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Desiccation Tolerance in the Tardigrade Richtersius
coronifer Relies on Muscle Mediated Structural
Reorganization
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Abstract

Life unfolds within a framework of constraining abiotic factors, yet some organisms are adapted to handle large
fluctuations in physical and chemical parameters. Tardigrades are microscopic ecdysozoans well known for their
ability to endure hostile conditions, such as complete desiccation — a phenomenon called anhydrobiosis. During
dehydration, anhydrobiotic animals undergo a series of anatomical changes. Whether this reorganization is an
essential regulated event mediated by active controlled processes, or merely a passive result of the dehydration
process, has not been clearly determined. Here, we investigate parameters pivotal to the formation of the so-called
"tun", a state that in tardigrades and rotifers marks the entrance into anhydrobiosis. Estimation of body volume in the
eutardigrade Richtersius coronifer reveals an 87 % reduction in volume from the hydrated active state to the
dehydrated tun state, underlining the structural stress associated with entering anhydrobiosis. Survival experiments
with pharmacological inhibitors of mitochondrial energy production and muscle contractions show that i)
mitochondrial energy production is a prerequisite for surviving desiccation, ii) uncoupling the mitochondria abolishes
tun formation, and iii) inhibiting the musculature impairs the ability to form viable tuns. We moreover provide a
comparative analysis of the structural changes involved in tun formation, using a combination of cytochemistry,
confocal laser scanning microscopy and 3D reconstructions as well as scanning electron microscopy. Our data
reveal that the musculature mediates a structural reorganization vital for anhydrobiotic survival, and furthermore that
maintaining structural integrity is essential for resumption of life following rehydration.
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Introduction

Anhydrobiosis is defined as a reversible entry into a latent
state of life in response to desiccation [1]. This phenomenon is
widespread across life kingdoms; among animals it is known
from rotifers, nematodes and tardigrades as well as certain
species of arthropods [2]. In the anhydrobiotic state, metabolic
activities come to a reversible standstill, and the organism
displays an increased resistance to physiochemical extremes
[3]. Tardigrades are microscopic ecdysozoans [4-7] that can
remain in this dehydrated state for up to 20 years [8], yet once
external conditions again become favorable they resume life
unaffected [9-11]. Many anhydrobiotic organisms are known to
rely on specific bioprotectants, such as certain saccharides and
proteins as well as antioxidant enzymes, in order to offset the
damages associated with complete desiccation, e.g. [12-19];

PLOS ONE | www.plosone.org

however, a unifying theory on how ‘life without water” is
biologically feasible can still not be claimed.

Upon sensing an as yet unidentified cue associated with a
decrease in external water potential, anhydrobiotic animals
undergo a series of anatomical changes. Rotifers and
tardigrades contract in the anterior-posterior direction, and their
extremities invaginate, resulting in a compact body shape
called a “tun” [20,21]. Nematodes, incapable of a
corresponding longitudinal contraction, coil into a tight spiral
[20]. The functional significance of these changes has been
suggested to be a reduced rate of evaporative water-loss, as
well as a controlled packaging of organs, cells and organelles
during the desiccation process [21-24]. Studies on
anhydrobiotic rotifers [21,25] and nematodes [26] suggest that
this reorganization of internal anatomy is coordinated and
necessary for maintaining structural integrity and for
anhydrobiotic  survival. However, experiments on the
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desiccation tolerant larvae of the sleeping chironomid,
Polypedilum vanderplanki, indicate that anhydrobiosis may
proceed without coordination from the central nervous system
[27]. As such, the question of whether this reorganization is a
vital regulated event, mediated by active controlled processes,
or merely a passive result of the dehydration process, remains
unclear.

Here, we investigate the anatomical changes that occur
during anhydrobiosis in the tardigrade Richtersius coronifer
(Richters, 1903), a species well known for its ability to enter
anhydrobiosis [10,28,29]. We show that mitochondrial energy
production and a functional musculature are prerequisites for
the formation of the tun state. We furthermore present a
detailed analysis of the musculature involved in tun formation.

