimates of selection

on codon usage.

Population genetics models of coding sequence evolution are powerful tools for under-

standing the evolution of CUB [16, 28, 34]. We will use the Ribosomal Overhead Cost version

of the Stochastic Evolutionary Model of Protein Production Rates (ROC-SEMPPR) to estimate

codon-specific estimates of natural selection and mutation bias, as well gene-specific estimates

of protein production rates [29]. Recent work applied ROC-SEMPPR to quantify the differ-

ences in codon usage between the ancestral genome and a large introgression in Lachancea
kluyveri, finding that the ability to detect selection on codon usage improved if assuming

codon usage in the introgressed region was shaped by different mutational and selective biases

than the ancestral genes [42]. Here, we use ROC-SEMPPR to examine the effects of within-

genome variation in mutation biases on the ability to detect natural selection on codon usage

across the Saccharomycotina budding yeast subphylum [18]. Unlike L. kluyveri, a priori
knowledge of genes evolving under different mutational biases is lacking in a large number of

these species. To hypothesize genes shaped by different mutational biases, we apply an unsu-

pervised machine-learning approach based on codon frequencies previously described in [57].

We highlight various yeasts in which intragenomic variation in non-adaptive nucleotide biases

masks the efficacy of natural selection on codon usage. We find that genes falling into the

same clusters determined via the unsupervised machine-learning algorithm are physically

clustered within the genome. Although we cannot definitively comment on the biological

causes for the intragenomic variation in non-adaptive nucleotide biases, our findings serve as

the starting point for more directed studies.

Results

To quantify the strength and direction of natural selection and mutation biases shaping codon

usage patterns, we relied on the population genetics model ROC-SEMPPR as implemented in

the AnaCoDa R package [29, 58]. Briefly, ROC-SEMPPR is a Bayesian model that estimates

natural selection and mutation bias by accounting for the expected covariation between

observed codon counts (taken from protein-coding sequences) and gene expression (see

Methods for more details). Briefly, for any amino acid with naa synonymous codons, the
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probability of observing codon i in gene g can be described by the equation

pi;g ¼
e� DM i � DZi�g

Pnaa
j e� DM j � DZj�g

where ΔMi and Δηi represent mutation bias and selection coefficient of codon i relative to a

reference synonymous codon, and ϕg represents gene expression of gene g. In the absence of

empirical gene expression data, ROC-SEMPPR can estimate an evolutionary average value of

gene expression from observed codon counts by assuming gene expression follows a lognor-

mal distribution, allowing us to apply the framework to even species lacking expression data.

Parameters are estimated via a Markov Chain Monte Carlo (MCMC) simulation approach.

The current implementation of ROC-SEMPPR allows users to specify sets of coding sequences

that are evolving under different codon-specific selection coefficients and/or mutation biases.

This framework has previously been used to examine the impact of a large introgression on

quantifying codon usage in L. kluyveri by assuming coding sequences in the introgressed

region were evolving under a different set of codon-specific parameters [42].

Relationship between observed and predicted gene expression can vary

significantly between closely-related species

We applied ROC-SEMPPR to the nuclear protein-coding genes of 49 species from the Sacchar-

omycotina budding yeast subphylum for which we were able to obtain empirical estimates of

mRNA abundances via RNA-seq (see Methods). We will refer to these fits as the constant

mutation (“ConstMut”) model as mutation bias parameters are assumed to be the same across

all coding sequences. Overall, we find that predicted expression levels from ROC-SEMPPR

(based solely on codon usage frequencies and the assumption that expression levels are lognor-

mally distributed) are correlated with empirical mRNA abundance estimates from RNA-seq

data (S1 Fig).

Although ROC-SEMPPR sufficiently estimates selection on codon for the majority of spe-

cies, there are some species for which the correlation between predicted and empirical gene

expression estimates appears significantly weaker compared to their closely-related sister taxa.

We use closely-related species across three genera (Saccharomyces, Candida, and Ogataea) to

highlight the differences in the relationship between empirical gene-expression levels and the

evolutionary average expression levels predicted based on codon usage patterns using ROC-

SEMPPR. For each of the three genera, one of the species shows a relatively high correlation

between empirical and predicted expression levels, while the other species in the same genus

show weak or even negative relationships (Fig 1A). These discrepancies might be due to three

reasons—(i) poor quality of expression data for these non-model organisms, (ii) rapid changes

in the degree of translation selection across closely related species, or (iii) inaccurate predic-

tions of gene-expression data from CUB due to model misspecification.

When comparing expression data between closely-related species, we find they are of simi-

lar sequencing depth and are moderately correlated with each other (S2 Fig). This indicates

that variation in the quality of the RNA-seq datasets is insufficient to explain the large changes

in correlation between observed and predicted expression levels across closely-related species.

To examine if the degree and direction of translation selection on codon usage differ between

closely-related species of the three genera, we compared the relative synonymous codon usage

(RSCU) between genes with high and low expression levels (top 5% and bottom 5%, respec-

tively). For reference, RSCU compares observed codon frequencies relative to the expected fre-

quencies assuming synonymous codon usage is unbiased [59]. Across all three genera, RSCU

values for each codon calculated from highly-expressed genes are well-correlated, indicating
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that the overall direction of selection on synonymous codon usage is similar between species

(S3 Fig). For all 8 species, RSCU values from low and high expression genes are correlated, but

the RSCU values of many codons differ between high and low expression genes (S4 Fig).

Taken together, these results suggest the strength and direction of selection on synonymous

codons are similar across species within the same genus.

To test if the poor correlation between observed and predicted expression data are unique

to ROC-SEMPPR, we also estimated Codon Adaptation Index (CAI) [60] values for genes in

the above species. Although ribosomal proteins are often used as a reference set when calculat-

ing CAI, in many cases, they may not serve as an appropriate reference set [61]. As a result,

we estimated CAI using the automatic detection of a reference set via correspondence analysis

in CodonW [62] (S5 Fig). A key assumption of the CodonW approach, much like ROC-

SEMPPR, is the assumption that the primary driver of codon usage variation across genes is

Fig 1. Ability to detect selection on codon usage varies between closely-related species. (A) Correlations between empirical mRNA abundances and

predicted gene expression values for all genes from ROC-SEMPPR across 8 Saccharomycotina species. Phylogenetic relationships between species

indicate relatedness between species, with branch lengths units in millions of years. (B) Distribution of GC3% for the entire genome (grey), as well as for

the distributions within each of the clusters determined by the CLARA clustering. We denote the cluster with the lower median GC3% as the Lower

GC3% cluster (red) and the cluster with the higher median GC3% as the Higher GC3% cluster (blue). Brackets indicate the difference in medians

between the lower and higher GC3% clusters, as well as the p-value from a Kolmogorov-Smirnov test comparing the distribution of GC3% between the

two clusters.

https://doi.org/10.1371/journal.pgen.1010256.g001
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gene expression. We find that predicting expression using CAI leads to similar results as

ROC-SEMPPR for these species (S5 Fig), indicating that models underlying both CAI and

ROC-SEMPPR are misspecified.

