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This paper proposes a deep learning method based on electrical impedance tomography (EIT) to estimate the thickness of
abdominal subcutaneous fat. EIT for evaluating the thickness of abdominal subcutaneous fat is an absolute imaging problem
that aims at reconstructing conductivity distributions from current-to-voltage data. Existing reconstruction methods based on
EIT have difficulty handling the inherent drawbacks of strong nonlinearity and severe ill-posedness of EIT; hence, absolute
imaging may not be possible using linearized methods. To handle nonlinearity and ill-posedness, we propose a deep learning
method that finds useful solutions within a restricted admissible set by accounting for prior information regarding abdominal
anatomy. We determined that a specially designed training dataset used during the deep learning process significantly reduces
ill-posedness in the absolute EIT problem. In the preprocessing stage, we normalize current-voltage data to alleviate the effects
of electrodeposition and body geometry by exploiting knowledge regarding electrode positions and body geometry. The
performance of the proposed method is demonstrated through numerical simulations and phantom experiments using a 10
channel EIT system and a human-like domain.

1. Introduction

Abdominal obesity is closely linked to metabolic syndrome
and cardiovascular diseases [1–3]. As a major health indica-
tor, it is desirable to estimate the regional distribution of
abdominal fats, such as subcutaneous and visceral fats. Com-
puted tomography (CT) and magnetic resonance imaging
can quantitatively estimate the distribution of abdominal
fat [4]. However, these methods are expensive and unsuitable
for daily use. Furthermore, CT has associated safety issues
based on radiation exposure [5]. Therefore, there is a growing
demand for a cheaper and safer abdominal fat evaluation
method that is practical for continuous self-monitoring to
track body fat status as part of a daily routine.

Electrical impedance tomography (EIT) [6–8] may be the
top candidate for meeting this demand based on its low eco-
nomic burden, continuous self-monitoring capabilities, and
suitability for daily routines. EIT aims at visualizing the dis-

tributions of electrical conductivity inside the human body.
Such distributions can be used to evaluate the thickness of
subcutaneous fat because the electrical properties of adipose
tissue are significantly different from those of other tissues
[9–11]. EIT uses a number of electrodes (typically 8 to 32)
attached to the surface of the body. Current-voltage data
are acquired by applying alternating currents over various
frequencies (from tens of kilohertz to megahertz) and mea-
suring voltages through the attached electrodes. These volt-
ages reflect internal conductivity distributions. Here, the
amount of current injected to human body is less than or
equal to 10mA at the current excitation frequency 100 kHz,
and the safe range of current depends on the excitation fre-
quency [12]. Conductivity distributions are recovered from
the current-voltage data using reconstruction algorithms. It
is theoretically guaranteed that a conductivity distribution
can be uniquely identified based on (infinite) current-voltage
data [13–15]. The EIT imaging reconstruction problem of
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recovering conductivity distributions inside the abdomen,
which is referred to as the absolute imaging problem [16],
is highly nonlinear and severely ill-posed. Despite over
30 years of development of EIT reconstruction methods,
performance for absolute imaging is still insufficient for
clinical applications, although difference imaging has been
successful in some applications as a contrast imaging method
[6, 17]. There have been numerous studies on EIT recon-
struction algorithms, such as backprojection [18], NOSER
[19], GREIT [20], the D-bar method [21], factorization
method [22], and regularized least squares method [23].
Representative methods for solving the absolute imaging
problem are the regularized least squares method [6, 19, 24]
and D-bar method [25–27]. The regularized least squares
method is based on the minimization problem argmin γ1/2
kFðγÞ −Vk2 + RegðγÞ for recovering a conductivity distribu-
tion γ from given data V, where F is a forward operator that
maps data from γ to data in Vði:e:,F : γ⟶VÞ, where Reg
ðγÞ is a regularization term and k · k is the Euclidean norm.
These methods handle ill-posedness by forcing the mini-
mizer to have a desired property that is determined based
on prior knowledge regarding γ and incorporated in RegðγÞ.
However, this approach fails to produce useful images for
absolute abdominal imaging with regularization, including
L2 and L1 regularization, and variation [6] (see Section 2.3).
The D-bar method performs nonlinear direct reconstruction,
but reconstruction can be inaccurate when data are measured
for only a small portion of the boundary [28].

When describing the forward operator F, most conven-
tional methods use a physics-based model. Specifically, a
generalized Laplace equation representing electric potential
distributions at low frequencies is typically developed from
Maxwell’s equation [6, 7]. Physics-based models not only
depend on the relationships between conductivity distribu-
tions and current-voltage data, but also on geometrical fac-
tors, body shape, and electrode positions [29]. Therefore,
errors or uncertainty in geometry factors can easily cause
the reconstruction process to misinterpret the underlying
current-voltage data, thereby compromising image recon-
struction results. In fact, the influence of geometrical factors
is so severe that regularization in physics-based models is
not sufficient for absolute imaging [27, 30–32]. To handle
this undesirable influence, it would be advantageous to incor-
porate geometrical factors in the regularization term Regð·Þ.
However, this is a difficult proposition for physics-based
models based on the difficulty of explicitly describing geo-
metrical influences on data during regularization.

