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Abstract

Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary
processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation
has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and
structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and
tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North
America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and
homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and
F-box genes. This implies the presence of a “core” genome underlying basic cellular processes and a “flexible” genome
that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of
intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of
balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for
flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
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Introduction
The model plant Arabidopsis thaliana has been important for
deciphering core physiological, developmental, and adaptive
processes (Somerville and Koornneef 2002; Provart et al.
2016). Arabidopsis thaliana grows naturally in diverse envi-
ronments throughout Eurasia and Africa, where populations
are exposed to differing selective pressures. Natural variation
of A. thaliana has mainly been studied using single-nucleotide
polymorphisms (SNPs) (Alonso-Blanco et al. 2016; Durvasula
et al. 2017; Zou et al. 2017; Fulgione et al. 2018). However,
SNPs represent only a subset of the variation in the genome.
Structural variants (SVs) are generally defined as genomic
variants larger than 50 bp including presence/absence var-
iants (PAVs), tandem duplications, inversions, translocations,
and complex SVs (Eisfeldt et al. 2019; Kosugi et al. 2019).
Compared with SNPs, SVs are likely to cause more dramatic
effects on gene functions and phenotypes (Kosugi et al. 2019).
Structural variation can also have indirect effects through
repression of meiotic crossovers (Sturtevant 1926; Morgan
et al. 2017; Rowan et al. 2019).

SVs are common in humans (estimated at >20K variants
per individual) and only a subset has been associated with
phenotypes, including disease (Weischenfeldt et al. 2013; Abel
et al. 2020; Ho et al. 2020). For example, in humans, an ap-
proximately 3-Mb deletion on chromosome 15 (chr15q11-

13—paternal) was shown to result in loss of function of mul-
tiple genes and cause Prader–Willi syndrome (Weischenfeldt
et al. 2013), and Charcot–Marie–Tooth disease is known to
be caused by a duplication event on Chromosome 17
(chr17p12), which damages peripheral nerves
(Weischenfeldt et al. 2013). In Drosophila, several individual
SVs are associated with fitness and display clinal patterns
(Gonz�alez et al. 2010; Kapun et al. 2016; Durmaz et al. 2018).

Plant genomes seem to be exceptional at tolerating struc-
tural variation. Extensive variation in gene content has been
observed across individuals in rice (Wang et al. 2018; Fuentes
et al. 2019; Choi et al. 2020), maize (Springer et al. 2009; Sun
et al. 2018), A. thaliana (Cao et al. 2011; Zmienko et al. 2020),
and grapes (Zhou et al. 2019) and several studies have impli-
cated individual SVs in trait variation. Structural variation
resulting from transposable element insertions has been
shown to play roles in domestication in maize (Studer et al.
2011) and in gene expression divergence between Arabidopsis
species (Hollister et al. 2011) and copy number variation is
linked with several postdomestication traits (Lye and
Purugganan 2019). Other studies identified large-scale chro-
mosomal inversions associated with salt tolerance in Mimulus
(Lowry and Willis 2010), flowering time in A. thaliana (Fransz
et al. 2016), berry color in grapes (Zhou et al. 2019), awn
length in basmati rice (Choi et al. 2020), and the loss of the
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jointed fruit pedicel (Soyk et al. 2019) and fruit size (Alonge
et al. 2020) in tomato.

In this study, we identify SVs in 1,301 A. thaliana accessions
from Africa, Europe, Asia, and North America and examine
the evolutionary history of these SV polymorphisms. First, we
assess the precision and sensitivity of several available meth-
ods by comparison to simulations and long-read data to pro-
duce an analysis pipeline. Given the limitations of short-read
data, we focus our analyses on indels and SVs (including
PAVs, tandem duplications, and inversions) smaller than
10 kb. We identify structural variation in A. thaliana natural
accessions examine their global patterns of polymorphism.
We identify sets of “core” highly conserved genes and variable
“dispensable” genes, a subset of which show evidence for
balancing selection. Finally, we examine evidence of local ad-
aptation on PAVs based on correlations with environmental
variables. This analysis reveals strong correlations for PAVs in
three genes involved in the vernalization (cold) response for
flowering as well as genes involved in drought and heat tol-
erance. We make our variant calls available together with
information about the level of support for each call, which
can be used for flexible integration of SVs into existing analysis
pipelines.

Results

Performance Comparison of SV Callers
Identifying and calling SVs in short-read data is not a trivial
task. To identify the best software for calling SVs, we com-
pared the performance of three popular tools: PINDEL,
DELLY, and LUMPYEXPRESS (Ye et al. 2009; Rausch et al.
2012; Layer et al. 2014). We conducted comparisons to SVs
produced in simulations as well as to calls made from long-
read Pacific Biosciences (hereafter PacBio) data that we
generated.

For the simulation-based approach, LUMPYEXPRESS out-
performed DELLY and PINDEL (fig. 1). Both precision and
sensitivity for LUMPYEXPRESS and DELLY were very high
(�95%) for deletions and tandem duplications, whereas

both measures were much lower for PINDEL (44% and 5%).
For inversions, LUMPYEXPRESS had much higher precision
(100%) than DELLY (50%), which called many false positives
and PINDEL performed slightly worse than LUMPYEXPRESS.
In silico simulations provide information about the perfor-
mance of SV detection tools under ideal conditions, but they
assume simple scenarios. However, in real population-level
data, SVs may be more complex, with multiple SVs and
mutations occurring at the same locus. To explore this, we
also compared the performance of the three tools relative to
calls from long-read data (PacBio) in an empirical case. For
this, we used the Cvi-0 accession, which is one of the very
most diverged accessions compared with the Col-0 (TAIR10)
reference and therefore represents a particularly challenging
case, where complex structural variation is likely. We note
that this case is challenging both for long-read and short-read
callers.