Intragenomic variation in non-adaptive nucleotide biases affects estimates

of translational selection on codon usage

Models of codon usage evolution typically assume that the non-adaptive nucleotide biases

associated with a particular synonymous codon are constant across the entire genome. How-

ever, several non-adaptive forces can affect the local mutation rates and nucleotide biases and,

therefore, affect codon composition. As many of the yeasts of interest are non-model species,

relevant data, such as recombination rates for assessing the impact of biased gene conversion,

are lacking.

To hypothesize protein-coding sequences within each species that may be evolving under

locally variable non-adaptive nucleotide biases, we assigned coding sequences to one of two

clusters based on the k-medoids CLARA clustering algorithm applied to the results from cor-

respondence analysis of codon frequencies (see Methods for details). This approach has been

previously used to identify laterally transferred genes in E. coli [57, 63]. As evidence for the

validity of this clustering approach, we note that one of the mutation regimes identified in L.
kluyveri predominantly consisted of coding sequences found in the introgressed region on

Chromosome C (S6 Fig, SAKL0C, blue bars).

Interestingly, we find that genes in the two clusters differed in their GC3% content (Fig 1B),

suggesting some genes may be subject to stronger GC nucleotide biases than others. A clear

pattern emerges when examining the differences in GC3% content between the Lower GC3%

and Higher GC3% cluster: species with larger differences (i.e. > 0.1) in the median GC3% con-

tent between clusters also have weaker or negative correlations between predicted and empiri-

cal gene expression (Fig 1B and 1C). We note that the distributions of GC3% between clusters

for each species, with the exception of O. methanolica, are significantly different (Kolmogo-

rov-Smirnov test, p< 2.2e − 16). This indicates that while the CLARA clustering algorithm

may be using GC3 as one of the discriminating factors between genes, it is not the sole feature

for clustering.

We now fit a modified ROC-SEMPPR model to all species, where we allow mutation bias

parameters to vary between the two sets of coding sequences determined by the clustering

algorithm. We still assume that codon-specific selection coefficients are the same for genes in

both clusters because they share the same cytoplasm and are constrained by the same tRNA

pool. We will refer to these model fits as the varying mutation (“VarMut”) model. We note

that even in cases where non-mutational processes, such as biased gene conversion, are driving

non-adaptive nucleotide biases, we expect these sources of bias will be absorbed into ROC-

SEMPPR’s mutation bias parameters because these nucleotide biases are not expected to

covary with gene expression.

Species showing greater differences in GC3% between the clusters showed significant

improvement in the correlation between predicted and empirical gene expression when

accounting for intragenomic variation in mutation bias (Fig 2A and 2B). For species with rela-

tively little difference in GC3% between clusters, the VarMut model often resulted in a poorer

agreement between empirical and predicted expression estimates. This suggests that clustering

in cases where intragenomic variation in mutation bias is small or non-existent dilutes signals

of selection on codon usage. In the 5 species for which the VarMut model fit significantly

improved predictions of gene expression, the predicted expression estimates from the Con-

stMut model fit essentially capture the Lower GC3% and Higher GC3% clusters (Fig 2C).
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Importantly, non-adaptive nucleotide biases can impact codon usage regardless of gene

expression, whereas selection on codon usage is generally strongest in a subset of highly-

expressed genes. As ROC-SEMPPR assumes that the primary driver of covariation in codon

usage is gene expression, our results suggest that variation in non-adaptive nucleotide biases,

when strong enough, can be mistaken for natural selection on codon usage.

The above analyses focused on partitioning genes into two clusters. However, it remains

unclear if two is the ideal number of clusters or whether increasing the number of clusters will

further improve our ability to predict expression levels and more fully capture the patterns of

codon usage. To address this, we started by partitioning genes for all five species considered

above into three clusters. As can be seen in S7 Fig, 3 clusters usually resulted in poor(er) ability

to predict gene expression from codon usage patterns than using 2 clusters in most cases. This

Fig 2. Effects of allowing for non-adaptive nucleotide biases to vary across genes on predictions of gene expression. (A) Correlation between

empirical and predicted gene expression values for each gene when mutation bias parameters are shared across clusters (ConstMut Model), as in Fig 1.

(B) Correlation between empirical and predicted gene expression values when mutation bias parameters are allowed to vary across clusters (VarMut

model). (C) Comparison of predicted gene expression between the ConstMut and VarMut models.

https://doi.org/10.1371/journal.pgen.1010256.g002
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is perhaps not surprising in hindsight because with a higher number of clusters, we run the

risk of over-partitioning genes such that it is likely that most or all highly expressed genes

might get clustered into a single group. As a result, our ability to separate the effects of non-

adaptive and adaptive forces on codon usage patterns using ROC-SEMPPR diminishes

significantly.

Genes in a mutational cluster are physically clustered on chromosomes

Our results indicate that differences in non-adaptive nucleotide biases across protein-coding

sequences mask signals of selection on codon usage in species showing greater variability in

GC3%. To gain insight into the potential mechanisms responsible for the clustering of genes

in different GC3% categories, we checked if genes belonging to individual clusters are in

close proximity to each other on the chromosome. Many mechanisms could hypothetically

lead to clusters of GC-rich or GC-poor genes, such as biased gene conversion or the availabil-

ity of free GC nucleotides during DNA replication. To quantify the degree of physical cluster-

ing of genes belonging to each mutational cluster, we estimated GC3% variation along

chromosomes using either a 20-gene moving average approach or 20-gene non-overlapping

windows.

We observe that genes assigned to the same mutational cluster are also physically clustered

across the chromosomes of species for which the VarMut model was better able to detect

selection on codon usage relative to the ConstMut model (Fig 3 and S8–S15 Figs). As with

the mutational clusters (Fig 1C), physical clusters of genes assigned to the same mutational

cluster reflect relatively large (sometimes spanning hundreds of genes) GC3-rich or

GC3-poor regions (Fig 3, left panels). Using non-overlapping 20-gene windows, which allows

us to apply statistics that assume independent data, we observe that the average GC3% within

a region is highly correlated with the percentage of genes assigned to the Higher GC3%

within that region across all chromosomes of a species (Fig 3, right panels). However, physi-

cal clustering of genes assigned to the same mutational cluster was overall weaker across spe-

cies for which the VarMut model failed to improve the ability to detect selection on codon

usage (S16 Fig).