To avoid using physics-based models, which are the
fundamental cause of many of the difficulties in absolute
imaging, we propose using a deep learning technique that
incorporates a data-based model. Recently, deep learning
methods have been actively applied to EIT [33]. Such
methods can be divided into two main types: methods that
map images to images and methods that map data to images.
The former type enhances the resolution of relatively low-
resolution images generated by conventional methods [27,
34]. The latter type directly learns mappings from measured
data to images [35, 36]. In this study, we developed a method

of the second type by adopting a multilayer perceptron
(MLP), which is one of the deep-learning techniques. MLPs
use fully connected layers, meaning each node in each inte-
rior layer is connected to all nodes in the next layer [37]. This
fully connected structure is suitable for EIT because bound-
ary voltage data are entangled with the global structures of
conductivity distributions [7].

Furthermore, we combine an MLP with a special data
normalization technique to reduce inherent geometrical
influences. We establish an operator G : V⟶ γ that can
be considered as a backward operator corresponding to the
forward operator F by using a training dataset consisting of
geometrical dependency-reduced voltage data (Section 3.2).
Specifically, we normalize the measured voltage V to mini-
mize geometrical dependency and apply this normalized
voltage to the MLP using a normalization map (Section
3.1). When generating a training dataset D, we use simplified
conductivity distributions by layering imaging domains of
uniform thickness (Section 3.3). This simplification makes
the estimation of the thickness of subcutaneous fat much eas-
ier and reduces the ill-posedness of the absolute imaging
problem by reducing the number of unknown variables.

This remainder of this paper is organized as follows. In
Section 2, we present preliminary information, including
the electrical properties of the abdomen, data acquisition
methods, and conventional methods. The proposed method
is introduced in Section 3, which has three subsections focus-
ing on data normalization, the MLP, and training datasets. In
Section 4, we present numerical simulation results. Finally,
we conclude this paper in Section 5.

2. Preliminary Study: Conductivity and Data

2.1. Electrical Properties of the Abdomen. The abdomen has
different electrical properties related to different organs
and can be roughly divided into four regions: subcutaneous
fat (just below the skin), abdominal muscle, visceral fat (fat
that surrounds the organs), and organ tissue, as shown in
Figure 1. Fat and muscle tissues have very distinct conduc-
tivity spectra over the frequencies plotted in Figure 2 [38],
which reveal that the conductivity of muscle tissue is six
times greater than that of fat. Let γf and γm denote the con-
ductivity values of fat and muscle, respectively. Then, we
assume that

γf < γm ≤ 10γf : ð1Þ

These distinct electrical properties of organs in the abdo-
men motivate the use of impedance data and EIT techniques
for the estimation of subcutaneous fat thickness by distin-
guishing fat from muscle.

2.2. Data Acquisition. Let an imaging object occupy a two- or
three-dimensional space Ω bounded by its surface ∂Ω. The
conductivity in Ω at an angular frequency ω and position
r = ðx, yÞ or ðx, y, zÞ is denoted by γðrÞ. A set of surface elec-
trodes attached to ∂Ω apply currents and measure corre-
sponding voltages. When applying a sinusoidal current
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between a chosen pair of electrodes at an angular frequency
ω, the induced voltage in the body can be expressed as UðrÞ
sin ðωt + θðω, rÞÞ, where θ indicates the phase angle. Then,
the corresponding time-harmonic potential uðrÞ =UðrÞ exp
ðθðω, rÞ ffiffiffiffiffiffi

−1
p Þ is governed by

∇· γ∇uγð Þ = 0 inΩ,
n ⋅ γ u∇γð Þ = g on ∂Ω,

(
ð2Þ

where n is the outward unit normal vector corresponding to
∂Ω and g is the boundary current density on ∂Ω induced by
the applied current.

Let ðε1, ε2,⋯, εEÞ denote the attached surface electrodes.
We sequentially apply M different currents using chosen
electrode pairs fðε1+ , ε1−Þ, ðε2+ , ε2−Þ,⋯, ðεM+

, εM−
Þg, where

1±,⋯,M± ∈ f1, 2,⋯, Eg. Let uj denote the induced potential
in (2) corresponding to the jth applied current, where a
sinusoidal current of I mA at an angular frequency ω is
applied through the electrode pair ðεj+ , εj−Þ. By denoting

(a) (b)

