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Despite immune checkpoint blockade (ICB) therapy contributed to significant advances in
cancer therapy, only a small percentage of patients with colorectal cancer (CRC) respond
to it. Identification of these patients will facilitate ICB application in CRC. In this study, we
integrated multiple CRC cohorts (2,078 samples) to construct tumor microenvironment
(TME) subtypes using TME indices calculated by CIBERSORT and ESTIMATE algorithms.
Furthermore, a surrogate quantitative indicator, a tumor microenvironment immune gene
(TMEIG) score system, was established using the key immune genes between TME
clusters 1 and 2. The subsequent analysis demonstrated that TME subtypes and the TMEIG
score system correlated with clinical outcomes of patients in multiple CRC cohorts and
exhibited distinct immune statuses. Furthermore, Tumor Immune Dysfunction and Exclusion
(TIDE) analysis indicated that patientswith low TMEIG scores weremore likely to benefit from
ICB therapy. A study on two ICB cohorts (GSE78220 and IMvigor210) also validated that
patients with low TMEIG scores exhibited higher ICB response rates and better prognoses
after ICB treatment. The biomarker evaluation module on the TIDE website revealed that the
TMEIG score was a robust predictive biomarker. Moreover, differential expression analysis,
immunohistochemistry, qPCR experiments, and gene set prioritization module on the TIDE
website demonstrated that the five genes that constitute the TMEIG score system
(SERPINE1, FABP4, SCG2, CALB2, and HOXC6) were closely associated with
tumorigenesis, immune cells, and ICB response indices. Finally, TMEIG scores could
accurately predict the prognosis and ICB response of patients with CRC. SERPINE1,
FABP4, SCG2, CALB2, and HOXC6 might be potential targets related to ICB treatment.
Furthermore, our study provided new insights into precision ICB therapy in CRC.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common
malignant tumors globally, with high morbidity and
mortality. Tumor immunotherapies involving immune
checkpoint blockade (ICB) have contributed to significant
advancements in the treatment of many tumors (Topalian
et al., 2012), such as melanoma (Luke et al., 2017), bladder
cancer (Pettenati and Ingersoll, 2018), and non–small cell
lung cancer (Huang et al., 2021). However, most patients with
CRC exhibit poor responses to immune checkpoint blockade
(ICB) therapy. The biomarkers that predict the efficacy of ICB
therapy include the expression of programmed death-ligand 1
(PD-L1) (Nishino et al., 2017), tumor mutation load (Snyder
et al., 2014), mismatch repair deficiency (Le et al., 2015), and
gut microbiota (Daillère et al., 2016; Routy et al., 2018).
However, there is still a lack of effective tools to predict
the ICB response in CRC, which impedes the application of
ICB therapy in CRC. Therefore, there is an urgent need to
establish effective and reliable tools for predicting response to
ICB therapy and achieving precision therapy in patients
with CRC.

The tumor microenvironment (TME) mainly contains
tumor, immune and stromal cells, and small molecules
(Vitale et al., 2019). TME of CRC exhibits remarkable
heterogeneity (Zhang et al., 2020), which can cause
variation in tumor biology, thus affecting the efficacy of
multiple therapies (Casey et al., 2015; Wu and Dai, 2017),
including chemotherapy (Hanoteau et al., 2019), radiotherapy
(Yin et al., 2019; Sheng et al., 2020), and immune checkpoint
therapy (Lei et al., 2020; Sheng et al., 2020). In addition, the
TME can predict the prognosis of patients with CRC (Pagès
et al., 2005). For example, a high M1:M2 density ratio in tumor
stroma was associated with better cancer-specific survival
(Väyrynen et al., 2021). Immune cells in the TME play
critical roles in the efficacy of immunotherapy (Arce Vargas
et al., 2018; Väyrynen et al., 2021). Patients with higher CD8
cells in the TME exhibit more favorable responses to ICB
(Pagès et al., 2005). T cell-dendritic cell crosstalk facilitates
successful anti–PD-1 immune therapy (Zhao et al., 2019).
Therefore, studying TME heterogeneity will help reveal the
biological characteristics of CRC, assist the implementation of
precision therapy, and guide the application of ICB. However,
the TME is an extremely complex system. It is critical to
establish a simple surrogate gene model of the TME to
predict the prognosis of patients and the efficacy of ICB
therapy.