Materials and Methods

Ethics Statement

Specimens of the tardigrade Richtersius coronifer (Figure 1)
were collected from mosses on Oland, Sweden. Collection of
specimens was approved by Station Linné (Porten till Alvaret).

Storing of tardigrades

Active animals were sorted from water soaked moss using a
dissection microscope, and kept in ddH,O at 4 °C for two to
three days to ensure that they remained active. Groups of
20-25 tardigrades, cleaned of debris, were transferred to, and
dehydrated on small pieces of Whatman 3 filters (diameter app.
5 mm; see 28). Filters with dehydrated Richtersius coronifer
tuns were mounted on microscope glass slides and stored at 4
°C, for a maximum of 2 weeks, until experimentation.

Measurements of body volume

The volume of hydrated animals (Figure 1A, 1C, 1E) was
estimated as a cylinder (V=mr?h), while the volume of
dehydrated animals (Figure 1B, 1D, 1F) was estimated as a

2

hemicylinder (V= %h), in which V is the volume of the animal,
r is half the measured width and h is the measured length. The
length (um) of both hydrated and dehydrated animals was
defined as the length from the anterior tip to the junction
between the fourth leg pair, whereas width (um) was measured
between leg two and three. Measurements were performed
using the image software DP-soft™ (Olympus, Germany).

Exposure to toxins

In order to test if tun formation is an active process, or
alternatively a passive, secondary effect coupled to loss of
body water, we investigated how pre-incubation in the
mitochondrial uncoupler 2, 4-dinitrophenol (DNP; see e.g. 30)
affects anhydrobiotic survival in Richtersius coronifer. DNP
concentrations were used in a range known to work on
tardigrade epithelia [31]. Filters containing groups of
approximately 20 specimens of dehydrated R. coronifer were
rehydrated in ddH,O water approximately 24 h prior to
experimentation, and only animals that resumed activity were
used for further experimentation. Experiments ran for a total of
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5 days, each ending with a period of 72 or 96 h (depending on
experimental procedure), in which animal survival was
assessed. For each DNP concentration tested, three groups
were prepared in parallel, in which two groups were incubated
in DNP and one group was incubated in ddH,O for 24 h at 4
°C. Following the incubation period, one of the groups
incubated in DNP, and the one kept in ddH,O were dehydrated
on Whatman filters at 22 °C at ambient relative humidity, and
then stored at 4 °C. The dehydration process, from fully
hydrated to completely desiccated (see Movie S1), was
completed within 30 minutes. The last group incubated in DNP
was rinsed several times in ddH,O, and subsequently stored at
4 °C. After 24 h, both dehydrated groups were rehydrated, and
allowed to revive over a further 72 h. One additional group kept
in ddH,O during the five-day experimental period provided an
estimate of baseline mortality. Survival was subsequently
assessed for all groups with animals responsive to tactile
stimuli being considered alive. Concentrations of 0.1 mM and
1.0 mM DNP were tested, with four to five experimental repeats
conducted for each concentration.

We further investigated how pre-incubation in unlabeled
phalloidin affected anhydrobiotic survival in Richtersius
coronifer. Phalloidin is a bicyclic heptapeptide that selectively
binds and stabilizes actin filaments (F-actin), which blocks
nucleotide exchange [32] and consequently inhibits cross-
bridge cycling and muscle contractions. Preliminary phalloidin
incubation experiments, using fluorescent phalloidin, revealed
that the primary entry site of the toxin was through the mouth
and cloaca of the tardigrade. In these experiments, phalloidin
would similarly be observed staining the muscles, as visualized
by the fluorescent signal (data not shown), thus confirming that
the toxin had access to the muscles during incubation
experiments. The experimental procedure for pre-incubating
animals in unlabeled phalloidin was as described above for the
DNP-experiments, but with concentrations of 0.01, 0.1, 0.5 and
1.0 mg/ml phalloidin tested instead of DNP. Five experimental
repeats were conducted at each concentration.