Figure 1: Abdominal CT image (a) and corresponding segmented image (b) separated into three main regions (subcutaneous fat colored
blue, muscle colored red, and visceral fat colored yellow) with bone (white) and other tissues (gray).
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Figure 2: Conductivity values of subcutaneous fat (blue) and muscle (red) tissues over the frequency range of 100Hz to 1MHz [38].
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the corresponding Neumann data as gj, we have
Ð
ε j+
gjds =

I = −
Ð
ε j
gjds, where gj is approximately zero on ∂ΩðEj+

∪
Ej−

Þ, where ds is the surface element. To estimate a conduc-
tivity distribution, we measure the voltage difference
between the ith pair of electrodes subject to the jth applied
current as

V j,i = uγj εi+ − uγj
�� ��εi− , ð3Þ

for j, i = 1, 2⋯ ,M. We do not use Vj,i for ðj, iÞ as fεj+ , εj−g
∩ fεi+ , εi−g ≠ 0 based on the uncertainty caused by skin-
electrode contact impedances [7, 39, 40].

The voltage V j,i reflects the conductivity distribution γ

according to the following relation:

V j,i ≈
1
I

ð
Ω

γ rð Þ∇uγj rð Þ ⋅ ∇uγi rð Þdr, ð4Þ

where dr is the area element. The voltage V j,i heavily depends
on the body geometryΩ and electrode positions ðε1, ε2,⋯,εEÞ,
which are difficult to acquire in practice. To minimize the
dependency on body geometry and electrode positions, we
fix the positions of the electrodes on a curved plate, as shown
in Figure 3. The shape of the curved plate is predetermined
and designed to fit the human abdomen. By concatenating
all voltages V j,i in order, we generate a vector V of V j,i values
as follows:

V = V j1,i1,V j2,i2,⋯,V jM∗ ,iM∗

h iT
, ð5Þ

where ðj1, i1Þ, ðj2, i2Þ,⋯, ðjM∗, iM∗
Þ are the ordered index

pairs of fðj, iÞ: fεj+ , εj−g ∩ fεi+ , εi−g = 0g and M∗ is the num-
ber of voltages in V. Then, V is referred to as a vector of
current-voltage data.

2.3. Conventional Method: Sensitivity Approach. The most
widely used EIT image reconstruction method is the sensitiv-
ity method [19], which operates based on the voltage-
conductivity relationship in (4). This method requires a dis-
cretized imaging domain Ω with L subregions (mostly trian-
gular) Ω1,Ω2,⋯,ΩL, which can be defined as

Ω = ∪L
ℓ=1Ωℓ: ð6Þ

Assuming that γ is constant in each subregion Ω, the
voltage in (4) can be expressed approximately as a linear sys-
temV = Sγγ for γ = ½γ ∣Ω1, γ ∣Ω2,⋯,γ ∣ΩL�T Where Sγ is an

M∗ × L sensitivity matrix defined as ðSγÞα,β = 1/IÐ
Ωℓ
∇uγj ðrÞ ·

∇uγj ðrÞdr with α = ðj, iÞ, β = ℓ. γ can be derived from V by
solving the linear system V = Sγγ. However, the matrix Sγ

is ill-conditioned. Therefore, to recover γ from V, the regu-
larized least squares method [6] is used as follows:

V↦ γ≔ argmin
γ

1
2 Sγγ‐V
�� ��2 + λRReg γð Þ, ð7Þ

where k⋅k is the standard Euclidean norm, Reg is a regulari-
zation operator, and λR > 0 is a regularization parameter.
Tikhonov and total variation regularizations are also widely
used [19, 40]. However, the regularized least squares method
for absolute EIT suffers from the fundamental difficulty in
handling the ill-conditioned matrix Sγ based on the
unknown γ and forward modelling errors.

3. Method: Absolute EIT Reconstruction Using
Deep Learning

In this section, we discuss the proposed absolute image
reconstruction algorithm for estimating subcutaneous fat
thickness. We develop a map G from V to γ based on deep-
learning techniques combined with the special data normal-
ization method introduced in [11]. The map G is defined by
two other maps, namely, the data normalization map Ψ
and conductivity reconstruction map Ξ, as follows:

G = Ξ ∘Ψ: ð8Þ

In Section 3.1, we presented a data normalization map Ψ
from the data V to V̂, which minimizes forward modelling
error as follows:

Ψ : V↦ V̂: ð9Þ

In Sections 3.2 and 3.3, for reconstructing the conductiv-
ity γ from the normalized data V̂, we introduced a map Ξ,
which is defined as

Ξ : V̂↦ γ, ð10Þ

based on deep learning techniques.

