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Abstract
Environmental stresses are ubiquitous and unavoidable to all living things.
Organisms respond and adapt to stresses through defined regulatory mechanisms
that drive changes in gene expression, organismal morphology, or physiology.
Immune responses illustrate adaptation to bacterial and viral biotic stresses in
animals. Dysregulation of the genotoxic stress response system is frequently asso-
ciated with various types of human cancer. With respect to plants, especially hal-
ophytes, complicated systems have been developed to allow for plant growth in
high salt environments. In addition, drought, waterlogging, and low temperatures
represent other common plant stresses. In this review, we summarize representa-
tive examples of organismal response and adaptation to various stresses. We also
discuss the molecular mechanisms underlying the above phenomena with a focus
on the improvement of organismal tolerance to unfavorable environments.

Introduction

Animals, plants, and microorganisms are all exposed to a
broad range of environmental stresses, leading to the devel-
opment of a wide variety of stress responses and
adaptations.1–3 Responses include changes in gene expres-
sion, as well as morphological and physiological changes.4–6

A wide variety of adaptations have evolved, as they impact
the survival and distribution of species.7,8 For example, in
response to diverse genotoxic stresses, such as ionizing and
ultraviolet (UV) radiation, oxidative stress, and chemother-
apeutic agents, the genotoxic stress response system is acti-
vated to repair DNA damage; in the case of irreparable
damage, apoptosis is induced in favor of organismal
survival.9–11 Dysregulation of the genotoxic stress response
system has been implicated in the development of human
cancer, and stress-induced responses have been utilized for
the development of new anti-cancer therapies.9,10,12

Biotic stresses that affect all organisms include bacteria,
viruses, and biological competition. Bacteria are ubiquitous
and are present on, in, and around organisms. Gut

microbiota is important for human and animal physiol-
ogy.13,14 Similarly, rhizosphere microbes facilitate plant
growth or destroy their root systems.15,16 Organisms have
also developed stringent and complicated immune
responses to combat viruses. Biological competition
describes the ability of organisms with superior stress
adaptations to outgrow or overcome other organisms in
the same environment.
Plants experience a number of abiotic stresses, including

cold, drought, waterlogging, high salt concentration, and
phosphate starvation.4,5,17–20 These stresses can affect nutri-
ent uptake and utilization; therefore, plants have developed
a wide variety of structural, morphological, and regulatory
adaptations to address these environmental stresses.3,21–23

In particular, multi-level regulatory mechanisms involved
in salt tolerance have been well characterized in halo-
phytes, such as Suaeda salsa,5,24–26 Thellungiella
salsuginea,27,28 and Limonium bicolor.29–33 Adaptations to
cold stress, drought, and UV radiation have also been
reported to a lesser degree.
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Antiviral and antibacterial
immunity

Bacterial infections are among significant infectious dis-
eases.34,35 Despite the advent of vaccines and antibiotics,
the activation of direct immunity enables more rapid and
efficient responses to pathogens.36–40 Cyprinus carpio, an
economically valuable commercial farming fish species,
has a complicated innate immune system.41–43 Regulatory
factors, such as interferon regulatory factors (IRFs), the
Rig-I-like receptor Mda5, IRAK1, IgM-binding protein,
and the cysteine-rich cationic antimicrobial peptide
LEAP-2, play important roles in the immune defense
system.44–48

IRF1 is constitutively expressed in different organs.
When stimulated by poly(I:C), a molecular species associ-
ated with viral infection, peripheral blood leukocytes
exhibit upregulation of IRF1.49 IRF5 is a key molecule in
antiviral and antibacterial immunity. Expression of irf5 has
been shown to be upregulated in immune-related tissues,
including the liver, spleen, head kidney, foregut, hindgut,
skin, and gills, after stimulation with poly(I:C) and lipo-
polysaccharide, suggesting that IRF5 may play an impor-
tant role in antiviral and antibacterial immunity in fish.50

Similarly, after Vibrio anguillarum and poly(I:C) challenge,
irak1 expression is upregulated, especially in the liver and
spleen.51 mda5 is expressed at high levels in the gills and
spleen and at lower levels in the gonad and blood. The
addition of poly(I:C) and Aeromonas hydrophila stimulates
mda5 expression in the foregut, hindgut, gills, and skin.52

The gut microbiome is important for the response of
most organisms to pathogens, and Blattella germanica is no
exception.13,14,53,54 Bacillus subtilis BGI-1 and Pseudomonas
reactans BGI-14 were isolated from the gut of conventional
Blattella germanica. Both strains inhibit the growth of
Beauveria bassiana. Microbes with anti-entomopathogenic
fungi activity promote resistance to infection with patho-
genic fungi in Blattella germanica.14,53 Similarly, bovine
mastitis has been associated with specific types and distri-
butions of Staphyloccocus aureus.55–59