In the present study, we integrated transcriptome data of 1,175
patients with colorectal cancer from the GPL570 platform and
then employed CIBERSORT, ESTIMATE, and ssGSEA
algorithms to assess the characteristics of the TME. Based
on TME heterogeneity, two TME subtypes (clusters 1 and 2)
with different survival statuses were identified using a
consensus clustering algorithm. Weighted gene co-
expression network analysis (WGCNA), linear models for
microarray data (LIMMA), and other bioinformatics
analyses were used to identify the hub TME immune genes

between subtypes. Then, patients were also divided into two
tumor microenvironment immune gene (TMEIG) subtypes
(clusters A and B) with different survival statuses according to
the hub TME immune genes. Moreover, a robust prognostic
scoring system (TMEIG score) was developed using these
TME immune genes, which could effectively predict overall
survival (OS), progression-free survival (PFS), and disease-
specific survival (DSS) of patients with CRC. The prognostic
TMEIG score system was also verified in multiple cohorts,
such as TCGA-COAD. Notably, we validated that the TMEIG
score could predict ICB response in multiple immunotherapy
cohorts and is expected to guide the application of ICB
in CRC.

MATERIALS AND METHODS

Data Source and Process
Ten data sets were downloaded from the public database,
including clinical data and transcriptome data of 2,078
patients with CRC. GSE39582, GSE14333, GSE17536,
GSE17537, and GSE72968 were all microarray data of the
GPL570 platform and integrated as a training set (the
combined GEO cohort). The CEL format data of the
microarray was downloaded using the “GEOquery” package
(Davis and Meltzer, 2007). ReadAffy function in the “affy”
package was used to read data in CEL format (Gautier
et al., 2004), background correction and standardization
were carried out with RMA, and then the “SVA” package
was used to remove batch effect among the data sets
(Chakraborty et al., 2012). Probes corresponding to multiple
genes were deleted, and the average expression level was taken
when multiple probes corresponded to one gene. Clinical data
and FPKM value (fragments per kilobase million) of TCGA-
COAD were obtained from the UCSC website as an external
validation set (Navarro Gonzalez et al., 2021). Then, FPKM
was converted to TPM (transcripts per kilobase million) for
subsequent analysis. GSE39582, GSE17536, and GSE17537
were used as the internal validation sets. The paired
samples of GSE44076, GSE32323, GSE89076, and
GSE113513 datasets have been reserved for verifying the
gene expression level in the TMEIG score system. Detailed
information on the data sets is shown in Supplementary
Table S1.

Characteristics of the Tumor
Microenvironment
CIBERSORT (Newman et al., 2015) and ESTIMATE (Becht et al.,
2016) algorithms can infer the composition of 22 types of
immune cells, immune score, stroma score, and tumor purity
in the TME based on transcriptome data. In this study,
transcriptome data from the combined GEO dataset (1,175
samples) and TCGA COAD dataset (471 tumors) were used
for CIBERSORT and ESTIMATE analyses. After filtering out low
expression immune cells, 15 types of immune cells were retained.
ssGSEA is another algorithm for estimating immune cell
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composition in solid tumor TME and can also be used to calculate
adaptive and innate immune components of samples. In the
present study, the adaptive and innate immune scores of each
sample were obtained with the “GSVA” package. ssGSEA
parameters were set as follows: method = “ssgsea,” KCDF =
“Gaussian.”

Unsupervised Clustering
“ConsensusClusterPlus” is a re-sampling unsupervised clustering
method to verify the rationality of clustering (Wilkerson and
Hayes, 2010). In the combined GEO cohort, TME subtypes and
TMEIG subtypes were obtained using “ConsensusClusterPlus”
package. The parameters were set as follows: MaxK = 9, REPS =
1,000, pItem = 0.8, pFeature = 1, clusterAlg = “PAM,” distance =
“Euclidean,” and seed = 1.

Weighted Gene Co-Expression Network
Analysis
WGCNA analysis was used to identify gene modules most associated
with traits (Langfelder and Horvath, 2008). Stromal score, immune
score, estimate score, tumor purity, adaptive immune, innate
immune, TME cluster 1, and TME cluster 2 were inputted as
traits. The key parameters of WGCNA were set as follows: soft
threshold power β = 4, scale-free R2 = 0.89. The relationship
between modules and traits was analyzed using the Pearson
correlation method. Gene significance (GS) and module
membership (MM) are two important indicators in
WGCNA analysis. GS is the correlation between the gene
and trait. MM is defined as the correlation of the module
eigengene and the gene expression profile. Genes with GS > 0.2
and MM > 0.8 are usually considered hub genes.