Effects of variation in non-adaptive nucleotide biases on estimates of

natural selection

Allowing for intragenomic variation in non-adaptive nucleotide biases improved detection of

natural selection on codon usage. A key aspect of studying CUB is identifying the “optimal” or

“preferred” codon. Across the 5 species for which we found the VarMut model outperformed

the ConstMut model, the optimal codon was misidentified for the majority of amino acids by

the latter (Fig 4B). In the case of amino acids for which the optimal codon was the same

between models, selection coefficient estimates for many codons showed large changes

between the models (Fig 4C). This indicates that the strength of selection may be over or

under-estimated when various sources of non-adaptive nucleotide biases are unaccounted for,

even if the optimal codon is correctly identified.

Selection coefficient estimates from ROC-SEMPPR represent the preference of a codon rel-

ative to a single reference codon. As the clusters reflect differences in GC3%, selection coeffi-

cients were modified to represent the strength and direction selection on NNG codons relative

to NNA codons, and NNC codons relative to NNT codons. GC-ending codons are universally

disfavored by natural selection relative to AT-ending codons in C. albicans when fitting the

ConstMut model (S17 Fig). This is consistent with the distributions of predicted expression

estimates, with genes falling into the Higher GC3% cluster predicted to have lower expression
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(Fig 2C). The VarMut model reveals that some GC-ending codons are favored by natural

selection relative to the corresponding AT-ending codon (S17 Fig). Even in cases where the

GC-ending codon remains disfavored relative to the AT-ending codon, we find that the mag-

nitude of the estimated selection coefficients is lower in the VarMut model (S17 Fig), indicat-

ing selection against these codons is weaker than suggested by the ConstMut model. Other

Fig 3. Genes evolving under similar non-adaptive nucleotide biases are cluster along chromosomes. (Left panel) Per-gene GC3% content across

select chromosomes quantified as a moving average using a 20 gene sliding window (solid line). For each 20 gene window, the percentage of genes

assigned to the Higher GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher and Lower GC3% (blue and

right, respectively). (Right panel) Scatter plots showing per-gene GC3% and percentage of genes assigned to the Higher GC3% regime using non-

overlapping 20 gene windows across all chromosomes. The independence of windows allows us to apply the Spearman Rank correlation. (A,B) S.
uvarum. (C,D) C. albicans. (E,F) O. parapolymorpha.

https://doi.org/10.1371/journal.pgen.1010256.g003
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species for which the VarMut model improved ROC-SEMPPR’s ability to detect natural selec-

tion on codon usage showed similar results (S17 Fig). Unsurprisingly, we find that mutation

bias estimates against GC-ending codons (again, relative to AT-ending codons) are much

weaker in the Higher GC3% cluster than the Lower GC3% cluster in these species (S18 Fig).

Fig 4. Failing to account for variation in non-adaptive nucleotide biases can lead to mis-identification of optimal codons. Data represent results

from S. uvarum, C. albicans, C. dubliniensis, O. parapolymorpha, and O. polymorpha. (A) Number of amino acids for which the optimal codon differs

between the ConstMut and VarMut models. (B) Number of species per amino acid that had a change in the identified optimal codon between the

VarMut and ConstMut models. Ser4 indicates serine codons of the form TCN, where N is any nucleotide, while Ser2 indicates those of the form AGY,

where Y is C or T. (C) Breakdown of fold changes for amino acids in which optimal codon is the same between ConstMut and VarMut models. Shapes

indicate species, while color indicates if the third nucleotide is A/T or G/C.

https://doi.org/10.1371/journal.pgen.1010256.g004
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Detection of selection on CUB improves when allowing for non-adaptive

nucleotide bias variation in species across the Saccharomycotina

subphylum

Up to this point, our analysis of the effects of intragenomic variation in non-adaptive nucleo-

tide biases has primarily focused on 8 species represented by three genera within the Saccharo-

mycontina subphylum. To understand the effects of intragenomic variation in non-adaptive

nucleotide biases across the larger phylogeny, we return our focus to the 49 species across the

subphylum for which reliable expression datasets are available (Fig 5A). Accounting for intra-

genomic non-adaptive nucleotide bias variation has a relatively small impact on our ability to

detect selection on codon usage for the majority of species (Fig 5A). However, the correlations

between empirical and predicted genes expression estimates improve in various species, sug-

gesting that nucleotide biases are shaped by multiple non-adaptive processes across the Sac-

charomycontina subphylum. We find that species with larger variation in GC3% content,

quantified as the difference in median GC3% content between the Lower and Higher GC3%

clusters, tend to show larger improvements in the correlations between empirical and pre-

dicted expression estimates when fitting the VarMut Model (Spearman Rank correlation

Fig 5. Impact of intragenomic variation in non-adaptive nucleotide biases on predicting gene expression across 49 Saccharomycotina yeasts.

Clade names are taken from [18]. (A) Change in Spearman correlation between empirical and predicted gene expression when fitting VarMut model

relative to ConstMut model. A positive value indicates an improvement in correlation when fitting the VarMut model. (B) Relationship between the

shift in correlations as a function of the difference in median GC3% content between the Lower and Higher GC3% clusters.

https://doi.org/10.1371/journal.pgen.1010256.g005
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r = 0.44,p = 0.0019, Fig 5B). This correlation remains statistically significant after transforming

values using phylogenetic independent contrasts (Spearman Rank Correlation r = 0.48,

p = 0.0006) [64].

Interestingly, the effect of intragenomic variation in non-adaptive nucleotide biases can

vary between closely related species, as previously highlighted in species from the Saccharomy-
ces, Candida, and Ogataea genera. In addition, the causes of this variation may also vary

between closely-related species. For example, both L. kluyveri and L. thermotolerans show a

substantial improvement in the predictions of gene expression with the VarMut model; how-

ever, only the former contains the large introgressed region on one of its chromosomes [65–

67]. In the case of L. kluyveri, the Higher GC3% cluster is predominantly the large introgressed

region found on Chromosome C (S6 Fig). In contrast, L. thermotolerans shows relatively large

variation in GC3% content along its chromosomes (S19 Fig), similar to C. albicans and C.
dubliniensis, but the mechanistic basis of this variation is unclear.

As an alternative method for evaluating the relative performance of the ConstMut and Var-

Mut models, we compared the Deviance Information Criterion (DIC), a Bayesian generaliza-

tion of the Akaike Information Criterion, for both model fits [68]. Consistent with

expectations, we see that the ΔDIC (i.e. DICVarMut − DICConstMut) decreases on average as the

the VarMut model improves the predictions of gene expression (note: models with lower DIC

scores are considered better). Surprisingly, the VarMut model is often favored over the Con-

stMut model based on DIC scores, even in cases where the VarMut model makes worse pre-

dictions of gene expression (S20 Fig). Generally, the larger the difference in GC3% observed

between the two clusters, the more favored the VarMut model appears to be (S20 Fig).