Salt stress

Saline-alkaline soil is widespread in many areas of the
world, and salt stress negatively affects plant growth and
productivity.60 As a result of the high NaCl concentrations
and high pH, many grain crops cannot grow.61–63 Halo-
phytes are a group of plants that have developed targeted
adaptation for living under high salt conditions.64,65 For
example, Suaeda salsa is a halophyte that produces dimor-
phic seeds in response to differing salt conditions;24,66,67

seeds are black under low salt and brown under high salt
concentrations.66,68,69 A series of Suaeda salsa genes

important for salt tolerance have been identified, including
SsNHX1, SsHKT1, SsAPX, SsCAT1, SsCHLAPXs, SsP5CS,
and SsBADH.25,70–72 Specific NaCl concentrations have been
shown to improve Suaeda salsa seed vitality by increasing
seed weight and levels of stored protein, starch, and fatty
acids.26,73–77 In the related organism, Suaeda physophora,
cotyledons play an important role in seedling establish-
ment by generating oxygen and compartmentalizing Na+

under salt stress.78,79 Based on research of salt-tolerance
mechanisms in Suaeda salsa, overexpression of the related
genes in tobacco80,81 and Arabidopsis thaliana can increase
salt tolerance.82–87 This is a type of coevolution. NaCl treat-
ment results in resistance to photoinhibition and increased
concentrations of unsaturated fatty acids in the halophyte
Thellungiella salsuginea. Both these changes enhance the
tolerance of photosystem II to salt stress.88,89 A total of
26 microRNAs are known to participate in regulation of
the salt stress response in Thellungiella salsuginea.27

Recretohalophytes have developed specialized salt-
secreting structures to remove excess salts from plant
tissues.90–97 For example, Limonium bicolor is a typical
recretohalophyte that lives in saline environments.30,33 The
salt gland is the first differentiated epidermal structure in
Limonium bicolor, differentiating two days earlier than the
stomata.98–100 These salt glands have four secretory pores in
the center of the cuticle that secrete NaCl.32 Using high-
throughput RNA sequencing, candidate genes have been
identified in the Limonium bicolor salt gland that are
highly associated with salt secretion.29,101 In addition, an
efficient method has been developed to screen for mutants
capable of adapting to abnormal salt gland density.31 In
addition to the morphology of these specialized structures,
the K+/Na+ ratio has been shown to play an important role
in Limonium bicolor salt tolerance.102–107 Accumulation of
K+ in the cytoplasm and nucleus of salt gland cells is a key
factor in salt secretion.108

In addition to halophytes, many other plants also exhibit
adaptations to protect against salt stress.109 For example, in
cotton (Gossypium hirsutum L.), high NaCl concentrations
induce leaf senescence.110 Nitric oxide (NO) has been
found to delay salt-induced leaf senescence in cotton
through regulation of SOS1, NHX1, NCED2, NCED9, and
IPT1 expression.110–112 Changes in expression of these
genes decrease intracellular Na+ levels and abscisic acid
(ABA) contents and increase intracellular K+ levels and
cytokinin expression.110,113,114 Similar to the effects of NO
in cotton, exogenous hydrogen sulfide production enhances
salt tolerance by decreasing Na+ content in wheat seed-
lings.115,116 During salt acclimation in Arabidopsis thaliana,
cell wall remodeling, ethylene biosynthesis, and signaling
pathways play crucial roles.117–120 K+ and Ca2+ homeostasis
are also important.121,122 Some transgenic Arabidopsis thali-
ana strains exhibit higher salinity tolerance and osmotic
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stress.123–126 For example, overexpression of AtZFP1, a
CCCH-type zinc finger protein, enhances salt tolerance by
maintaining ionic balance and limiting oxidative and
osmotic stress.127,128 Overexpression of TsGOLS2, a galacti-
nol synthase in Thellungiella salsuginea,129 increases levels
of galactinol, raffinose, and alpha-ketoglutaric acid in Ara-
bidopsis thaliana, thereby promoting salt tolerance and
resistance to osmotic stress.130,131