Electrode array

Electrode array

Figure 3: Left image shows an illustrative human with an electrode
array attached to their abdomen in 3D. The right image shows a
cross section of the left image with the electrode array depicted in
black. In the right image, blue, red, yellow, white, and gray colors
represent subcutaneous fat, muscle, visceral fat, bone, and other
tissues, respectively.
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3.1. Normalization of Current-Voltage Data. The reconstruc-
tion of the conductivity distribution γ from the data V is very
sensitive to forward modelling errors caused by the inaccu-
racy of electrode positions and geometrical uncertainty [7].
To alleviate such forward modelling errors, we normalize
the data V based on information regarding boundary geom-
etry. The map Ψ is designed to minimize the geometry
dependency of the data V j,i, which are components of V, as
follows ([11], the equation (2.18)):

Ψ Vð Þ = V̂, where V̂j,i ≔
Sj,i
Vj,i

≈
Ð
Ω
∇vj rð Þ ⋅ ∇vi rð ÞdrÐ

Ω
γ rð Þ∇uγj rð Þ ⋅ ∇uγi rð Þdr ,

ð11Þ

and Sj,i = 1/IÐ
Ω
∇vjðrÞ · ∇viðrÞdr, where vj is the solution to

vj = 0 in Ω with the boundary condition n ⋅ ∇vj = gj on ∂Ω.

Here, V̂j,i can be considered as a weighted harmonic average
of conductivity whose weight depends on the distribution of
∇uγj · ∇u

γ
i . It should be noted that if the conductivity distribu-

tion γ is homogeneous and represented as a constant, then
uγj ðrÞ = vjðrÞ/γðrÞ and V̂j,i = γ for all i, j, regardless of the elec-
trode positions and boundary geometry.

3.2. Multilayer Perceptron. We reconstruct the conductivity
distribution γ from the normalized data V̂ using an MLP,
which is a deep-learning technique that can capture nonlin-
ear relationships between input and output data [41, 42].
An MLP can serve as a tool for creating a representation
function based on a given set of credible pairs of input and
output data, which is referred to as a training dataset. This

representation functionality can be considered as an inverse
solver for EIT. We recover the conductivity γ from the nor-
malized voltage data V by constructing a mapping Ξ : V̂
⟶ γ using an MLP. The map Ξ is constructed by composit-
ing multiple linear and nonlinear functions called activation
functions. Below, we provide details regarding how Ξ is con-
structed from linear and nonlinear functions.

An MLP consists of several layers of nodes or neurons, as
shown in Figure 4. To apply an MLP to EIT, we define the
nodes in the input layer as the normalized voltages in the vec-
tor V and the nodes in the output layer as the conductivity
values γ for each subregion Ω bin (6). The hidden layers,
which are neither input nor output layers, are used to extract
complex features from the relationships between the conduc-
tivity and voltage data. Let an MLP contain J layers and let
the jth layer contain Nj nodes. Since the nodes in the first
layer (input layer) are measured voltage data and the nodes
in the last layer (output layer) are the conductivity values
from subregions, we have N1 =M∗ and NJ = L. The repre-
sentation function Ξ in the MLP has the following form of
successive compositions:

Ξ V̂
� �

= hJ−1∘⋯∘h2 ∘ h1 V̂
� �

, ð12Þ

where hj : ℝ
N j ⟶ℝN j+1 is given by

hj oj
� �

= oj+11 , oj+12 ,⋯,oj+1N J+1

h iT
with oj+1m = ξ 〠

N j

n=1
Wj

m,n o
j
n

0
@

1
A

ð13Þ
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Figure 4: Schematic diagram of the MLP used in this study. To apply the MLP, we require a training dataset, as shown in the blue box. In the
red box, we illustrate the details of the MLP structure. The numbers in the black box indicate numbers of nodes. The inputs are obtained from
the training dataset and the outputs are conductivity values.
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for oj ∈ℝN j . Here, Wj
m,n is the weight connecting the mth

node (neuron) in the ðj + 1Þth layer to the nth node (neuron)
in the jth layer and ξ is an activation function. It should
be noted that o1 are the input data, meaning o1 = V̂ and
oN j are the output data, meaning oNJ = γ. In this study, a
rectified linear unit ξ ðxÞ = J max ðx, 0Þ was used as the
activation function. It should be noted that Ξ is determined

by the weights W ≔ ffW1
m,ngm=1,⋯,N2

n=1,⋯,N1
, fW2

m,ngm=1,⋯,N3
n=1,⋯,N2

,⋯,
fWJ−1

m,ngm=1,⋯,N J

n=1,⋯,N J−1
g. Therefore, we denote ΞWðV̂Þ≔ ΞðV̂Þ.

To determine W, we minimize the function

W ≔ arg min
W

〠
NT

k=1
ΞW V̂ kð Þ� �

− γ kð Þ
���

���2, ð14Þ

for a given training dataset ðγð1Þ, V̂ð1ÞÞðγð2Þ, V̂ð2ÞÞ,⋯, ðγðNT Þ,
V̂ðNT ÞÞ, where NT is the number of training data. As shown
in (14), the set of weights W, meaning the map Ξ is deter-
mined by the training dataset. In the next section, we will pres-
ent the training dataset adopted in this study.