We considered the results from long-read calls (PacBio) to
represent a “high confidence” set and then assessed how well
calls from short-read data using LUMPYEXPRESS, DELLY, and
PINDEL agreed with this high confidence set. Although PacBio
data are much more reliable for large SVs, error rates in PacBio
data are high for individual SNPs and short INDELs. Therefore,
in an effort to maximize the true positive rate for calls with
the PacBio data, we only considered SVs between 50 bp and
10 kb in length in this comparative analysis. Supplementary
figure S1, Supplementary Material online, shows the perfor-
mance of LUMPYEXPRESS, DELLY, and PINDEL on short-read
data from Cvi-0 relative to the high PacBio-based confidence
set. For the tandem duplications and inversions, agreement
was never above 45%. However, deletions and associated
PAVs were called with relatively high agreement.
LUMPYEXPRESS called 62% of the high confidence set of
PAVs with 80% agreement to SNIFFLES and DELLY called
64% of PAVs with 74% agreement to SNIFFLES.

Given the discrepancy between the very high sensitivity
and precision, we observed in simulations compared with the
lower levels with PacBio data, we were interested in better

FIG. 1. Comparison of SV callers based on simulations and PacBio. Abbreviations along the x axis represent the combination of method used and
variant type and are defined as follows: LE, LumpyExpress; D, Delly; P, Pindel; DEL, deletion; DUP, duplication; INV, inversion.
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understanding what drives the concordant and discordant
calls in short- and long-read data. We focused on the
LUMPYEXPRESS software and examined alignments in ran-
domly chosen regions where calls based on PacBio data (using
SNIFFLES) and Illumina data (using LUMPYEXPRESS) agreed
and where they differed. Supplementary figures S2–S4,
Supplementary Material online, show five randomly selected
regions of agreement between calls with Illumina and PacBio
data, five randomly selected PAVs identified from Illumina
data but not from PacBio data and five randomly selected
PAVs identified in PacBio data but not in Illumina data.
Somewhat surprisingly, we found that the discrepancies
tended to result from false negatives in one or the other
technology and/or offsets in the true breakpoints. Based on
this sample, the errors appeared to be equally prevalent in
long- and short-read data. Discrepancies tended occur in
regions where alignments are imperfect so that called PAVs
are likely true positives that went undetected by either the
short-read or long-read calling approaches. The discrepant
regions tended to be complex (possibly involving multiple
layered SVs) and/or repetitive regions, which are known to
be problematic for calling both SNPs and SVs in long- and
short-read data. Overall, the lower matching to PacBio long-
read data appears to result from the general problem that
calling SVs in complex genomic regions is equally error-prone
using short- (Illumina) and long-read (PacBio) data. Based on
the results of comparisons to both simulations and real data,
we decided to use LUMPYEXPRESS for identifying and calling
SVs in the global sample set.

Alignment, SV Calling, and Genotyping in 1,301
Diverse A. thaliana Accessions
Next, we examined the patterns of variation in structural
polymorphisms across diverse wild A. thaliana accessions.
Figure 2 shows the geographic distribution of the samples

that we included in this study. We identified 155,440 SVs
ranging in size from 1 bp to 10 kb among 1,301 accessions
using a pipeline consisting of LUMPYEXPRESS, SVTYPER, and
SVTOOLS (supplementary fig. S5, Supplementary Material
online). This set includes 124,905 PAVs, 25,061 tandem dupli-
cations, and 5,474 inversions. Although we make the entire
set of SVs publicly available (PRJEB38975), our subsequent
analyses focus on PAV polymorphisms, which were called
with the greatest precision in our testing data set. For
researchers interested in using this data set, we make infor-
mation available about the strength of evidence for SVs based
on the number of reads supporting each SV as well as the
type of evidence (split read and/or discordant reads), which
could be used for further (i.e., more stringent) filtering.

PAVs Recapitulate Population Clustering Obtained
from SNPs
We examined the global pattern of polymorphism in our
total set of PAVs in order to assess whether these variants
recapitulated the signals found in SNP data. We consider this
to be a further test to validate the PAV genotyping because if
the quality of PAV genotypes is high, we expect to see global
patterns that are similar to those found using SNP data. We
clustered a representative subset of diverse accessions using
PAVs and compared this with results obtained previously
from SNP data (Durvasula et al. 2017). We found that the
overall structure of the NJ-tree based on PAVs (fig. 3) reca-
pitulates that based on SNPs (figure 2A in Durvasula et al.
2017). First, both SNPs and PAVs clearly separate the Eurasian
nonrelict clade (comprising the majority of Eurasian acces-
sions) from the relict clades (highly diverged groups mainly
found in the Iberian Peninsula and Africa). Second, similar to
the pattern observed for SNPs, the Eurasian clade has a nearly
star-shaped pattern with little reticulation whereas the relict
clades are more deeply reticulated with longer internal

FIG. 2. Geographical distribution of Arabidopsis thaliana samples included in this study.
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branches. Finally, clustering using SVs recovered the fine-scale
differentiation of population clusters within Africa and most
of that within Eurasia.

Identification of Genomic Hotspots of PAVs and
Conserved Regions
Although reduction in effective population size due to selfing
is expected to reduce the efficiency of selection at weakly
deleterious alleles (Schemske and Lande 1985; Charlesworth
et al. 1990; Charlesworth and Wright 2001), variants that are
lethal or have severe effects in the homozygous state are more
often exposed to selection in selfing compared with outcross-
ing species (Stebbins 1950; Shields 1982; Schemske and Lande
1985; Gl�emin 2007). To determine whether there is evidence
for purifying selection acting to limit PAVs, we examined their
frequencies and genome-wide distributions. At a broad scale,
PAVs were nearly uniformly distributed across chromosomes,
except in pericentromeric regions where they were more
common (supplementary fig. S6, Supplementary Material on-
line). When we focused specifically on genic and nongenic
regions within chromosome arms, we found that PAVs were
enriched by 3.5-fold in nongenic relative to genic regions
(v2¼ 1.8E7, df¼ 1, P¼ 1E-16), consistent with stronger pu-
rifying selection in genic regions (Charlesworth et al. 1993)
(table 1). Purifying selection on weakly deleterious alleles is
expected to increase the relative proportion of low-frequency
variants in functional relative to neutrally evolving genomic
regions (Nielsen 2005). We compared the unfolded site fre-
quency spectra (SFS) (supplementary fig. S7, Supplementary
Material online) for genic and intergenic loci for all popula-
tions where ancestral state could be assigned based on con-
sensus calls in a set of divergent genomes. We did not find

enrichment of low-frequency variants in genic regions relative
to nongenic regions; rather, we found a slight deficit in all
cases. Taken together our results suggest that new genic PAVs
often have very strong deleterious effects and are quickly
removed by purifying selection, so that they are not found
in segregating variation. Conversely, the set of genic PAVs that
are segregating at appreciable frequencies do not show evi-
dence of purifying selection relative to intragenic PAVs.