Discussion

A key to understanding the evolution of codon usage bias (CUB) across a phylogeny is to

quantify the relative contributions of non-adaptive (e.g. mutation bias) and adaptive evolu-

tionary forces in shaping codon frequencies. Studies often assume that non-adaptive nucleo-

tide biases are constant across the genome; however, this may not always be the case due to

various processes, such as biased gene conversion (BGC). Across 49 Saccharomycontina

yeasts, failing to account for intragenomic variation in non-adaptive nucleotide biases obfus-

cates signals of natural selection on codon usage in various phylogenetically-diverse species.

This includes the misidentification of the direction of selection (i.e. misidentification of opti-

mal codons) and the over/under-estimation of the strength of selection. In the absence of a pri-
ori hypotheses, such as large introgression events [42], unsupervised clustering of genes based

on codon frequencies can reveal genes evolving under different non-adaptive nucleotide

biases. Interestingly, we observe in many species that the unsupervised clustering is mirrored

by physical clustering along chromosomes, i.e. genes falling into the same mutational cluster

tend to be physically grouped within the genome. For some species, such as C. albicans and O.
parapolymorpha, this is a constant across chromosomes, with each chromosome showing large

variations in GC3% content. For other species, such as S. uvaraum, regions of large variation

in GC3% content appear to be more isolated. Species showing little variation in GC3% content

across their chromosomes showed little, if any improvement, by allowing for intragenomic

variation in non-adaptive nucleotide biases.

To categorize genes evolving under different non-adaptive nucleotide biases, we used the

CLARA clustering algorithm (a type of k-medioids clustering) and clustered genes into two

groups (k = 2). We note that using k = 3 clusters did not appear to perform much better than

ConstMut model fits for the 5 species highlighted in Fig 1 (S7 Fig) and in most cases per-

formed significantly worse. It is possible that identifying more clusters results in further
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improvements in the detection of natural selection on codon usage, but we do not currently

have examples of this. It is important to remember that for most species under strong transla-

tional selection on codon usage, a major factor shaping variation in codon frequencies is gene

expression. As ROC-SEMPPR estimates parameters by accounting for the expected covaria-

tion between codon usage and gene expression, over-clustering of genes could potentially

dilute signals of natural selection. We find evidence of this in species that have low variation in

GC3% along the genome, such as C. parapsilosis, in which the VarMut model performs signifi-

cantly worse at predicting gene expression.

The physical clustering of genes along a chromosome that are assigned to either the Higher

or Lower GC3% clusters is consistent with a variety of biological processes. The presence of

GC-rich and GC-poor regions within a genome is hypothesized to be due to GC-biased gene

conversion (gBGC), mutation biases related to variability in free nucleotide concentration dur-

ing S-phase, and/or feedback between the rate of spontaneous deamination of C to T and GC

content [46, 52, 54, 55]. gBGC is a popular hypothesis for explaining variations in GC% con-

tent within eukaryotic genomes. Assuming recombination rates are well-conserved across

species, [17] concluded gBGC had the strongest impact on codon usage in S. uvarum (S. baya-
nus), which was the only sensu stricto yeast for which the VarMut model did a better job of pre-

dicting gene expression than the ConstMut model. The large variations of GC content in C.
albicans and C. dubliniensis are theoretically consistent with either gBGC via mitotic recombi-

nation (as neither species reproduces sexually [69, 70]) or variations in nucleotide concentra-

tions during genome replication [49], but we currently lack empirical validation. Although

gBGC has long been thought to occur in S. cerevisiae and closely-related species, recent work

by [71] found no evidence to support biased gene conversion in S. cerevisiae and hypothesizes

that recombination may occur more frequently in GC-rich regions, consistent with the find-

ings of [72]. Higher recombination rates caused by higher GC content could also explain the

correlation between GC% and recombination rates, as seen across the sensu stricto yeasts in

[17]. Given the results of [71] and the lack of recombination rate estimates across the Sacchar-

omycotina subphylum, we cannot confidently attribute our results to gBGC in these species.

Our results do not serve as evidence (nor are they meant to) for any of the hypotheses explain-

ing within-genome variation in GC content, which are not necessarily mutually-exclusive in

generating regions of high and low GC content. We encourage researchers to use our results as

a starting point for more targeted theoretical and empirical work trying to understand the

within-species and across-species evolution of GC content across the Saccharomycontina

subphylum.

As expected, differences in the Deviance Information Criterion (DIC) were anti-correlated

with the differences in the correlation between predicted and empirical gene expression esti-

mates when comparing the VarMut and ConstMut models. In other words, the better the Var-

Mut model did at predicting gene expression compared to the ConstMut model, the more

preferred it was according to model comparisons via DIC. Surprisingly, model comparisons

via DIC predominantly favored the VarMut model, even in cases where this model did worse

at predicting gene expression. This could be, in part, due to the tendency for DIC to favor

overfit models [73]. However, this also highlights a potential limitation of coupling ROC-

SEMPPR with unsupervised learning. The clustering of genes will attempt to maximize differ-

ences in codon usage patterns, even if these differences do not represent significant differences

in mutation biases and/or natural selection. As ROC-SEMPPR works solely with codon count

data and attempts to estimate gene expression assuming a lognormal distribution, the lack of

grounding in empirical information could allow ROC-SEMPPR to reach parameter estimates

that reasonably reflect codon counts, but may not have empirical justification. Previously, [74]

found that information criterion could favor incorrect models when the data violated the
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models’ assumptions, although it is unclear if over-clustering of genes could violate ROC-

SEMPPR’s assumptions.

Tests of selection on codon usage are often based on comparing the codon usage of a gene

to a reference set thought to be biased towards selectively-favored codons. These tests often

create a reference set using assumed highly expressed genes (e.g. ribosomal proteins [75], but

see [61]) or using empirical gene expression data [19]. In the case of intragenomic variation in

non-adaptive nucleotide biases, the reference set must be chosen to minimize the impact of

these various biases, as this may result in an over or underestimation of the strength of selec-

tion. We found that using data-driven approaches to identifying a reference set using CodonW

resulted in poor performance of CAI, similar to ROC-SEMPPR ConstMut fits. Even if care is

taken in choosing the reference set, variation in non-adaptive nucleotide biases may still lead

to the over or underestimation of selection on codon usage in specific genes. For example, if

selection generally favors GC-ending codons, then natural selection on codon usage may be

overestimated in low expression genes subject to gBGC.