Temperature changes

Cold stress is an important environmental factor that
affects plant growth and crop productivity. A number of
genes and pathways have been found to contribute to cold
stress adaptation, some of which overlap with salt stress
resistance pathways. In rice, the casein kinase LTRPK1
plays a key role in cold tolerance by regulating cytoskeletal
rearrangements that favor cold adaptation.132–134 Recent
studies have shown that the light signaling gene phyB also
participates in a pathway that promotes resistance to
chilling.135–137 PhyB negatively regulates chloroplast struc-
tural stability by lowering levels of unsaturated fatty acids
present in membrane lipids.138–140 PhyB deficiency posi-
tively regulates OsPIL16 and OsDREB1,141 thereby alleviat-
ing chilling-induced photoinhibition and enhancing
chilling tolerance.142–144 Similar mechanisms have also been
characterized in Suaeda salsa. Severe photoinhibition
occurred in Suaeda salsa leaves when exposed to cold
stress. Photoinhibition is associated with the accumulation
of reactive oxygen species and water–water cycle.5,145–147

Increased salinity, such as treatment with high concentra-
tions of NaCl, can also increase chilling tolerance under
conditions of low irradiance.148 By controlling the opening
and closing of stomata, Suaeda salsa can adapt to a variety
of temperatures.149–151 RNA-sequencing analysis revealed
numerous differentially expressed genes in Thellungiella
salsuginea under cold treatment.152,153 RNA interference
lines of the cold-induced gene TsFtsH8 enhanced Thellun-
giella salsuginea tolerance to cold.28,154–156 Similarly, the
Thellungiella salsuginea salt-induced gene TsnsLTP4
encodes a non-specific lipid transfer protein that partici-
pates in wax deposition and in plant tolerance against abi-
otic stresses, including salt, ABA, and high and low
temperatures.157–160

Distinct pathways mediate stress
adaptation

In addition to salt stress and temperature variation,
drought and waterlogging also threaten plant growth and
survival.161–168 In peanut plants, 22 genes were identified as
drought-responsive genes by complementary DNA micro-
array analysis.169–171 DELLA genes and heat shock

transcription factors were found to promote the survival of
plants in adverse environments.172–174 In rice, PhyB not
only contributes to cold stress resistance, but also influ-
ences drought tolerance by regulating total leaf area and
transpiration per unit leaf area.4,175,176 Suaeda salsa pro-
duces nitric oxide to protect adventitious root formation
under waterlogged conditions.18,34,91,177–179 Compared to
xerophytes, two halophytes were more tolerant to waterlog-
ging and dry-moist cycles during emergence under saline
conditions.17,180–183

Because of the availability of molecular approaches, Ara-
bidopsis thaliana is an ideal model system to characterize
responses to different environmental stresses.184–187 When
exposed to enhanced UVB radiation, the sad2–1 mutant
Arabidopsis thaliana strain accumulates more UV absorp-
tion materials and endogenous ABA and activates ROS-
scavenging enzymes. These physiological changes enhance
tolerance to UV.188,189 Arabidopsis thaliana responds to low
CO2 stress by altering biomass productivity, thylakoid
stacking, and expression of photosynthesis regulators.190–192

AtFes1A has been shown to play an important role in abi-
otic stress tolerance.193

Conclusions and perspectives

In this review we have summarized multiple regulatory pro-
cesses that contribute to the response and adaptation to
various stresses. Adaptation to salt stress can be induced by
NaCl exposure,26,73,148 and include the formation of special-
ized structures, 29–33,98–101,108 and changes in physiology and
gene expression profiles.28,71,72,80,120,127,132 Induction makes
plants more adaptive to salt tolerance as they complement
each other. Similarly, although animals face a more versatile
environment, they develop rigorous immune systems to
adapt to stresses arising from exposure to viruses or patho-
genic bacteria.41–44,46–48,50–52,194 Cytoskeleton-associated pro-
teins and cellular events may also play important roles in
stress response and adaptation in humans and other ani-
mals.195,196 In addition to adaptation by the plant or animal
itself, resident microbiota also contribute to resistance to
pathogens.13,14,53,197

Based on research focused on the mechanisms associated
with stress responses, a common set of proteins and regu-
latory pathways contribute to adaptation. These mecha-
nisms can be used in plants and animals to improve stress
tolerance,16,81–83,85,119,191,198 and may be beneficial to the
adaptation of plants and animals.81–83,85,119,191,199 In general,
a clearer understanding of the mechanisms that contribute
to stress tolerance in different types of organisms would
facilitate their application in improving organismal toler-
ance to unfavorable environments. For example, a better
understanding of plant stress tolerance pathways could
enhance the number of plants capable of growing in
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adverse conditions. From a different perspective, adapta-
tion of different organisms to abiotic and biotic stressors is
a form of natural selection that follows the rule of “survival
of the fittest.”
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