3.3. Training Dataset from Numerical Simulations for
Constructing the Map Ξ. The map Ξ used in (12) and (13)
is determined by W, which is defined by the minimization
in (14). The result of the minimization in (14) depends on

the training dataset fðγðiÞ, V̂ðiÞÞgNT

i=1. Therefore, the map Ξ is
ultimately determined by the training dataset. Consequently,
the design of the training dataset is very important. There-
fore, in this section, we present the details regarding how
the training data were defined.

Generating training data requires solving equation (2) to
derive the voltage dataV that determine g and the conductiv-
ity distributionb γ. We adopted the body shape in (5) and the
normalized voltage V̂ in (11) for a given domain Ω, the elec-
trode positions for the domain Ω from two-dimensional
abdomen CT axial images, and considered a case with 10
electrodes on the central front part of the abdomen. Accord-
ing to [11], it is acceptable to consider a limited region
around the electrode array, as shown in Figure 5, because

measured voltages are rarely affected by the conductivity far
from the electrodes. In the restricted region, we use a special
type of internal domain that enables us to estimate the thick-
ness of abdominal fat more easily. We propose dividing the
imaging domain into L disjoint layers Ω1,⋯,ΩL with thick-
nesses of d0 such that

Ωℓ ≔ r ∈Ω : d0 ℓ − 1ð Þ < dist r, ∂Ωð Þ < d0ℓf g andΩL

≔Ω \ ∪L−1
ℓ=1Ωℓ,

ð15Þ

for ℓ = 1, 2,⋯, L − 1, where dist (r, ∂Ω) denotes the dis-
tance between r and ∂Ω. In this study, we used 15 thin layers
(i.e., L = 15). By using the layers Ω, we can simply divide the
domainΩ into three regions of subcutaneous fat, muscle, and
other tissues, whose conductivity values are denoted as γf ,
γm, and γr , respectively. Then, the conductivity distribu-
tion can be expressed as

γ rð Þ =
γf , r ∈ ∪1 ≤ ℓ ≤ ℓfΩℓ,
γm, r ∈ ∪ℓ f

≤ ℓ ≤ ℓmΩℓ,

γr , otherwise,

8>><
>>:

ð16Þ

where ℓf and ℓm are indices for the subregions of subcuta-
neous fat and muscle, respectively. It should be noted that
ℓf < ℓm because the subcutaneous fat is the outermost
region. Therefore, the thicknesses of the subcutaneous fat
and muscle regions can be easily estimated as d0ℓf and
d0ðℓm − ℓf Þ, respectively.

In this study, we tested all possible values of ℓf and ℓm
while maintaining at least one layer for each region (i.e., min-
imum of ℓf = 1, maximum of ℓf = 13, minimum of ℓm = 2,
and maximum of ℓm = 14). Therefore, we testing 91 different
partitions for the three regions. Regarding the conductivity
values for subcutaneous fat γf , muscle γm, and other tissues
γr , we assigned conductivity values ranging from 1 to 10 with
a step size of 0.5 according to (1). Specifically, we tested
γf = 1, γm = 2:0, 2:5, 3:0,⋯, 10:0, and γr = 1:5, 2:0, 2:5,⋯,
9:5 satisfying γf < γr < γm ≤ 10γf . Therefore, we tested 17

Electrode array

Region of interest

(a)

𝛺1
𝛺2
𝛺3

𝛺L

…

(b)

Figure 5: Region of interest in the imaging domain (a) and subregions of layers (b).
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different values for γm and nine different values for γr . Con-
sidering the 91 different partitions for the three types of
organs, a total of 13923ð= 91 × 17 × 9Þ different conductivity
distributions were used for the training dataset.

To produce a normalized voltage V̂ with a given conduc-
tivity distribution γ in a given domain with a given electrode
array, we used 45 different current application patterns (with
all possible electrode pairs using 10 electrodes). For each
application, we measured 28 voltages using all electrode
pairs for which no current was applied. We used a set of
pairs ðγ, V̂Þ of simplified conductivity distributions and nor-
malized data for the training dataset.

By using the training dataset fðγðiÞ, V̂ðiÞÞgNT

i=1, we con-
structed the representation function Ξ defined in (12) using
TensorFlow [43] with five hidden layers ðJ = 7Þ. We set the

numbers of nodes in each hidden layer as ðN2,N3,N4,N5,
N6Þ = ð512, 256, 128, 64, 32Þ.

4. Results

In this section, we present numerical simulations to validate
the proposed method. In Section 4.1, we present recon-
structed images of the human abdominal model to determine
subcutaneous fat thickness, as well as conductivity values for
different fat thicknesses and body shapes. To calculate the
percentage error of thickness estimation, in Section 4.2, we
present numerical simulations with various fat thicknesses
in a circular domain. Additionally, numerical experiments
in Section 4.3 demonstrate the robustness of the proposed
reconstruction algorithm in a nonabdomen domain with
random data and nonabdomen domain with regular data.