Next, we asked which genes or pathways showed deficits of
PAVs. To do that, we extracted all genes that never contained
any PAVs in any samples and performed gene ontology (GO)
enrichment analysis. We tested significance using both
Fisher’s exact tests (FET) and a more conservative
permutation-based approach that corrects for clustering of
signals in the genome (Gowinda) (Huang et al. 2009; Kofler
et al. 2012). Categories that were significantly enriched with
both FET and Gowinda include translation (Benjamini-cor-
rected P values for FET¼ 5.4E-33 and for Gowinda¼ 9.13E-
05) and translational elongation (Benjamini P values for
FET¼ 1.1E-4 and for Gowinda¼ 2.93E-02). These categories
include tRNAs and rRNAs, which are classical examples of
housekeeping genes (Rifkind et al. 1976). In addition, the GO
term regulation of DNA-templated transcription, which con-
tains homeobox genes and transcription factors was also
strongly enriched (Benjamini P value for FET¼ 6.5E-03 and
Gowinda¼ 9.12E-05). Homeobox genes play an important
role in body plan specification of higher organisms during
early stages of embryogenesis (Duverger and Morasso
2008). Additional GO term categories that were found to
be enriched either in FET or Gowinda analyses are listed in
(supplementary tables S2 and S3, Supplementary Material
online).

FIG. 3. Neighbor-joining tree including seven representative samples for each population. To produce the neighbor-joining tree, the full set of
accessions was down-sampled to achieve similar numbers for different geographic regions. The tree is based on 95 accessions which contain a total
of 9,062 PAVs. The tree shows a clear separation between Eurasia and Africa, which further validates PAV calls. PAVs give reliable information to
recapitulate previous findings from SNP data.
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Although genes show a deficit of PAVs relative to nongenic
regions overall, some types of genes may be more likely to
contain PAVs than others. To identify these, we extracted
locations of all genes that overlap at least one PAV among
the 1,301 samples and performed GO enrichment analysis
using both FET and the Gowinda permutation-based ap-
proach (Huang et al. 2009; Kofler et al. 2012). The results
are reported in (table 2).

Signal transduction was the most significantly enriched
class with FET, and the enrichment was driven largely by
defense-related genes mainly consisting of TIR-NBS, TIR-
NBS-LRR, LLR, and TIR classes and secondary metabolites.
Other enriched classes included the more specific defense
response category and a category related to the production
of Lignans, a class of secondary metabolites (Bagniewska-
Zadworna et al. 2014). In addition, SCF-dependent proteaso-
mal ubiquitin-dependent protein catabolic processes were
enriched, which contains many F-box genes. F-box genes
have previously been noted to evolve rapidly (Xu et al.

2009) and are known to be involved in several crucial pro-
cesses related to environmental stress response including em-
bryogenesis, hormonal responses, seedling development,
floral organogenesis, senescence, and pathogen resistance
(Xu et al. 2009). Based on Gowinda analysis, the most
enriched GO terms that we identified are known to be related
to stress including cell–cell signaling (Xing and Laroche 2011),
lipid transport, and localization (Yeats and Rose 2008). The
defense response GO term was also enriched in marginal tests
using Gowinda (P¼ 2E-2), but the enrichment was not sig-
nificant with Benjamini correction. This discrepancy is likely
due to the extreme clustering of defense genes across the
genome.

Next, we examined the patterns within populations. We
extracted all PAVs for each population and performed GO
term enrichment. Table 3 shows defense response enrich-
ment from FET and Gowinda. The population-based analysis
reveals significant Benjamini enrichment of defense response
genes with PAVs across almost all populations for both

Table 1. Distribution of PAVs across the Genome for 1,301 Arabidopsis thaliana Accessions.

Genomic Partition Mb Number of PAVs Mean Length Median Length Mb PAVs Proportion Containing PAVs

Whole genome 119,146,348 124,905 681.8 91 39,696,386 0.333
Intergenic 59,041,854 87,627 547.9 87 30,766,220 0.521
Genic 60,104,494 37,278 996.1 100 8,920,166 0.148

Table 2. Multiple-Test Significant GO Terms for Genes Carrying PAV Polymorphisms Among the Total Set of 1,301 Samples.

GO Term Enrichment Score Benjamini (Corrected P Value) Test Statistics

Signal transduction 1.2 2.2E-6 One-tailed Fisher’s exact test
Defense response 1.2 1.4E-3 One-tailed Fisher’s exact test
SCF-dependent proteasomal ubiquitin-

dependent protein catabolic process
1.4 1.4E-3 One-tailed Fisher’s exact test

Cell–cell signaling 2.4 1.84E-3 Permutation-based test
Lipid transport 1.6 1.84E-3 Permutation-based test
Lipid localization 1.6 1.84E-3 Permutation-based test
Lignan metabolic process 2.6 4.46E-3 Permutation-based test
Lignan biosynthetic process 2.6 4.46E-3 Permutation-based test

NOTE.—Two methods (FET and Gowinda) were employed to be able to identify enriched categories with different test statistics.

Table 3. Defense Response Enrichment with Significance Assessed by One-Tailed Fisher’s Exact Tests and Gowinda for Each Population.