Following the dehydration protocol described above, and
excluding animals damaged during placement on Whatman
filters, an average of 97 + 5 % animals survived induction of
anhydrobiosis based on all the control experiments (A—W,
Figure 2A-B). This notable survival rate, which is comparable to
that reported previously [28], is not significantly different from
the baseline survival, i.e. animals kept in ddH,0 (W, Figure 2A-
B; Tables S1, S2), demonstrating that anhydrobiosis is not
associated with increased mortality in Richtersius coronifer
using this protocol.

Microscopy

Fluorescent labeling of muscles and cell nuclei were
performed in order to investigate morphological changes (e.g.
rearrangement of organs and cells) occurring during
anhydrobiosis in Richtersius coronifer. Active tardigrades were
relaxed using CO,-enriched water, whereas dehydrated
specimens placed on Whatman filters were “dry fixed” (i.e.
placed over the fumes of a 3 % paraformaldehyde fixative) for
30 min, prior to fixation. Both hydrated and dehydrated animals
were subsequently fixed for 20 min at RT in 3 %
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Figure 1. Rearrangement of organs and cells during anhydrobiotic tun formation in Richtersius coronifer. Light microscopy
of A. active, hydrated animal (lateral view) and B. a tun (ventral view) showing the rearrangement of major anatomical structures
during tun formation. Note the compact body shape of the tun. Dashed circles indicate areas of the midgut (mg), gonads (go) and
pharyngeal bulb (pb), respectively. The degree of longitudinal contraction is ultimately limited by the length of the rigid stylets (st).
The pharyngeal bulb is for the most part repositioned in the dorsomedian plane. Maximum projection image of a confocal z-series of
C. hydrated DAPI stained specimen (lateral view), and D. DAPI stained tun (ventral view) demonstrating the reposition of cell nuclei
during tun formation. Scanning electron micrograph of E. a hydrated specimen (lateral view) and F. a tun (dorsal view) revealing the
extensive changes in external morphology associated with formation of the tun. AP, anterior-posterior axis; br, brain; gl-glV,
ventral ganglia; mo, mouth. Scale bars = 100 ym.

doi: 10.1371/journal.pone.0085091.g001
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Figure 2. Effect of DNP and phalloidin on anhydrobiotic survival. A. Pre-incubation in DNP prior to dehydration, and
attempting to induce anhydrobiosis (D—A—W), significantly reduces survival to 4 + 9 % (0.1 mM) and 2 £+ 4 % (1.0 mM). B.
Incubating tardigrades in phalloidin (P—W) did not decrease survival at 0.01 mg/ml (97 + 7 %), 0.1 mg/ml (96 £ 4 %) and 0.5 (95 + 5
%) mg/ml. At 1 mg/ml, survival was significantly reduced to 26 + 7 % (P<0.001; Table S2). Pre-incubation in phalloidin (P—A—W)
reduced post-anhydrobiotic survival at concentrations of 0.1 mg/ml (82 + 6 %), 0.5 mg/ml (77 + 6 %) and 1.0 mg/ml (0 + 0%)
(P<0.001; Table S2). Significant differences between treatments are indicated by asterisks, with the significance levels P>0.05 (not
significant) and P<0.001 (significant, ***).

doi: 10.1371/journal.pone.0085091.g002
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paraformaldehyde in 0.1 mol/l sodium cacodylate buffer (pH
7.4). For F-actin staining, animals were exposed to 90 seconds
of ultrasonication (Branson 2210, Branson Ultrasonics,
Netherlands) and incubated in PBS with 1 % Triton X-100, 0.1
% NaN; and a 1:20 dilution of Alexa Fluor 488 conjugated
phalloidin (Invitrogen, CA, USA) for up to 48 h. Afterwards, the
specimens were rinsed three times in PBS. Additional
preparations were stained with DAPI (20 pg/ml) in order to
visualize nuclei. Specimens were mounted on microscope
slides in Vectashield (Vector Laboratories Inc., CA, USA).
Image acquisition was performed on a Leica DM RXE 6 TL
inverted microscope equipped with a Leica TCS SP2 AOBS
confocal laser scanning unit, using the 488 nm argon/crypton
laser or the 405 nm UV-laser. A maximum projection or normal
shading of the z-series image was processed and edited in the
3D reconstruction software IMARIS (Bitplane AG, Zurich,
Switzerland). All confocal images are based on 140-160 optical
sections of a z-series performed at intervals of 0.5 ym. Three
active, four anhydrobiotic and two ‘collapsed’ specimens, which
had failed to form proper tuns, formed the basis for the
descriptions (see Figure 3).