(i) Training image generation: generate γðkÞ (specially designed abdomen model used solely for training)
(ii) Data acquisition: obtain VðkÞ from (2) and (3)

(iii) Normalization: obtain V̂ðkÞ
from (11)

(iv) Minimization: find the minimizer W of (14)
(v) Construction of Ξ: compute Ξ from (13) and (12)

Algorithm 1: Construction of Ξ.
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Figure 6: Numerical simulations for testing the proposed reconstruction algorithm with different subcutaneous fat and muscle thicknesses
and body shapes. (i) Thick subcutaneous fat. (ii) Thin subcutaneous fat. (iii) Different body shape. (a) True conductivity distributions. (b)
Reconstructed images generated by the proposed method. (c) Reconstructed images generated by the regularized least squares method.
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Finally, in Section 4.4, we present a numerical validation of
data normalization.

We present the image reconstruction algorithm below.
To test the proposed algorithm, we normalized the measured
data V to obtain V̂ and inserted it into the function Ξ, result-
ing in the image γ = ΞðV̂Þ.

4.1. Image Reconstruction. This section presents the image
reconstruction results of the proposed method in compari-
son to those of the conventional method (regularized least

squares method), which was originally presented in (7). The
first test image contains variations in the thicknesses of sub-
cutaneous fat and muscle. For the second test image, we
changed the body shape. To generate an internal conductiv-
ity distribution of the abdomen for our simulations, we used
CT images and assigned conductivity values to each organ
satisfying (1), as shown in Figure 6(a). To generate the
current-voltage data V for (5), we applied 45ð= 10 × 9 ÷ 2Þ
currents to all possible pairs of electrodes. For each appli-
cation, we measured 28 voltages between the remaining

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

3 4 5 6 7 8 9 3 4 5 6 7 8 3 4 5 6 7 3 4 5 6 3 4 5 3 4 3
4 5 6 7 8 9 10 5 6 7 8 9 10 6 7 8 9 10 7 8 9 10 8 9 10 9 10 10

1

2

Inject
pair

Measure
pair

Figure 7: Electrode pairs for current application and voltage measurement when current is applied through the first and second electrodes.
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electrode pairs, where no current was applied (as shown in
Figure 7).

A total of 1260ð= 45 × 28Þ voltages ðM∗ = 1260Þ were
used to reconstruct the conductivity distributions. The
current-voltage dataVwas obtained by solving the governing
equation (2) using the finite element method. In Figure 6, we

present reconstructed images and ground-truth images. In
Figure 8, we present profiles for ease of comparison.

In Figure 6, we present the results for varying subcutane-
ous fat and muscle thicknesses. The different types of test
domains are arranged in row (i) for thick subcutaneous fat,
row (ii) for thin subcutaneous fat, and row (iii) for a different
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Figure 10: (a, c) True conductivity distributions. (b, d) Corresponding image reconstruction results generated by the proposed method. (e)
Voltage data generated based on random numbers drawn from a Gaussian distribution. (f) Image reconstruction results generated by the
proposed method.
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body shape based on a different CT image. For comparison,
we present images of (a) the true conductivity distribution
and the reconstructed conductivity distributions generated
by (b) the proposed method and (c) conventional method.
We use the same color bar for the true conductivity distribu-
tions and the images reconstructed by the proposed method,
and use an adjusted color bar to improve image contrast for
the images reconstructed by the regularized least squares
method. If we use the same color bar as the true images for
the images reconstructed by the regularized least squares
method, then the resulting images are almost homogeneous
(i.e., no distinct image contrast). The images reconstructed
by the proposed method contain distinct borders between
subcutaneous fat and muscle, whereas the images recon-
structed by the regularized least squares method fail to divide
subcutaneous fat and muscle.

For ease of observing subcutaneous fat estimations, in
Figure 8, we present profiles for the images in Figure 6.
The profiles represent regions from the top center of each
image to a vertical depth of up to 3 cm from each image.
In Figure 8, we present both (a) thick fat and (b) thin fat cases
corresponding to the first and second rows in Figure 6. In the
case with thick fat, the proposed method succeeds in captur-
ing the border between fat and muscle, whereas the conven-
tional method cannot identify fat thickness and conductivity
values. Furthermore, the proposed method can accurately
reconstruct the conductivity value of fat. When the fat is
thin, the proposed method is still able to estimate fat thick-
ness and conductivity values, whereas the conventional
method cannot determine fat thickness and conductivity
values.