Population One-Tailed Fisher’s Exact Test Gowinda

Enrichment Score Benjamini Corrected P Value Enrichment Score Benjamini Corrected P Value

Asia 1.4 1.20E-07 1.2 1.83E-03
Central Europe 1.3 2.60E-05 1.1 1.17E-01
Germany 1.4 1.60E-08 1.1 3.38E-01
High Atlas (Morocco) 1.6 9.40E-11 1.4 2.45E-03
Iberian Relicts 1.5 4.20E-10 1.3 2.23E-03
Iberian nonrelicts 1.4 8.30E-10 1.1 7.94E-02
Italy, Balkans, and Caucasus 1.4 2.70E-09 1.2 1.25E-03
North Middle Atlas (Morocco) 1.7 2.00E-13 1.5 5.70-03
North Sweden 1.6 2.30E-13 1.4 5.43E-03
Riff (Morocco) 1.7 8.80E-11 1.4 2.83E-03
South Middle Atlas (Morocco) 1.6 1.60E-12 1.4 2.77E-03
South Sweden 1.4 1.70E-09 1.3 1.55E-03
Western Europe 1.4 1.50E-11 1.2 8.62E-03
Madeira 1.7 2.00E-09 1.4 5.72E-03
Yangtze River Basin (PopY) 1.6 5.50E-12 1.5 6.03E-03
North-Western China (PopN) 1.6 2.40E-08 1.5 4.06E-03
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enrichment tests. The signal was somewhat weaker in Central
Europe, Germany, and Iberian nonrelicts, where defense re-
sponse genes were not enriched at the Benjamini significance
level using the Gowinda method. Other categories that were
often enriched across individual populations are signal trans-
duction and secondary metabolite biosynthetic processes
(supplementary tables S4–S19, Supplementary Material
online).

Since we observed very strong signals in defense response
genes, we were interested in better understanding the evolu-
tionary forces acting on these. We examined the SFS of
defense-related genes relative to the complete set of genic
and nongenic categories for each population. In most pop-
ulations, defense PAV frequencies were shifted towards inter-
mediate levels relative to other genes (fig. 4 and
supplementary fig. S8, Supplementary Material online). To
quantitatively compare the frequency distribution of PAVs
overlapping defense genes with the total sets of genes and
intergenic regions, we used the Tajima’s D statistic. This sta-
tistic summarizes the information in the SFS such that an
excess of intermediate frequency variants results in a more
positive Tajima’s D, and an excess of low-frequency variants
results in a more negative Tajima’s D (Tajima 1989). For each
population, Tajima’s D was more positive for defense genes
compared with the total set of genes. To assess significance
for this result, we randomly subsampled genic PAVs to match

the number of defense response PAVs 100K times and calcu-
lated an empirical P value based on the distribution of
Tajima’s D in the sampled data sets. Population bottlenecks
and expansions affect the frequency spectrum and therefore
the genome-wide value of Tajima’s D. We found that Tajima’s
D was highly significantly elevated in defense PAVs in all
populations except Yangtze River Basin (PopY) (not signifi-
cant; P¼ 0.551) and Northern Sweden, where the significance
was marginal (P¼ 0.0254) (fig. 5 and supplementary table
S20, Supplementary Material online). Both populations are
known to have experienced strong bottlenecks in the past
(Huber et al. 2014; Zou et al. 2017) and accordingly have a
higher Tajima’s D in intergenic regions. We further assessed
evidence of long-term balancing selection at defense loci
based on a signal of long-range LD among SNPs in these
regions. For this, we used the BetaScan method (Siewert
and Voight 2017, 2020). We calculated beta scores for each
population and tested for enrichment of the defense genes in
the 5% tail of the distribution of beta scores. For each pop-
ulation, we found a significant enrichment of these defense
genes in the tail of this distribution (supplementary table S21,
Supplementary Material online). Taken together, the shift
towards intermediate frequency variation resulting in a shift
to more positive Tajima’s D and the observed enrichment of
long-range LD in defense genes is consistent with balancing
selection on this class of loci.

FIG. 4. SFS of PAVs for whole genome (black), intergenic (blue), genic(yellow), and defense genes (red) in four representative populations: (A)
South Middle Atlas, (B) Iberian Relicts, (C) Asia (PopN), and (D) North Sweden.
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Correlation with Environmental Variables (GWAS)
We next asked whether there was evidence for involvement
of specific PAVs in local adaptation based on associations
with environmental variables. For this, we accessed data for
four representative environmental variables (Bio5: Maximum
temperature of the warmest month, Bio6: Minimum temper-
ature of the coldest month, Bio13: Precipitation of the wettest
month and Bio14: Precipitation of the driest month) from the
WorldClim database (Fick and Hijmans 2017). To identify SVs
that were correlated with the environment while controlling
for potential confounding effects of population structure, we
performed GWAS with a linear mixed model that controls for
relatedness using a kinship matrix as a random variable (Zhou
and Stephens 2012) and environmental variables as pheno-
types (fig. 6A–D). We also conducted the same analyses for
SNPs so that we could compare the signals between the two
classes of variants.

Several genic PAVs (PAVs within 10 kb of genes) strongly
associated with minimum temperature in the coldest month
(Bio6) were related to the timing of flowering and photosyn-
thesis (fig. 6B). There were strong correlations for multiple
PAVs in a MADS AFFECTING FLOWERING (MAF) gene cluster
at the bottom of chromosome 5, including a Bonferroni sig-
nificant association with a PAV that impacts MAF3 as well as
several less significantly correlated (P value range: 2� 10�7 to
1� 10�2) PAVs that affect other genes in this cluster. MAF3
and other MAF cluster genes work together with FLM to
repress expression of FT and inhibit flowering and play a
role in flowering in response to cold (vernalization)
(Ratcliffe et al. 2003; Gu et al. 2013). Photosynthetic efficiency
is reduced in cold, which can result in damage from build-up
of reactive oxygen species (ROS) (Tripathy and Oelmüller
2012; Prinzenberg et al. 2020). Several PAVs in genes involved

in photosynthesis and ROS production were among the most
strongly correlated with minimum temperature, including
AT1G22700 (tetratricopeptide repeat [TPR]-like superfamily
protein) (P value: 4.8� 10�7), AT1G22710 (SUC2) (P value:
4.8� 10�7), AT1G43560 (THIOREDOXIN Y2) (P value:
1.3� 10�6), AT5G09600 (Succinate dehydrogenase 3-1) (P
value: 3.5� 10�5), and AT5G22140 (FAD/NAD(P)-binding
oxidoreductase family protein) (P value: 3.6� 10�5).