In order to visualize the external morphology of Richtersius
coronifer, we used scanning electron microscopy. Active
specimens were relaxed in CO,-enriched water and
subsequently fixed in 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer (pH 7.4). Following fixation, the specimens
were dehydrated through a graded series of ethanol and
acetone. The specimens were then critical point dried (Bal-Tec
CPD 030 critical point dryer), mounted on aluminum stubs,
sputter-coated with palladium (65-70 s corresponding to a
thickness of app. 12 nm; JEOL JFC-2300 HR sputtercoater)
and examined in a JEOL JSM-6335F Field Emission scanning
electron microscope. Both anhydrobiotic tuns and dehydrated
collapsed specimens were mounted directly on aluminum
stubs, sputter-coated with palladium and examined.

Statistics

Data are expressed as means * s.d. The statistical
significance of differences between the various exposures was
tested using one-way ANOVA followed by a Tukey’s multiple
comparisons of means (Table S1 and S2). The statistical tests
were performed using the data analysis program OriginPro 7.5
(OriginLab, Northampton, MA, USA). Significant difference
between treatments is indicated by asterisks, with significance
levels being P>0.05 (not significant), P<0.05 (significant, *),
P<0.01 (significant, **) and P<0.001 (significant, ***).

Results and Discussion

Gross morphology

Richtersius coronifer is a large tardigrade species measuring
up to more than 1000 pm [33]. It has an elongated body outline
typical of eutardigrades with few visible sensory appendages,
and four pairs of legs each equipped with two double claws
(Figure 1A, 1C, 1E). As in other tardigrades, the complex
internal organ systems include a large brain and well
developed nervous and muscular systems, a complex feeding
apparatus with a muscular pharynx (the pharyngeal bulb) and
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associated stylets for puncturing food particles, a subdivided
alimentary tract, as well as reproductive and osmoregulatory
organs. The specimens of R. coronifer from Oland were yellow
and laid round eggs ornamented with heavy spines.

Anatomical changes during anhydrobiosis

Anhydrobiotic tardigrades respond to removal of external
water by contracting in the anterior-posterior direction, and at
the same time withdrawing head and limbs, forming the
compact body shape called a tun (Figure 1B, 1D, 1F; Movie
S1). According to our observations of Richtersius coronifer, this
process is initiated when the animal senses a cue associated
with change in external water potential. The process can be
divided into three separate stages: |) active and hydrated; II)
dehydrating and ‘tucking in’; Ill) anhydrobiotic tun state (see
Movie S1). Our estimations of body volume in R. coronifer
reveal an 87 + 5 % (n=17) reduction in volume from the
hydrated active state to the dehydrated tun state (Table 1).
This drastic change in body volume is larger than the 60 %
reduction reported from bdelloid rotifers [25] and further
underlines the structural stress associated with entering
anhydrobiosis. Conversely, hydrated, active specimens of the
marine tardigrade Halobiotus crispae have been shown to
tolerate above 60 % increase in body volume, during
exposures to hypotonic solutions, thus emphasizing the
amazing ability of tardigrades to withstand physical stress
[34,35]. The degree of longitudinal contraction during tun
formation in R. coronifer varies between individual tardigrades,
but is ultimately limited by the length of the rigid stylets (Figure
1A-B). The pharyngeal bulb is for the most part repositioned in
the dorsomedian plane of the animal (Figure 1B), its relocation
relying on a flexible esophagus. During the longitudinal
contraction, and in concert with the evaporative loss of the fluid
filled body cavity, organs and cells seem to be tucked in place
by undulatory movements of the trunk (stage Il — ‘tucking in’,
Movie S1; Figure 1C-D).