4.2. Thickness Estimation. In this section, we present the per-
centage errors (relative errors of subcutaneous fat thickness
as percentages) for estimating subcutaneous fat thickness
and conductivity values using the proposed method (Section
3). To derive quantitative results, we used a circular model,
rather than a body shape (for both training and testing), with
a radius of 10 cm and various subcutaneous fat thicknesses
ranging from 0.3 cm to 3.9 cm with a step size of 0.3 cm, as
shown in Figure 9(a). The estimations of fat thickness were
derived from the reconstructed concentric circles (layers)
by measuring the length from the boundary to the border
of each layer, where the conductivity values change abruptly.
The results of estimating subcutaneous fat thickness are
values corresponding to 13 thickness classes (possible fat
thickness classes for the training model): 0.3, 0.6, 0.9, 1.2,
1.5, 1.8, 2.1, 2.4, 2.7, 3.0, 3.3, 3.6, and 3.90 cm. Because the
testing model used the same variations in subcutaneous fat
thickness as the training model, the errors are discretely dis-
tributed and can be equal to zero (Figure 9(b)). The conduc-
tivity values of fat were also estimated and the corresponding
percentage errors are presented in Figure 9(c). The errors of
estimating thickness and conductivity values are always less
than 7% and 28%, respectively, for subcutaneous fat thick-
nesses ranging from 0.3 to 3.9 cm.

4.3. Robustness. The goal of this section is to demonstrate the
robustness of the proposed method for nonabdominal data.

Based on the results presented in this section, we can con-
clude that the proposed reconstruction algorithm does not
artificially generate human abdomen images from nonab-
dominal data. For verification, we tested two types of data:
(1) impedance data from abdominal shape domains with
nonabdominal conductivity distributions and (2) data con-
sisting of random numbers.

We use the same abdominal domain shape and electrode
alignment as those used in Section 4.1 and shown in
Figure 6(i). The first impedance data we tested came from an
abdominal shape domain with various conductivity anoma-
lies. The background conductivity value was two, the upper
anomalous conductivity value was seven, and the lower anom-
alous conductivity value was five, as shown in Figure 10(a).
Next, we tested impedance data from an abdominal shape
domain with random conductivity distributions drawn from
a Gaussian distribution, as shown in Figure 10(c). The recon-
struction results in Figures 10(b), 10(d), and 10(f) do not
exhibit a fat-muscle structure and show almost entirely back-
ground conductivity values.

4.4. Data Normalization. In this section, we present evidence
of the benefits of using the normalized data V in (11), rather
than using the data V in (5) with the same current measure-
ment patterns discussed in Section 4.1. To this end, we com-
pare the results of MLPs (Section 3.2) different geometrical
shapes for the training process (circular model) and testing
process trained using V̂ andV. For the purpose of comparing
geometrical influences, we used (elliptical model). In the
training process, we used a circular model to create MLP
maps Ξnorm and Ξorig from V̂ and V, respectively, to γ using
the network in Figure 4. For the circular model, we main-
tained a radius of 10 cm and generated concentric circles
for subcutaneous fat, muscle, and interior tissues. The first
outer layer of the model was subcutaneous fat with
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reconstructed conductivity values generated from Ξorig and Ξnorm
using V and V̂, respectively. The results of using Ξorig fail to
capture the border between the subcutaneous fat and muscle.
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thicknesses ranging from 0.3 cm to 3.9 cm. The second layer
of the model was muscle with various thicknesses that satis-
fied the condition of the total thickness of fat and muscle
being equal to 4.2 cm. We set the conductivity value of the
subcutaneous fat to 1 S/m and tested various conductivity
values for the muscle and interior tissues ranging from 2 to
10 S/m and from 1.5 to 9.5 S/m, respectively, satisfying
the condition that the conductivity value of the muscle was
always greater than that of the interior tissues. According to
the settings described above, the total number of training
data was 13923. For testing, we used an elliptical model with
a major axis of 15 cm and a minor axis of 9 cm and a subcu-
taneous fat thickness of 2.1 cm. The other settings were the
same as those used for the training data. We applied each
MLP map (Ξnorm and Ξorig) to the elliptical model. For ease
of comparison, Figure 11 presents conductivity profiles
derived from the reconstructed images based on Ξnorm and
Ξorig. The results of using Ξnorm reveal accurate subcutaneous
fat thicknesses, while those of using Ξorig are inaccurate, as
shown in Figure 11.