For maximum temperature in the warmest month (Bio5)
PAVs at three genes involved in photomorphogenesis (hypo-
cotyl elongation), a phenotype with a plastic temperature-
mediated effect, were among the strongest correlations
(fig. 6A). These included AT5G11260 (ELONGATED
HYPOCOTYL 5) (P value: 1.5� 10�5), AT5G42350 (CFK1) (P
value: 8.3� 10�5), and AT5G58140 (PHOTOTROPIN 2) (P
value: 2.4� 10�5). Among the strongest correlations with
precipitation in the wettest month (Bio13) were PAVs within
10 kb of several genes and gene clusters involved in cell wall
morphogenesis: RGXT1 (AT4G01770) and RGXT2
(AT4G01750) (P value: 4.9� 10�6), Walls Are Thin 1
(AT1G75500) (P value: 1� 10�6), and EXPA18
(AT1G62980) and KNAT7 (AT1G62990) (P value: 9.5� 10�5)
(fig. 6C). A PAV in a cluster of several immune response genes
(AT1G72890–AT1G72950) was among the most correlated
with precipitation in the driest month (Bio14) (P value:
1.9� 10�5) (fig. 6D).

Although having information about PAVs can be specifi-
cally useful to identify candidates in GWAS for functional
follow-up analysis and therefore creates added value com-
pared with SNPs alone, some information may be partially
redundant with SNP results in the sense that LD between
PAVs and SNPs will result in statistical associations with both
types of variants. To examine this, we compared the signals
we found with PAVs to those with SNPs in the same regions.

FIG. 5. Tajima’s D of intergenic (blue), genic (yellow), and defense (red) loci. To assess significance for Tajima’s D in defense response genes, 100K
sets of genic PAVs were randomly subsampled to match the number of defense response PAVs and these distributions are shown in gray. Asterisks
denote level of significance; *P< 0.5� 10�2, **P< 5� 10�3; ***P< 5� 10�4; and NS, not significant.
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Overall, there are many fewer PAVs than SNPs in the genome
(124905 vs. 8033502). The average distance between two any
SNPs is 14.4 bp and the average distance between PAVs is
771 bp, and the average distance from any PAV to the nearest
SNP is 332 bp so that LD between any two SNPs tends to be
higher than LD between any two PAVs. To determine the
extent to which we identified novel variation by including
PAVs in our analysis, we examined how well a SNP represents
each strongly correlated PAV. To this end, for each PAV with
a GWAS P value <0.001, we identified the SNP with the
highest LD (r2) within a 10-kb window. The mean and SD
of r2 between a PAV with this significance level and the most
correlated SNP for each of the four traits were as follows: Bio5:
mean¼ 0.70, SD¼ 0.25; Bio6: mean¼ 0.75, SD¼ 0.24; Bio13:
mean¼ 0.70, SD¼ 0.23; and Bio14: mean¼ 0.76, SD¼ 0.25.
The full distributions of these most correlated SNPs are
shown in supplementary figure S11, Supplementary
Material online. The set of PAVs we identified may be useful
specifically to reveal missing heritability in GWAS and for
identifying causative variants (when these turn out to be
SVs) even in cases where they are tagged by SNPs.

Discussion
In this study, we identified SVs among 1,301 diverse
A. thaliana accessions using publicly available NGS data and
we make the entire set available, which includes 124,905

PAVs, 25,061 tandem duplications, and 5,474 inversions. For
researchers interested in using these data, we note that the
data set includes information about the strength of evidence
for SVs based on the number of reads supporting each SV as
well as the type of evidence (split read and/or discordant
reads), which could be used for further filtering. Here, we
focused our population genetic analyses on PAVs because
these were called with the highest accuracy based on our
analyses.

Given that the genic PAVs we identify are expected to
often disrupt gene function, our results were consistent
with the idea that a genome is made up of an essential “core”
set of genes as well as a “flexible” set of genes, which may be
dispensable depending on the specific local selection pres-
sures faced by an organism. In our analyses, we found evi-
dence for purifying selection based on the low occurrence of
PAVs in genic compared with nongenic regions, and the en-
richment of core housekeeping genes in genomic regions that
were most deficient in PAVs (table 1). Compared with tissue-
specific genes, housekeeping genes generally evolve more
slowly, have lower Ka/Ks ratio (the rate ratio of nonsynon-
ymous to synonymous substitutions), and tend to evolve
under strong purifying selection (Zhang and Li 2004).
Among the regions deficient in PAVs, classical housekeeping
genes (Zhang and Li 2004) including tRNAs, ribosomal pro-
teins, elongation factors, NADþ transporters, transcription

FIG. 6. Plots of�log10(P values) from genome-wide association mapping between PAVs and SNPs with environmental variables, including (A) Bio5:
Maximum temperature of the warmest month, (B) Bio 6: Minimum temperature of the coldest month, (C) Bio13: Precipitation of the wettest
month, and (D) Bio14: Precipitation of the driest month. Red and black dots indicate PAVs and SNPs, respectively. Horizontal lines show genome-
wide significance thresholds with Bonferroni correction for SNPs (black) and PAVs (red).
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factors, homeobox proteins were highly enriched (supple-
mentary tables S2 and S3, Supplementary Material online).