Tun formation relies on mitochondrial energy
production

Animals exposed to DNP for 24 h became passive and
bloated, but regained activity following transfer to double
distilled water (D—W, Figure 2A) with only a small decrease in
survival, as compared to water controls (W, Figure 2A), at the
highest DNP dose (survival decreased to 80 = 11 %, P<0.05;
Table S1). However pre-incubating specimens in DNP for 24 h
prior to inducing anhydrobiosis almost completely abolished
survival (D—A—W, Figure 2A). These DNP exposed animals
failed to form a tun and collapsed into an irregular flattened
shape upon dehydration (Figure 3G), indicating that successful
dehydration and the ability to form a tun is dependent on
mitochondrial energy production. This observation is supported
by an earlier report stating that eutardigrades, of the species
Paramacrobiotus areolatus, failed to form tuns under anoxic
conditions [22].
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Figure 3. Myoanatomical changes in Richtersius coronifer during tun formation. A-D. 3D reconstructions of the tardigrade
musculature as visualized by fluorescent phalloidin. A. Lateral view of active (hydrated) state showing details of the dorsal, lateral
and leg musculature. B. Ventral view showing details of the ventral longitudinal musculature in the active state. C. Dorsal view of the
myoanatomy of the tun (dehydrated) state D. Ventral view of the myoanatomy of the tun. E-F. Scanning electron microscopy (SEM)
of animals in the tun state showing the corresponding external morphology of the myoanatomy presented in C and D. E. Dorsal view
of the tun. F. Ventral view of the tun. G. SEM of an animal incubated in 1.0 mg/ml phalloidin for 24 h and subsequently dehydrated.
The animal failed to form a tun upon dehydration, and collapsed into a flattened shape. A similar collapse was seen in DNP exposed
animals upon dehydration. H. Corresponding maximum projection image of a confocal z-series of the musculature of a specimen
incubated in 1.0 mg/ml phalloidin for 24 h before dehydration. A—P, anterior-posterior axis; A-W, dorsal attachment sites; 1,-1,,
lateral attachment sites; la-g, ventral intermediate attachment sites; 1-7, ventromedian attachment sites; pb, pharyngeal bulb; w1-Q,
attachment sites of muscles associated with the pharyngeal bulb; stm, stylet muscles. Solid circles indicate lateral attachment sites,
solid squares show ventral intermediate attachment sites, while dashed circles indicate areas of the legs. Scale bars = 100 ym.

doi: 10.1371/journal.pone.0085091.g003
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Table 1. Reduction in volume (%) of Richtersius coronifer
from active (hydrated) to tun (dehydrated) state.

Reduction in

N Hydrated Dehydrated volume (%)

Length (um) Width (um) Length (um) Width (um)

1 664 223 252 121 94
2 664 220 321 175 85
3 575 205 316 151 85
4 568 183 250 116 91
5 704 203 242 141 92
6 657 203 291 137 90
7 491 170 189 142 87
8 526 162 231 141 83
9 701 213 340 146 89
10 463 185 179 127 91
11 593 211 200 150 91
12 503 175 185 141 88
13 586 204 148 163 86
14 466 161 180 126 88
15 651 128 183 160 78
16 563 212 307 163 84
17 535 210 280 134 89
Mean % s.d. reduction in volume (%) 875

doi: 10.1371/journal.pone.0085091.t001

A functional musculature is a prerequisite for
anhydrobiotic survival

Incubating animals in respectively 0.01, 0.1 and 0.5 mg/ml
phalloidin for 24 h, before transferring them to water (P—W,
Figure 2B), did not decrease survival significantly, though
survival was reduced at 1 mg/ml (Figure 2B; Table S2).
However, pre-incubating animals in 0.1 and 0.5 mg/ml
phalloidin, prior to inducing anhydrobiosis, significantly reduced
post-anhydrobiotic survival (P—A—W, Figure 2B), indicating
that a functional muscle-system is indeed vital for anhydrobiotic
survival. No tardigrades survived anhydrobiosis after pre-
incubation in 1 mg/ml phalloidin. Notably, animals in which the
muscle system was rendered non-functional, collapsed in a
manner similarly to the DNP-treated animals upon drying, and
did not revive following rehydration.