4.5. Phantom Experiments. In this section, we present phan-
tom experiments to validate the proposed method. We used
a specially designed phantom with a boundary shape repre-
senting the human abdomen and attached 10 electrodes to
the front of the phantom, as shown in Figure 12(a). To gen-
erate conductivity distributions inside the phantom, we
placed a toroidal agar fabricated from gelatin away from the
boundary of the phantom at a uniform distance from the
boundary in all directions. We used a saline solution (0.1%
NaCl) to fill the two regions separated by the agar, namely,
the near boundary and the middle of the phantom. Here,
the agar represents the muscle layer and the regions sepa-
rated by the agar represent the regions of subcutaneous fat
and the interior organs. The electrical conductivity values
of the agar and saline water are 9.2 S/m and 0.2 S/m, respec-
tively. The thickness of the agar is 3.2 cm and the distance
from the boundary is 1 cm, meaning the thicknesses of the
muscle and fat layers are 3.2 cm and 1 cm, respectively. We

used a Sciospec 16 channel EIT system to apply 45 currents
and measured 28 voltages for each current application, as
described in Section 4.1. The amount of current applied
was 8mA (as peak amplitude) with an excitation frequency
of 100 kHz. We applied the proposed method and conven-
tional method to the measured data from the phantom for
image reconstruction. To consider a more obese abdomen
case, we reduced the thickness of the agar to 1 cm by trim-
ming the outer section of the agar, resulting in a distance
from the agar to the boundary of 3.2 cm, as shown in
Figure 12(b). In Figure 13, we present the image reconstruc-
tion results for the phantom experiments. In the case with a
thin fat layer (1 cm), the conductivity distribution of the pro-
posed method abruptly changes at the borders, whereas the
conductivity distribution of the conventional method does
not reveal a clear border between fat and muscle. In the case
with a thick fat layer (2 cm), the reconstructed conductivity
values in the fat region are constant for the proposed method,
but the conventional method yields irregular reconstructed
conductivity values in the fat region. These results demon-
strate that both the thicknesses and conductivity distribu-
tions of fat layers can be more clearly identified by the
proposed method compared to the conventional method.
However, the reconstructed conductivity values at the fat
region are overestimated.

5. Conclusions and Discussion

We proposed an absolute EIT reconstruction method for
abdominal fat estimation using an MLP, which is a deep-
learning technique. The absolute EIT problem is nonlinear,
ill-posed, and severely affected by forward modelling errors
stemming from uncertainty in electrode positions and body
geometry. We adapted an MLP to capture the nonlinear
relationships between current-voltage data and conductivity
distributions. To alleviate forward modelling errors, we nor-
malized the current-voltage data based on information regard-
ing electrode positions and body geometry. When performing
reconstruction, we separated the problem domain into sub-
layers of uniform thickness to facilitate the estimation of

1.0 cm
3.2 cm

(a)

2.0 cm
2.2 cm

(b)

Figure 12: Abdomen-shaped phantom with agars of different thicknesses. (a) 3.2 cm of the thickness of the agar and 1 cm of the distance to
the boundary. (b) 2.2 cm of the thickness of the agar and 2 cm of the distance to the boundary.
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abdominal fat thickness. This specially designed separation
of the problem domain significantly reduced the number
of unknown variables, thereby reducing the ill-posedness
of the absolute EIT problem. We validated the proposed
method through numerical simulations and phantom exper-

iments using 10 channel EIT systems with a human-like
domain and varying thicknesses of fat and muscle.

Based on the presence of errors in the data V, a wider
domain should be considered for stable reconstruction of
the conductivity distribution γ as follows:
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Figure 13: Reconstructed images from phantom experiments using the proposed and conventional methods. Reconstructed images for the
1 cm fat layer generated by the (a) proposed method and (b) conventional method. (c) Profile of the reconstructed conductivity values along
the depth direction. For the 3.2 cm fat layer, reconstructed images generated by the (d) proposed method and (e) conventional method.
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ϒε ≔ γ : Sγγ −V
�� �� < ε

	 

, ð17Þ

where ε > 0 is the error tolerance. Based on the ill-posed
nature of EIT, small errors in the data can result in abrupt
changes in outputs ðdiamðϒεÞ≫ 1Þ. The regularizations
in (7) can be considered as an attempt to restrict the wide
domain Yε by using prior knowledge regarding sparsity
(L1), smoothness (L2), and sharpness (total variation), but
these regularizations cannot completely eliminate infeasible
solutions, meaning they cannot guarantee stable absolute
EIT reconstruction. In the proposed deep learning method,
the restriction of Yε can be achieved easily to reject infeasible
solutions by designing suitable training data. Specifically, one
should only select feasible conductivity distributions for the
training set to satisfy the desired properties for restriction.

The fully connected nature of MLP layers may be redun-
dant because boundary voltage is insensitive to local pertur-
bations in conductivity, meaning the entanglement between
boundary voltages and conductivity is weak at regions far
from electrodes.

One could use partially connected layers. This method is
typically referred to as a convolutional neural network [44].
The use of partially connected layers reduces the computa-
tional cost of the training process because it requires fewer
weights to be optimized.

In this study, we assumed that the thickness of subcuta-
neous fat was uniform when constructing training data. This
model not only makes estimation of the thickness of subcuta-
neous fat easier, but also makes the problem less ill-posed by
reducing the number of unknown variables. However, the
proposed method may be less accurate when the thickness
of subcutaneous fat is nonuniform.
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