In contrast to this, when we used a traditional method to
detect evidence of purifying selection on weakly deleterious
alleles based on an excess of low-frequency variants in the
allele frequency spectrum, we found no such evidence (sup-
plementary fig. S6, Supplementary Material online). This ap-
proach is based on the expectation that selection limits the
spread of deleterious variants in the population. In our anal-
ysis, we found the opposite trend, in which genic PAVs were
underrepresented in the lowest frequency bin relative to non-
genic variants. This may be because PAVs in genes tend to be
strongly deleterious rather than mildly deleterious. Although
the efficiency of selection is expected to be reduced on weakly
deleterious variants in selfing species (Schemske and Lande
1985; Charlesworth et al. 1990; Charlesworth and Wright
2001) and this has been shown empirically in A. thaliana
and related plant species (Slotte et al. 2013; Slotte 2014;
Laenen et al. 2018), purifying selection on loci that are lethal
in the homozygous state is expected to be strong in selfing
species because these variants are quickly exposed to selec-
tion (Stebbins 1950; Shields 1982; Schemske and Lande 1985;
Gl�emin 2007; Charlesworth and Willis 2009; Arunkumar et al.
2015). Further, the overall pattern that we observe in which
genic regions are more highly conserved than nongenic
regions is consistent with the expected effects of background
selection (Charlesworth et al. 1993) and that linkage disequi-
librium is increased within genes in A. thaliana (Berger et al.
2015). Taken together our results suggest that newly arising
genic PAV mutations tend to be strongly deleterious and
therefore often evolve under purifying selection in
A. thaliana, whereas those that remain in the population
do not evolve under strong purifying selection relative to
intergenic PAVs.

However, some categories of genes were much more likely
to contain PAVs relative to the genomic background. We
found that defense-related genes (R-genes, secondary metab-
olites) and F-box genes have an excess of PAVs compared
with other genes. R-genes and F-box genes are multigene
families known to be rapidly evolving (Xu et al. 2009; Yang
et al. 2013). Further, plants produce a massive number of
metabolites and only a few of these are primary (those com-
mon to all organisms); others are known as secondary metab-
olites (Pichersky and Gang 2000; Labarrere et al. 2019). Many
secondary metabolites are thought to be involved in defense
against herbivores and pathogens (Isah 2019) and previous
work has shown that a subset of these regions that are in-
volved in the production of glucosinolates appears to be
rapidly evolving (Kliebenstein et al. 2001; Kliebenstein 2004)
that multiple losses have occurred over evolutionary time
across Eurasia. (Katz et al. 2020). Our results agree with these
findings, and provide evidence that these genes are not only
rapidly evolving but also belong to the dispensable genome
and carry high levels of structural variation.

We further found that PAVs in defense response genes
tend to be present at more intermediate frequencies within
populations compared with the genomic background (fig. 4),
suggesting they are maintained in populations by some form

of balancing selection. This maintenance of polymorphism
can involve spatially- or temporally varying selection and/or
fitness trade-offs. The classical gene-for-gene model posits
that a specific gene (R-gene) from the host is involved in
recognition of a specific pathogen avirulence (avr) gene
(Flor 1971). In many cases, the gene-for-gene model in plants
can explain maintenance of polymorphism in the evolution
of disease resistance genes (Bergelson et al. 2001; Tian et al.
2002; Gao et al. 2009; Karasov et al. 2014). However, it has
been shown that R-gene polymorphism in A. thaliana is
sometimes more complex (Karasov et al. 2014; Laflamme
et al. 2020). The panNLRome in A. thaliana recently showed
that although there is high variation in NLR genes this diver-
sity is not unlimited (Van de Weyer et al. 2019). Trade-offs
between growth and herbivore or pathogen resistance (Coley
et al. 1985; Walling 2009; Huot et al. 2014) also likely contrib-
ute to the maintenance of polymorphisms in a population.
For example, a hyperactive ACD6 allele is known to strongly
increase resistance of A. thaliana to a broad range of patho-
gens but alters its growth dramatically (Todesco et al. 2010).
An additional mechanism that acts to maintain variation in
R-genes involves interactions between incompatibility alleles.
Several gene combinations, especially for disease resistance
genes, are reported as lethal for the plants (Bomblies et al.
2010; Smith et al. 2011; Chae et al. 2014; Tran et al. 2017). This
phenomenon involves autoimmunity and hybrid necrosis,
which is the opposite of heterosis or hybrid vigor (Chae
et al. 2014; Tran et al. 2017). Further, accumulating genomic
data from related species suggests that balancing selection
may be common in defense response loci in other species as
well (Koenig et al. 2019).

The effects of SVs on fitness in the wild may change across
environments or over time, as has been shown in previous
focused studies (Gao et al. 2009; Huard-chauveau et al. 2013).
Recently, it was further shown that loss of function variants
may contribute to local adaptation and phenotypic diversity
in A. thaliana (Monroe et al. 2018; Xu et al. 2019). Consistent
with this, we found strong associations between several genic
PAVs and environmental variables, including several involved
in response to vernalization with minimum temperature in
the coldest month ELF9 (AT5G16260), AGL31(AT5G65050),
and MAF3 (AT5G65050) (fig. 6). This is reminiscent of the
patterns observed in natural populations at the well-known
FRIGIDA locus, where loss of function alleles obviate the need
for cold exposure before flowering (Le Corre et al. 2002;
Stinchcombe et al. 2004; Shindo et al. 2005; Zhang and
Jim�enez-G�omez 2020).

The set of SVs identified and genotyped here will be useful
alone or in combination with available SNP data to investi-
gate A. thaliana evolution and trait architecture using GWAS
or recombinant populations.

Materials and Methods

Samples
We retrieved Illumina short-read data for 1,327 samples from
four studies (Alonso-Blanco et al. 2016; Durvasula et al. 2017;
Zou et al. 2017; Fulgione et al. 2018). We excluded 26 samples

Göktay et al. . doi:10.1093/molbev/msaa309 MBE

1506



from the analysis due to low data quality, so that the final
data set included 1,301 samples. Besides publicly available
data, we also sequenced one sample (PRJNA638240) from
Cape Verde Island (Cvi-0) with Pacific Biosciences long-read
sequencing technology (PacBio) (supplementary table S1,
Supplementary Material online). For this, we sterilized and
sowed Cvi-0 seeds on MS (Murashige & Skoog) media sup-
plemented with sucrose. Then we stratified seeds for 6 days.
Later we moved seeds to a growth chamber for 2 weeks.
Finally, we transferred plants to the dark, where they
remained for 3 days before DNA extraction using a
NucleoSpin plant II protocol. After quality checks, size selec-
tion was performed with a Blue Pippin (Sage Science)
(>10 kb) and DNA sequencing was performed with PacBio
RS II. DNA extraction, size selection, and PacBio sequencing
was performed at Max Planck Genome Center in Cologne,
Germany.