Approaches for dealing with variation in non-adaptive nucleotide composition biases rely

on the analysis of SNPs detected across multiple individuals from a population, or compari-

sons of codon and nucleotide frequencies in regions of low and high recombination [17, 35,

36, 76, 77]. However, polymorphism and recombination data are often unavailable for non-

model species, limiting the applicability of these approaches. We combined unsupervised

machine-learning with an explicit populations genetics model to estimate selection on codon

usage in the context of variable non-adaptive nucleotide biases. Although machine-learning is

a powerful tool, the descriptive nature of such approaches can make biological interpretations

difficult. As our understanding of the coding sequence evolution matures, models that more

explicitly incorporate the various evolutionary forces that shape codon usage patterns are

necessary.

Materials and methods

We obtained genome sequences and associated annotation files from [78]. We excluded mito-

chondrial genes, protein-coding genes with non-canonical start codons, internal stop codons,

and sequences whose lengths were not a multiple of three from all analyses. To identify mito-

chondrial genes, we queried all protein sequences against a BLAST database built from

sequences in the MiToFun database (http://mitofun.biol.uoa.gr/).

Empirical mRNA abundances were used as a proxy of protein production rates. For each

species, publicly available RNA-seq data were downloaded from the Sequence Read Archive or

the European Nucleotide Archive (L. kluyveri only) (S1 Table). Adapters for each sequence

were trimmed using fastp [79] and genes were quantified using kallisto [80]. Transcripts-per-

million (TPMs) were re-calculated for each transcript by rounding raw read counts to the

nearest whole-number [81].

Identifying intragenomic variation in codon usage bias

To identify genes potentially evolving under different non-adaptive nucleotide biases, an unsu-

pervised learning approach was implemented as described in [57]. Correspondence Analysis

(CA) is a multivariate technique similar to principal component analysis that works on cate-

gorical data. We performed correspondence analysis for each species based on 61 sense codon

frequencies using the ca R package [82]. In cases where selection on codon usage is the primary

driver of variation in codon usage across the genes, the first principle component of CA often

correlates with gene expression [57]. We note that Relative Synonymous Codon Usage

(RSCU) [59], which represents the observed frequency of a codon relative to the expectation
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assuming synonymous codon usage is unbiased, was not used as it has been found to introduce

artifacts to CA [83]. Genes were then clustered into two groups based on the first 4 principal

components from the CA using the CLARA algorithm implemented in the cluster R package

[84]. The CLARA algorithm is designed to perform k-medoids clustering on large datasets,

where k-medoids centers clusters on actual data points, in contrast to k-means, which centers

clusters based on the average of the data points in the cluster. The CLARA algorithm first gen-

erates a user-specific number of subsets of the data, each of a user-specified size (in our case,

half of the protein-coding sequences for each species were used). The medoids are identified

for each subset and then all observations (in our case, all protein-coding sequences for a spe-

cies) are assigned to a medoid based on a measure of distance (in our case, Euclidean distance).

The best overall set of medoids is chosen based on the mean dissimilarities between each

observation and its assigned to a medoid. For each species, the cluster with the lower median

GC3% was designated as “Lower GC3% Cluster” and the cluster with the higher median

GC3% was designated as the “Higher GC3% Cluster”. We also tested clustering genes into

three groups, but found these results to generally be worse than when using two groups.

ROC-SEMPPR model of codon usage evolution

Ribosomal Overhead Cost version of the Stochastic Evolutionary Model of Protein Production

Rates (ROC-SEMPPR) was independently fit to 49 species using the R package AnaCoDa with

the number of protein-coding sequences included ranging from 4,200 to 8,700, depending on

the species [58]. ROC-SEMPPR is implemented in a Bayesian framework, allowing it to simul-

taneously estimate codon-specific estimates of selection coefficients and mutation bias with

gene-specific estimates of the evolutionary average gene expression by assuming gene expres-

sion is lognormally distributed [29]. This allows the model to be fit to any species with anno-

tated protein-coding sequences. Included again for simplicity, for any amino acid with naa
synonymous codons, the probability of observing codon i in gene g can be described by the

equation

pi;g ¼
e� DM i� DZi�g

Pnaa
j e� DM j � DZj�g

ð1Þ

where ΔMi and Δηi represent mutation bias and selection coefficient of codon i relative to a

reference synonymous codon, and ϕg represents gene expression of gene g which follows from

the steady-state distribution of fixed genotypes under selection-mutation-drift equilibrium

[16, 29, 85]. In the absence of empirical gene expression data, ROC-SEMPPR can estimate an

evolutionary average value of gene expression from observed codon counts by assuming gene

expression follows a lognormal distribution, allowing us to apply the framework to even spe-

cies lacking expression data. Note that selection-mutation-drift equilibrium assumes that

selection on codon usage is generally weak (Nes�1, where Ne is the effective population size

and s is the selection coefficient). As is standard when using the Greek letter Δ, the codon-spe-

cific parameters reflect the strength and direction of selection and mutation relative to another

synonymous codon, arbitrarily chosen as the alphabetically last codon. For each gene, the

observed codon counts for an amino acid are expected to follow a multinomial distribution

with the probability of observing a codon defined by Eq 1. Given the codon counts and the

assumption that gene expression follows a lognormal distribution, ROC-SEMPPR estimates

the parameters that best fit the codon counts via a Markov Chain Monte Carlo simulation

approach (MCMC). For each species, MCMC were fit for 200,000 iterations, keeping every

10th iteration. The first 50,000 iterations were discarded as burn-in. For each analysis, two sep-

arate chains were run from different starting points and parameter estimates were compared
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to assess convergence. As ROC-SEMPPR is a Bayesian model with parameters estimated via

an MCMC, model comparisons were performed using the Deviance Information Criterion

(DIC), which is a Bayesian generalization of the Akaike Information Criterion [68]. Aside

from being more appropriate than AIC for Bayesian analyses, DIC is also readily calculated

from MCMC samples.

Previous work with ROC-SEMPPR has typically separated serine codons TCN (where N is

any of the other 4 nucleotides) and AGY (where Y is C or T) into separate groups of codons

for the analysis [16, 29, 42]. ROC-SEMPPR assumes weak-mutation (i.e. Neμ� 1, where μ is

the mutation rate) such that each mutation introduced to a population is fixed or lost before

the arrival of the next mutation. ROC-SEMPPR also assumes a constant amino acid sequence,

such that going between these two groups of serine codons would require the fixation of a

non-serine amino acid before returning to serine via the fixation of another mutation, clearly

violating the fixed amino acid sequence assumption. To handle species for which CTG codes

for serine instead of the canonical amino acid leucine, a local version of AnaCoDa was created

that is capable of handling this amino acid switch. For these species, CTG was also treated as a

third codon group for serine, similar to ATG (methionine) or TGG (tryptophan), which have

no synonyms.