We subsequently investigated the myoanatomy of
Richtersius coronifer in active, tun and dehydrated collapsed
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states with the aid of fluorophore-conjugated phalloidin (Figure
3). In tardigrades, the body musculature is composed of
structurally independent muscle fibers that can be assigned to
ventral, dorsoventral, dorsal, lateral, and leg musculature
[36,37]. The ventral musculature of R. coronifer is dominated
by seven ventromedian attachment sites (labeled 1-7, Figure
3B, 3D, 3F) from which leg muscles, dorsoventral muscles and
lateral muscles originate. In addition, a ventral longitudinal
musculature with intermediate attachment sites (labeled c-g,
Figure 3A-B, 3F) extends along the anterior-posterior axis. The
dorsal longitudinal musculature consists of an outer and an
inner muscle strand that both extend the length of the trunk.
Both strands are repetitively interrupted by attachment sites
(labeled A-W, Figure 3A, 3C, 3E) mainly associated with the
legs. Nine lateral sites (labeled t0-t4 and TO-T3, Figure 3A)
serve as attachments for the lateral musculature and the
dorsoventral muscles. Leg muscles in R. coronifer originate
from the dorsal, lateral and ventral side of the animal (see
36,37 for further information). The confocal images show that
the muscles are contracted in the tun state in comparison to
the active, hydrated specimens (Figure 3A-D). Animals that
were exposed to 1 mg/ml phalloidin, and subsequently
dehydrated, collapsed into a flattened shape and revealed a
more disordered muscle organization, in which individual
structural elements where difficult to recognize (Figure 3G-H).

Analysis of the Musculature Involved in Tun Formation

As previously shown in rotifers [21], and also suggested for
tardigrades, e.g. [22], our study confirms that proper tun
formation is essential for anhydrobiotic survival. Our results
show that uncoupling mitochondrial energy production and
inhibiting muscle contraction interferes with formation of the
anhydrobiotic tun, thereby respectively abolishing and reducing
the ability of Richtersius coronifer to survive desiccation. We
propose that the dorsal and ventral longitudinal muscles are
responsible for contraction of the animal during entry into the
tun state (Figure 4A-B), while the lateral musculature assists in
the longitudinal contraction, and generates undulatory
movements of the trunk that facilitate reorganization of internal
structures (stage Il — ‘tucking in’, Movie S1). Furthermore, the
muscles associated with each leg are activated in the
withdrawal of the legs during tun formation (Figure 4C). Thus a
range of muscles direct — in a predictable and coordinated
manner — the structural rearrangements necessary for
formation of the tun state.
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Figure 4. Schematic representation of the muscles involved in tun formation in Richtersius coronifer. Schematic
representation illustrating contraction of muscles during the transition from the active (hydrated) to the tun (dehydrated) state. A.
Ventral longitudinal musculature. B. Dorsal longitudinal musculature. C. Leg musculature. The dorsal longitudinal, ventral
longitudinal, as well as lateral musculature are involved in reshaping the whole body during anhydrobiosis, and are consequently
responsible for generating the compact body shape of the tun. Tun formation is moreover characterized by the withdrawal of the
legs into the body cavity. Letters and numbers indicate specific muscle attachment sites (see Figure 3).

doi: 10.1371/journal.pone.0085091.g004
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Supporting Information

Movie S1. Anhydrobiotic tun formation in Richtersius
coronifer. The most obvious morphological changes
associated with tun formation are the anterior-posterior
contraction of the trunk and retraction of legs. According to our
observations of the behavior of animals during entrance into
anhydrobiosis, this process is initiated when the animals sense
a decrease in external water potential. Entrance into and exit
out of anhydrobiosis can be divided into four separate stages
(I, active hydrated; Il, dehydrating, ‘tucking in’; lll, anhydrobiotic
tun state; IV, rehydration) the completion of which is an active
process orchestrated by the muscle system. The movie was
made using an Infinity X Digital Camera (DeltaPix, Denmark)
mounted on a Leica MZ 16 microscope (x80 magnification).
High resolution AVI files recorded with the camera software
were imported into Windows Movie Maker for the creation of
the final video sequence.

(WMV)

Table S1. Statistical analyses of the DNP data.
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