Performance Comparison of SV Callers
We tested three popular tools designed for SV identification
from short-read data to compare their performance. These
included LUMPYEXPRESS (v0.2.13) (Layer et al. 2014), DELLY
(v0.8.1) (Rausch et al. 2012), and PINDEL (v0.2.5b8) (Ye et al.
2009). LUMPYEXPRESS is an automated breakpoint detection
tool for standard analysis which internally uses LUMPY
(v0.2.13) (Layer et al. 2014). Although LUMPYEXPRESS
(v0.2.13) uses three different sources of information including
Read Pair (RP), Split Read (SR), and Read Depth (RD) infor-
mation, DELLY (v0.8.1) uses only RP and SR information and
PINDEL (v0.2.5b8) relies on only SR information to identify
structural variations.

To identify the best software for calling SVs in short-read
data, we used two approaches: a simulation-based approach
and a comparison to calls from long-read data. For the sim-
ulation approach, we introduced 1,000 structural variations
(maximum length 10 kb and SNP mutations frequency 0.1)
with SURVIVOR (v1.0.6) (Jeffares et al. 2017) on the
A. thaliana TAIR10 genome for each kind including deletions,
tandem duplications, and inversions. We simulated NGS
reads by WGSIM (v1.9) (Li et al. 2009) using the following
parameters (-h –N 10000000 -1 150 -2 150) from SVs intro-
duced reference. Later, we mapped the simulated reads to
original TAIR10 by BWA-MEM (v0.7.17) (Li and Durbin 2009)
with default parameters. Finally, we called SVs using
LUMPYEXPRESS (v0.2.13), DELLY (v0.8.1), and PINDEL
(v0.2.5b8) with default parameters.

For the PacBio approach, we first mapped PacBio reads to
TAIR10 using NGMLR (v0.2.7) (Sedlazeck et al. 2018) with
default settings. After mapping, we converted SAM (the
Sequence Alignment/Map format) files to BAM (Binary
Alignment/Map format) files by SAMTOOLS (v1.8) (Li et al.
2009) with the parameter settings “view -Sb.” Then, we
employed SNIFFLES (v1.0.8) (Sedlazeck et al. 2018) the set-
tings “–genotype, -l 50” to call SVs. Finally, we compared the
performance of the three short-read tools based on SNIFFLES
(v1.0.8) calls. For both approaches, we considered a minimum
of 50% reciprocal overlap to represent true positives then we
calculated their sensitivity (True Positives/[True

Positivesþ False Negatives]) and precision (True Positives/
[True Positivesþ False Positives]).

Calling of SVs and SNPs in Natural Populations
We identified SVs among 1,301 accessions using the pipeline
(supplementary fig. S1, Supplementary Material online,
https://github.com/HancockLab/SVS_A.thaliana) that con-
sists of LUMPYEXPRESS (v0.2.13), SVTYPER (v0.7.0) (Chiang
et al. 2015), and SVTOOLS (v0.4.0) (https://doi.org/10.5281/
zenodo.1442926, last accessed February 10, 2019). Our pipe-
line is forked and modified from (https://github.com/arq5x/
lumpy-sv, last accessed December 3, 2018). After calling SVs
(deletions, tandem duplications, and inversions), we per-
formed two genotyping steps. First, we conducted individual
genotyping with SVTYPER (v0.7.0), and then we conducted
joint genotyping with SVTOOLS (v0.4.0). This final genotyp-
ing allowed us to differentiate missing genotypes from
matches to the reference. The discovery set can have an in-
fluence on the power to identify variants across populations.
Therefore, we included all individuals in the discovery panel
to reduce the false-negative rate overall; however, this likely
results in a bias towards higher SV discovery rates in deeply
sampled populations and regions.

Our pipeline failed for 26 samples, which were thus ex-
cluded from the analysis. There was no clear reason why these
samples failed, and as they are not clustered into any one
population removing them is not expected to bias the data
set. These samples include (collection location, sequencing
facility) are BRR4 (MPI Tübingen), BRR12 (MPI Tübingen),
BRR57 (MPI Tübingen), BRR107 (MPI Tübingen), Bur-0 (IRL,
Mott), Can-0 (ESP, Mott), Dem-4 (Salk), KBS-Mac-74 (MPI
Tübingen), LI-SET-036 (MPI Tübingen), MSGA-61 (MPI
Tübingen), Oy-0 (Mott), Sf-2 (ESP, Mott), Paw-13 (MPI
Tübingen), Paw-20 (MPI Tübingen), Rsch-4 (RUS, Mott),
Yng-53 (MPI Tübingen), Tsu-0 (Mott), Uod-7 (AUT, Salk),
Yng-4 (MPI Tübingen), Zu-0 (SUI, Mott), 11PNA1.14 (MPI
Tübingen), 328PNA062 (MPI Tübingen), 87 (CHN, Yangtze
Genomes), 36-31 (CHN, Yangtze Genomes), 36-17 (CHN,
Yangtze Genomes), and 27-9(CHN, Yangtze Genomes).

The VCF file used for subsequent population genetic anal-
ysis was generated by setting an upper size limit of 10 kb,
including only polymorphic PAVs. Therefore, the sizes of var-
iants included in this analysis range from 1 bp to 10 kb. The
nature of short-read data prevented us from identifying large
SVs. We provide two VCF files: one with filtering applied with
only PAV variants included, and one with all raw calls includ-
ing PAVs, inversions, and tandem duplications.

In addition to PAVs, we also called biallelic SNPs for all
1,301 samples following the same pipeline we used previously
(Durvasula et al. 2017; Fulgione et al. 2018).