For each species, ROC-SEMPPR was first fit to the protein-coding sequences of each species

assuming selection coefficient and mutation bias parameters were the same between the two

clusters, which we refer to as the “ConstMut” model. Similarly, the protein-coding sequences

of each species were also fit allowing the mutation bias to vary for genes indicated by the two

clusters, which we will refer to as the “VarMut” model. For the VarMut model, selection coeffi-

cients were assumed to be the same across clusters as codon usage in both clusters is still adapt-

ing to the same tRNA pool [86].

ROC-SEMPPR predictions of gene expression for each protein-coding sequence were com-

pared to empirical estimates of mRNA abundance using the Spearman rank correlation coeffi-

cient. If natural selection on codon usage is strong enough to shape codon usage frequencies,

then a statistically-significant positive correlation is expected between predicted and empirical

estimates of gene expression [29, 34, 60]. If non-adaptive nucleotide biases vary across the

genome, then it is expected that allowing the mutation bias parameters to vary between clus-

ters will significantly improve the correlation between predicted and empirical gene expres-

sion. To assess the impact of evolutionary processes that may favor GC-ending codons over

AT-ending codons, selection coefficient estimates and mutation bias estimates were modified

such that all GC-ending codons were relative to the corresponding AT-ending codon, e.g.

GCG was set relative to GCA (as opposed to GCT, the alphabetically last codon for alanine) by

subtracting the selection coefficient for GCA from GCG. In this context, a positive selection

coefficient (mutation bias) estimate indicates the GC-ending codon is disfavored by natural

selection (mutation bias) relative to the AT-ending codon. Similarly, a negative value indicates

the GC-ending codon is favored relative to the AT-ending codon.

In addition to ROC-SEMPPR, we also evaluated the impact of variable non-adaptive nucle-

otide composition biases on the Codon Adaptation Index (CAI), as implemented in CodonW

[62]. Briefly, CAI is calculated for each gene as the geometric mean of its synonymous codon

weights, which are generally thought to represent how “optimal” or “preferred” a codon is

compared to its synonymous. Synonymous codon weights are calculated from the RSCU val-

ues calculated for the reference set of genes either known or expected to be high expression

[60]. Ribosomal proteins are often used as a reference set, but [61] caution against this. In con-

trast, CodonW can automatically determine a reference set for calculating CAI using the first

principle component of a CA on codon usage, as the first principle component is often corre-

lated with gene expression.
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Examining variation in GC3% along chromosomes

Genes were mapped to their corresponding location on each chromosome indicated within

the genome. Genes filtered out prior to analysis with ROC-SEMPPR were also excluded from

this analysis. Variation in GC3% content along chromosomes was visualized using a moving

average of the per-gene GC3% value across a 20 gene window. Along with this, we calculated

the percentage of genes falling into the Higher GC3% cluster within the same 20 gene window.

This provides a means to compare GC3% variation along a chromosome with the cluster

membership and provides insights into if genes falling into the two clusters determined by the

CLARA clustering are also physically clustered within the genome. To deal with non-indepen-

dence due to autocorrelation, we also calculated the same metrics using non-overlapping 20

gene windows, which were then compared using a Spearman Rank correlation.

Comparisons across species

To visualize results across 49 species, we used the ggtree R package [87]. The phylogenetic tree

was taken from the Supplementary Material of [78]. Phylogenetic independent contrasts (PIC)

were used to account for the non-independence when calculating correlations across species

[64].

Supporting information

S1 Fig. ROC-SEMPPR predictions of gene expression are mostly well-correlated with

empirical mRNA abundances across 49 Saccharomycotina yeasts. Spearman rank correla-

tion coefficients comparing predicted gene expression estimates from ROC-SEMPPR Con-

stMut fit with empirical estimates of mRNA abundance from RNA-seq data across 49

Saccharomycontina budding yeasts.

(TIF)

S2 Fig. Comparison of empirical mRNA abundances estimated from disparate RNA-seq

measurements. (A) Distribution of per-gene estimated counts from kallisto. (B-D) Compari-

son of empirical expression estimates across species using one-to-one orthologs. Correlations

represent Spearman rank correlation coefficients.

(TIF)

S3 Fig. Codon usage in highly-expressed genes is similar across closely-related species.

Across-species comparison of RSCU values calculated from the most highly expressed genes

(top 5% based on empirical expression estimates). (A) Saccharomyces. (B) Candida. (C) Oga-
taea. Correlations represent Spearman rank correlation coefficients.

(TIF)

S4 Fig. Codon usage differs between high and low expression genes. Comparison of RSCU

values calculated from most highly and lowly expressed genes (top 5% and bottom 5% of

expression estimates) for each species. Correlations represent Spearman rank correlation coef-

ficients.

(TIF)

S5 Fig. Results with heuristic measures of codon usage are similar to those seen with

ROC-SEMPPR. Comparing ability to predict expression using (A) ROC-SEMPPR (Con-

stMut) and (B) Codon Adaptation Index (CAI). CAI was estimated using CodonW, with the

correspondence analysis built-in to CodonW used to identify the reference set.

(TIF)
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S6 Fig. Variation in GC3% along chromosomes of L. kluyveri. Per-gene GC3% content

across all L. kluyveri chromosomes quantified as a moving average using a 20 gene sliding win-

dow (solid line). For each 20 gene window, the percentage of genes assigned to the Higher

GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher

and Lower GC3% (blue and right, respectively). The region of high GC3% content on chromo-

some SAKL0C is the result of an introgression.

(TIF)

S7 Fig. Impact of using 3 clusters compared to 2 clusters on predicting gene expression

data using ROC-SEMPPR. (A) VarMut_2 model using k = 2 clusters. (B) VarMut_3 model

using k = 3 clusters.

(TIF)

S8 Fig. Variation in GC3% along chromosomes of S. uvarum. Per-gene GC3% content

across all S. uvarum chromosomes quantified as a moving average using a 20 gene sliding win-

dow (solid line). For each 20 gene window, the percentage of genes assigned to the Higher

GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher

and Lower GC3% (blue and right, respectively).

(TIF)

S9 Fig. Variation in GC3% along chromosomes of S. cerevisiae. Per-gene GC3% content

across all S. cerevisiae chromosomes quantified as a moving average using a 20 gene sliding

window (solid line). For each 20 gene window, the percentage of genes assigned to the Higher

GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher

and Lower GC3% (blue and right, respectively).

(TIF)

S10 Fig. Variation in GC3% along chromosomes of C. albicans. Per-gene GC3% content

across all C. albicans chromosomes quantified as a moving average using a 20 gene sliding win-

dow (solid line). For each 20 gene window, the percentage of genes assigned to the Higher

GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher

and Lower GC3% (blue and right, respectively).