Examining Population Structure Using PAVs
We produced a whole-genome neighbor-joining (NJ) tree in R
with the ape (v5.0) package (Paradis and Schliep 2019) using
the same set of samples used in (Durvasula et al. 2017) except
for herbarium samples, which were sequenced with single-
end sequencing data and could therefore not be included in
our SV-calling pipeline.
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Identifying Genomic Hotspots and Conserved Regions
We defined genic and nongenic regions based on TAIR10
annotation. Any region that overlaps with a gene is treated
as a genic region and the rest is treated as a nongenic region.
We compared genic and nongenic regions to see if there is
any difference based on PAVs. We found more PAVs in inter-
genic regions compared with genic regions. To test the sig-
nificance of finding a higher proportion of PAVs in intergenic
regions than genic regions, we used the v2 test. We set the
expected genic region to 60,104,494 bases (sum of all genes
length without overlap) and expected intergenic region to
59,041,854 bases (sum of all nongenic regions). If the distri-
bution of PAVs throughout the genome was random, we
would not expect to see any difference between genic and
intergenic regions. Our observations for genic regions and
intergenic regions overlapping with PAVs were 8,920,166
bases and 30,766,220 bases, respectively.

Later we focused on the genic regions to be able to see the
gene sets with excesses or deficits of PAVs. Genes that overlap
with PAVs were extracted and performed enrichment analy-
sis. Same enrichment analysis was also done for the genes that
never overlap with a PAV. We tested for GO term (Carbon
et al. 2019) enrichment analysis using one-tailed FET with
Benjamini correction as well as Gowinda (v1.0), a more con-
servative test that takes gene size and clustering into account
using a permutation-based approach to assess significance
(Kofler et al. 2012).

We calculated unfolded SFS for each population and ge-
nomic class (whole genome, intergenic, genic, and defense
genes). To produce the frequency spectrum for each popu-
lation, we calculated proportion of variants that were present
once in the population (i.e., singletons), twice (i.e., double-
tons), etc. and these are plotted in figure 4 and supplemen-
tary figures S7 and S8, Supplementary Material online. The
frequency spectra were polarized to a consensus ancestral
genome. This consensus ancestral genome was created
from five accessions chosen to represent distinct diverged
A. thaliana lineages including (Lebanon [Qar-8a], Italy
[Etna-0], Madeira [12761], North Middle Atlas [22000], and
High Atlas [18511]) based on analyses in previous study
(Durvasula et al. 2017). This set represents the major “relict”
lineages of A. thaliana. We limited the set to five samples
because only a single “relict” sample was available from the
Levant (Lebanon) region. For each PAV, we calculated allele
frequency among these five accessions. The highest frequency
allele for each locus was used as the ancestral state. NA was
assigned to the ancestral state where data were missing for
more than one individual or when the allele frequency is
equal to 0.5.

The samples that we retrieved from the 1001 Genomes
project were separated into populations based on their ad-
mixture groups (Alonso-Blanco et al. 2016). Other samples
were grouped based on their geographical origins including
Madeira, China (Yangtze River Basin and North-Western
China), and Morocco (High Atlas, South Middle Atlas,
North Middle Atlas, and Riff).

We found a clear shift to the intermediate frequencies for
PAVs on defense response genes. To test whether there was a

statistically significant excess of intermediate frequency PAVs
in defense response genes relative to the genome-wide distri-
bution, we calculated the Tajima’s D statistic for the set of
defense genes in each population and compared this with the
Tajima’s D statistic for the entire genome. We found that for
each population, Tajima’s D was more positive for defense
genes compared with the total set of genes. To assess signif-
icance for this result, we randomly subsampled genic PAVs to
match the number of defense response PAVs 100,000 times
and calculated an empirical P value based on the distribution
of Tajima’s D in the resampled data sets. We further examined
evidence for balancing selection using BetaScan, which relies
on a signal of high variation at the haplotype level (Siewert
and Voight 2017, 2020). After employment of BetaScan, we
extracted 5% extreme tail of highest b scored SNPs and per-
formed enrichment analysis with FET. We found significant
enrichment of defense response genes for all groups.

Correlation with Environmental Variables (GWAS)
We used the linear mixed model association method,
GEMMA (v0.98.1) (Zhou and Stephens 2012), to assess cor-
relation between PAVs and SNPs with environmental varia-
bles. Environmental variables were obtained as geoTiff files
from WorldClim2 (Fick and Hijmans 2017). We extracted
data for four environmental variables (geoTiff files) using
the raster package in R. Then we used geo-referencing infor-
mation to compute the values for each accession with the
“extract” function from the raster package. These computed
values were treated as phenotypes for association mapping.
Individual samples that are genetically and environmentally
divergent from the bulk of samples violate assumptions of the
linear mixed model approach. Thus, the following divergent
samples were removed before conducting GWAS (6911, 9762,
9764, 10024, 35520, 12761, 12672, 12763, 12908, 22017, 22019,
22022, 22638, and 27153) to avoid effects of outliers in the
LMM analysis. To prepare files for GEMMA (v0.98.1), we
converted the VCF file to plink file with VCFTOOLS (v0.16)
(Danecek et al. 2011) (–plink) and then ran PLINK (v2.0)
(Purcell et al. 2007) to create a bed file (–make-bed). Next,
we used GEMMA (v0.98.1) to calculate the kinship matrix (-
gk 1, -maf 0.1) and ran GEMMA (v0.98.1) under the linear
mixed model with a minor allele frequency cut-off of 10% (-
lmm 2, -maf 0.1). The minor allele frequency cutoff acts to
remove outliers that could otherwise drive signals in the anal-
ysis. To prioritize candidate functional PAVs, we focused on
genes within 10 kb of a given climate-associated PAV. In order
to examine how well SNPs could represent climate-correlated
PAVs, we estimated linkage disequilibrium (LD) between all
SNPs within 10 kb of a PAVs with a GWAS P value <0.001
using PLINK (v2.0) with the command –r2 –ld-window-kb 10
–ld-window 999999 and filtered for the PAVs of interest for
each environmental GWAS. For each PAV, we identified the
SNP with the highest r2, created histograms for these, and
used the distribution to estimate the mean and SD of r2

between these PAVs and the most correlated SNPs.
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Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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