(TIF)

S11 Fig. Variation in GC3% along chromosomes of C. dubliniensis. Per-gene GC3% content

across all C. dubliniensis chromosomes quantified as a moving average using a 20 gene sliding

window (solid line). For each 20 gene window, the percentage of genes assigned to the Higher

GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher

and Lower GC3% (blue and right, respectively).

(TIF)

S12 Fig. Variation in GC3% along chromosomes of C. parapsilosis. Per-gene GC3% content

across all C. parapsilosis chromosomes quantified as a moving average using a 20 gene sliding

window (solid line). For each 20 gene window, the percentage of genes assigned to the Higher

GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher

and Lower GC3% (blue and right, respectively).

(TIF)

S13 Fig. Variation in GC3% along chromosomes of O. parapolymorpha. Per-gene GC3%

content across all O. parapolymorpha chromosomes quantified as a moving average using a 20

gene sliding window (solid line). For each 20 gene window, the percentage of genes assigned
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to the Higher GC3% regime is also shown (dashed line). Color bars indicate the mutation

regimes for Higher and Lower GC3% (blue and right, respectively).

(TIF)

S14 Fig. Variation in GC3% along chromosomes of O. polymorpha. Per-gene GC3% content

across all O. polymorpha chromosomes quantified as a moving average using a 20 gene sliding

window (solid line). For each 20 gene window, the percentage of genes assigned to the Higher

GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher

and Lower GC3% (blue and right, respectively).

(TIF)

S15 Fig. Variation in GC3% along chromosomes of O. methanolica. Per-gene GC3% content

across all O. methanolica chromosomes quantified as a moving average using a 20 gene sliding

window (solid line). For each 20 gene window, the percentage of genes assigned to the Higher

GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes for Higher

and Lower GC3% (blue and right, respectively).

(TIF)

S16 Fig. Physical clustering of genes assigned to the same mutational cluster is weaker in

species for which VarMut model performed worse. Comparing the average GC3% and per-

centage of genes assigned to Higher GC3% cluster using 20-gene non-overlapping windows

across all chromosomes for a species. (A) S. cerevisiae. (B) C. parapsilosis. (C) O. methanolica.

(TIF)

S17 Fig. Comparison of selection coefficients estimated using the ConstMut and VarMut

model. Selection coefficients are modified such that they represent selection of GC-ending

codons relative to AT-ending codons, i.e. NNG relative to NNA or NNC relative to NNT. (A)

Scatter plot showing the effect of intragenomic mutation bias on misidentifying or overesti-

mating the strength of selection on GC-ending codons relative to AT-ending codons in C. albi-
cans. (B) Distribution of log fold changes of selection coefficients between VarMut and

ConstMut models.

(TIF)

S18 Fig. Comparison of mutation biases between the Lower and Higher GC3% clusters

estimated using the VarMut model. Mutation biases are modified such that they represent

mutation bias of GC-ending codons relative to AT-ending codons, i.e. NNG relative to NNA

or NNC relative to NNT. (A) Scatter plot showing the difference in mutation bias between the

two clusters used in the VarMut model for C. albicans. (B) Distribution of log fold changes of

mutation bias between clusters used in VarMut Model.

(TIF)

S19 Fig. Variation in GC3% along chromosomes of L. thermotolerans. Per-gene GC3% con-

tent across all L. thermotolerans chromosomes quantified as a moving average using a 20 gene

sliding window (solid line). For each 20 gene window, the percentage of genes assigned to the

Higher GC3% regime is also shown (dashed line). Color bars indicate the mutation regimes

for Higher and Lower GC3% (blue and right, respectively).

(TIF)

S20 Fig. Model selection of VarMut and ConstMut models. Comparison of ΔDIC to (A) dif-

ferences in prediction of gene expression data between the VarMut and ConstMut models and

(B) the differences of the median GC3% values of the Higher GC3% and Lower GC3% clusters.

(TIF)
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S1 Table. List of species and accessions for RNA-seq data used in this study. All data were

download from NCBI’s Sequence Read Archive, except for L. kluyveri (European Nucleotide

Archive).

(TSV)

Acknowledgments

The authors would like to thank E.W.J. Wallace and M.A. Gilchrist for helpful discussions

over the course of this project.

Author Contributions

Conceptualization: Alexander L. Cope, Premal Shah.

Data curation: Alexander L. Cope.

Formal analysis: Alexander L. Cope.

Investigation: Alexander L. Cope.

Methodology: Alexander L. Cope, Premal Shah.

Software: Alexander L. Cope.

Supervision: Premal Shah.

Visualization: Alexander L. Cope.

Writing – original draft: Alexander L. Cope, Premal Shah.

Writing – review & editing: Alexander L. Cope, Premal Shah.

References
1. Drummond DA, Wilke CO. The evolutionary consequences of erroneous protein synthesis. Nature

Reviews Genetics. 2009; 10:715–724. https://doi.org/10.1038/nrg2662 PMID: 19763154

2. Emery LR, Sharp PM. Impact of translational selection on codon usage bias in the archaeon Methano-

coccus maripaludis. Biology Letters. 2011; 7:131. https://doi.org/10.1098/rsbl.2010.0620 PMID:

20810428

3. Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias.

Nature Reviews Genetics. 2011; 12:32–42. https://doi.org/10.1038/nrg2899 PMID: 21102527

4. Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nature Reviews

Molecular Cell Biology. 2018; 19:20–30. https://doi.org/10.1038/nrm.2017.91 PMID: 29018283

5. Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ. The Ongoing Quest to Crack the Genetic

Code for Protein Production. Molecular Cell. 2020; 80:193–209. https://doi.org/10.1016/j.molcel.2020.

09.014 PMID: 33010203

6. Clarke B. Darwinian evolution of proteins. Science. 1970; 168:1009–1011. https://doi.org/10.1126/

science.168.3934.1009 PMID: 4909620

7. Fitch WM. Is there selection against wobble in codon-anticodon pairing? Science. 1976; 194:1173–

1174. PMID: 996548

8. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of

the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for

the E. coli translational system. Journal of Molecular Biology. 1981; 151:389–409.

9. Gouy M, Gautier C. Codon usage in bacteria: Correlation with gene expressivity. Nucleic Acids

Research. 1982; 10:7055–7074. https://doi.org/10.1093/nar/10.22.7055 PMID: 6760125

10. Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational

accuracy. Genetics. 1994; 136. https://doi.org/10.1093/genetics/136.3.927 PMID: 8005445

11. Lawrie DS, Messer PW, Hershberg R, Petrov DA. Strong Purifying Selection at Synonymous Sites in D.

melanogaster. PLoS Genetics. 2013; 9:e1003527. https://doi.org/10.1371/journal.pgen.1003527

PMID: 23737754

PLOS GENETICS Intragenomic variation in non-adaptive biases causes underestimation of selection on codon usage

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010256 June 17, 2022 20 / 24

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010256.s021
https://doi.org/10.1038/nrg2662
http://www.ncbi.nlm.nih.gov/pubmed/19763154
https://doi.org/10.1098/rsbl.2010.0620
http://www.ncbi.nlm.nih.gov/pubmed/20810428
https://doi.org/10.1038/nrg2899
http://www.ncbi.nlm.nih.gov/pubmed/21102527
https://doi.org/10.1038/nrm.2017.91
http://www.ncbi.nlm.nih.gov/pubmed/29018283
https://doi.org/10.1016/j.molcel.2020.09.014
https://doi.org/10.1016/j.molcel.2020.09.014
http://www.ncbi.nlm.nih.gov/pubmed/33010203
https://doi.org/10.1126/science.168.3934.1009
https://doi.org/10.1126/science.168.3934.1009
http://www.ncbi.nlm.nih.gov/pubmed/4909620
http://www.ncbi.nlm.nih.gov/pubmed/996548
https://doi.org/10.1093/nar/10.22.7055
http://www.ncbi.nlm.nih.gov/pubmed/6760125
https://doi.org/10.1093/genetics/136.3.927
http://www.ncbi.nlm.nih.gov/pubmed/8005445
https://doi.org/10.1371/journal.pgen.1003527
http://www.ncbi.nlm.nih.gov/pubmed/23737754
https://doi.org/10.1371/journal.pgen.1010256


12. Machado HE, Lawrie DS, Petrov DA. Pervasive Strong Selection at the Level of Codon Usage Bias in

Drosophila melanogaster. Genetics. 2020; 214:511–528. https://doi.org/10.1534/genetics.119.302542

PMID: 31871131

13. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology

and Evolution. 1985; 2:13–34. PMID: 3916708

14. Bulmer M. Coevolution of codon usage and transfer RNA abundance. Nature. 1987; 325:728–730.

https://doi.org/10.1038/325728a0 PMID: 2434856

15. Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE. Variation in the strength of selected codon

usage bias among bacteria. Nucleic Acids Research. 2005; 33:1141–1153. https://doi.org/10.1093/nar/

gki242 PMID: 15728743

16. Shah P, Gilchrist M. Explaining complex codon usage patterns with selection for translational efficiency,

mutation bias, and genetic drift. PNAS. 2011; 108:10231–10236. https://doi.org/10.1073/pnas.

1016719108 PMID: 21646514

17. Harrison RJ, Charlesworth B. Biased Gene Conversion Affects Patterns of Codon Usage and Amino

Acid Usage in the Saccharomyces sensu stricto Group of Yeasts. Molecular Biology and Evolution.

2011; 28:117–129. https://doi.org/10.1093/molbev/msq191 PMID: 20656793

18. Labella AL, Opulente DA, Steenwyk JL, Hittinger CT, Rokas A. Variation and selection on codon usage

bias across an entire subphylum. PLoS Genetics. 2019; 15:e1008304. https://doi.org/10.1371/journal.

pgen.1008304 PMID: 31365533

19. de Oliveira JL, Morales AC, Hurst LD, Urrutia AO, Thompson CRL, Wolf JB. Inferring Adaptive Codon

Preference to Understand Sources of Selection Shaping Codon Usage Bias. Molecular Biology and

Evolution. 2021; 38:3247–3266. https://doi.org/10.1093/molbev/msab099 PMID: 33871580

20. Drummond DA, Wilke CO. Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Cod-

ing-Sequence Evolution. Cell. 2008; 134:341–352. https://doi.org/10.1016/j.cell.2008.05.042 PMID:

18662548

21. Qin H, Wu WB, Kreitman JMCM, Li W. Intragenic Spatial Patterns of Codon Usage Bias in Prokaryotic

and Eukaryotic Genomes. Genetics. 2004; 168:2245–2260. https://doi.org/10.1534/genetics.104.

030866 PMID: 15611189

22. Gilchrist MA, Shah P, Zaretzki R. Measuring and Detecting Molecular Adaptation in Codon Usage

Against Nonsense Errors During Protein Translation. Genetics. 2009; 183:1493–1505. https://doi.org/

10.1534/genetics.109.108209 PMID: 19822731

23. Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of expression in Escheri-

chia coli. Science. 2009; 324:255–258. https://doi.org/10.1126/science.1170160 PMID: 19359587

24. Hockenberry AJ, Sirer MI, Amaral LAN, Jewett MC. Quantifying Position-Dependent Codon Usage

Bias. mol Biol Evol. 2014; 31:1880–1893. https://doi.org/10.1093/molbev/msu126 PMID: 24710515

25. Yannai A, Katz S, Hershberg R. The codon usage of lowly expressed genes is subject to natural selec-

tion. Genome Biology and Evolution. 2018; 10:1237–1246. https://doi.org/10.1093/gbe/evy084 PMID:

29688501

26. Li WH. Models of nearly neutral mutations with particular implications for nonrandom usage of synony-

mous codons. Journal of Molecular Evolution 1987 24:4. 1987; 24:337–345. PMID: 3110426

27. Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991; 129.

https://doi.org/10.1093/genetics/129.3.897 PMID: 1752426

28. Wallace EWJ, Airoldi EM, Drummond DA. Estimating Selection on Synonymus Codon Usage from

Noisy Experimental Data. Molecular Biology and Evolution. 2013; 30:1438–1453. https://doi.org/10.

1093/molbev/mst051 PMID: 23493257

29. Gilchrist MA, Chen WC, Shah P, Landerer CL, Zaretzki R. Estimating Gene Expression and Codon-

Specific Translational Efficiencies, Mutation Biases, and Selection Coefficients from Genomic Data

Alone. Genome Biology and Evolution. 2015; 7:1559–1579. https://doi.org/10.1093/gbe/evv087 PMID:

25977456

30. Novembre JA. Accounting for Background Nucleotide Composition When Measuring Codon Usage

Bias. Molecular Biology and Evolution. 2002; 19:1390–1394. https://doi.org/10.1093/oxfordjournals.

molbev.a004201 PMID: 12140252

31. Xia X. An Improved Implementation of Codon Adaptation Index. Evolutionary Bioinformatics Online.

2007; 3:53. PMID: 19461982

32. Fox JM, Erill I. Relative Codon Adaptation: A Generic Codon Bias Index for Prediction of Gene Expres-

sion. DNA Research: An International Journal for Rapid Publication of Reports on Genes and

Genomes. 2010; 17:185. https://doi.org/10.1093/dnares/dsq012 PMID: 20453079
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