Functional Enrichment Analyses
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa and Goto, 2000) analyses were
employed to explore the biological functions of the modules in
WGCNA using the R package “clusterprofiler” (Yu et al., 2012).
An adjusted p-value of less than 0.05 was regarded as statistically
significant. In addition, Gene Set Enrichment Analysis (GSEA)
was conducted (Subramanian et al., 2005). The gene sets
“c2.cp.kegg.v6.2.symbols.gmt,” “c5.all.v7.0.symbols.gmt,” and
“h.all.v7.2.symbols.gmt” on MSigDB website were chosen as
the reference gene sets (Liberzon et al., 2015). The log fold
change (FC) of differentially expressed genes between two
groups was used as the input list for GSEA analysis. When
analyzing the biological functions related to one gene, the
Pearson correlation coefficient was used as the input list.

Construction and Validation of TMEIG Score
First, univariate Cox proportional hazards regression was
employed to identify the prognostic genes using the “survival”
R package. Genes with a p-value less than 0.05 were regarded as
the candidates, input to least absolute shrinkage and selection
operator (LASSO) regression (Friedman et al., 2010). After ten
cross-validations, five prognostic genes and the corresponding

coefficient remained when lambda = 0.0713387182. Then,
TMEIG score was established as follows:

TMEIG score � ∑
i

Coefficient of (i) × Expression of gene (i)

The regression coefficient of the gene was designated (i) in the
LASSO regression model. The combined GEO cohort was used as
a training set, whereas GSE39582, GSE17536, and GSE17537
were used as the internal validation sets. In addition, the TCGA
COAD cohort served as the external validation set.

Survival Analysis
Only GSE39582, GSE17536, GSE17537, and GSE72968 had overall
survival data in the combined GEO cohort (Supplementary Table
S2). The survival time was converted to months, and samples with a
survival time of less than 1month were removed during survival
analysis. Finally, 864 samples in the combined GEO cohort and 435
samples in the TCGA COAD cohort were used for survival analysis
(Supplementary Table S2). According to the best cutoff value
determined using the “survminer” package, the patients were
divided into high and low expression groups. Log-rank test was
employed to evaluate statistical significance. Kaplan–Meier (KM)
plots were visualized using the “survminer” R package. The risk
factors diagrams were visualized using the “ggrisk” R package.

Analysis of Mutation Data
The mutation data of TCGA COAD were downloaded from the
TCGA website and analyzed using the “maftools” package
(Mayakonda et al., 2018). The tumor mutation burden (TMB)
was calculated using the following formula: (total mutation/total
covered bases) × 106. The driver genes in somatic alterations were
also identified using the “maftool” package.

ICB Response Prediction
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was
employed to predict ICB response based on the gene expression
related to T cell dysfunction (Dysfunction) and T cell exclusion
(Exclusion). The lower the TIDE score is reportedly associated
with a better immunotherapy response (Jiang et al., 2018).
Furthermore, the scores of cancer-associated fibroblasts (CAF),
Dysfunction, Exclusion, M2 macrophages (M2), myeloid-derived
suppressor cells (MDSC), and TIDE were obtained from the TIDE
website. The IMvigor210 cohort is a large cohort of patients with
metastatic urothelial cancer under anti–PD-L1 therapy
(atezolizumab), which can be downloaded from the Creative
Commons 3.0 license. GSE78220 is an anti–PD-1 therapy cohort
containing mRNA expression data from pre-treatment melanomas.
The two cohorts were used to validate the predictive power of the
TMEIG score for ICB response.

Cell Culture
The human CRC cell lines SW620, RKO, HCT116, HT29, and
NCM460 (ATCC) were cultured in RPMI-1640 medium (Gibco,
United States ) supplemented with 10% fetal bovine serum (FBS,
Biological Industries, United States ) at 37°C in a humidified 5%
CO2 atmosphere.
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RNA Extraction and Quantitative
Real-Time PCR
Total RNAs of cell lines were extracted by TRIzol reagent
(Invitrogen, United States ) and then was reversely transcribed as
cDNA viaPrimeScript™ RTMasterMix (Takara, Japan). Quantitive
real-time PCR was performed using PowerUp™ SYBR™ Green
Master Mix (Applied Biosystems, United States) in the StepOne™
Real-Time PCR System (Applied Biosystems). Each reaction was
tested in triplicate. ACTB was used as the internal reference, and the
2(−ΔΔCT) method was used for calculating the relative mRNA
expression. The following primer sets were used:

Human FABP4: Forward: 5ʹ-GGGCCAGGAATTTGACGAAG-
3ʹ, Reverse: 5ʹ-TCGTGGAAGTGACGCCTTTC-3ʹ; Human SCG2:
Forward: 5ʹ-GTGAAGCGAGTTCCTGGTCA-3ʹ, Reverse: 5ʹ-ATG
CTCTTTGATGGCCTGCT-3ʹ; Human CALB2: Forward: 5ʹ-GAA
GGCAAGGAAAGGCTCTGG-3ʹ, Reverse: 5ʹ-GCCATCTCGATT
TTCCCATCTG-3ʹ; Human SERPINE1: Forward: 5ʹ-CCTGGTTCT
GCCCAAGTTCT-3ʹ, Reverse: 5ʹ-CCATGCGGGCTGAGACTA
TG-3ʹ; Human HOXC6: Forward: 5ʹ-CACTAACCCTTCCTT
ATCCTGCC-3ʹ, Reverse: 5ʹ-TCATAGGCGGTGGAATTGAGG-
3ʹ; Human ACTB: Forward: 5ʹ-GATTCCTATGTGGGCGACGA-
3ʹ, Reverse: 5ʹ-AGGTCTCAAACATGATCTGGGT-3ʹ.

Immunohistochemistry
For the IHC experiment, we collected 16 pairs of CRC tissue (cancer
and adjacent normal tissue) from patients who received surgery at
the Department of Colorectal Cancer Surgery, the Second Affiliated
Hospital of Harbin Medical University (Harbin, China) between
January 2014 and December 2020. Ethics approval was also granted
by the Ethics Committee of Harbin Medical University (No. KY
2022-063). The primary antibodies used in IHC were as follows:
anti-FABP4 (Proteintech, #12802-1-AP, 1:200 dilution), anti-SCG2
(Proteintech, #20357-1-AP, 1:200 dilution), anti-CALB2
(Proteintech, #12278-1-AP, 1:200 dilution), anti-HOXC6
(Affinity, #DF3078, 1:150 dilution), and anti-PAI1 (SERPINE1)
(Affinity, #AF5176, 1:200 dilution). Paraffin sections were
incubated with primary antibodies at 4°C overnight, followed by
treatment with HRP-conjugated secondary antibodies at 37°C
temperature for 60 min following PBS rinse. Then, tissues were
counter-stained with hematoxylin and further treated with DAB for
2 min. The IHC results were independently analyzed by two
experienced pathologists. A staining scoring system was evaluated
by both staining intensity (negative = 0, weak = 1, and strong = 2)
and staining area (<5%= 0, 5%–25% = 1, 25%–50%= 2, 50%–75%=
3, and >75% = 4). The staining intensity score was computed, and
the score of the staining area was the final staining score. A total
score of≤3was considered aweak expression. A total score of>3was
considered a strong expression. The details of IHC performance and
scoring system are described in Supplementary Table S3.

Statistical Analysis
Heat maps were visualized with the “ComplexHeatmap” package
(Gu et al., 2016). The “ggplot2” package was used to visualize
boxplots, scatter plots, and Sankey plots. The log-rank test and
Pearsonmethod were used for KM survival and correlation analyses,
respectively. The difference between the two groups was tested by the
Wilcox test. It should be noted that * represented a p-value less than

0.05, ** represented a p-value less than 0.01, *** represented a p-value
less than 0.001, and **** represented a p-value less than 0.0001. All
analyses were performed in R 4.0.3.

RESULTS

Depicting the Heterogeneity of the Tumor
Microenvironment in a Large CRC Cohort
The flow diagram describes the construction of TME subtypes
and the TMEIG score in CRC (Figure 1). We integrated
microarray data of 1,175 patients with CRC from the GPL570
platform and then used the combat function of the “SVA”
package to remove batch effects. The principal component
analysis (PCA) diagrams of five cohorts before and after batch
effect removal are shown in Figures 2A,B. The results indicated
that the batch effect was negated, and the combined cohort could
be used for subsequent analysis. To fully dissect the heterogeneity
of the TME in patients with CRC, the CIBERSORT algorithm was
used to assess the proportion of immune cells in the TME.
Macrophages and mast cells were the most abundant immune
populations in the combined GEO cohort, followed by memory
resting CD4 and CD8 T cells. Figures 2C,D shows the proportion
of immune cells in each patient, which partly reflects the
heterogeneity of immune cells in the TME. A total of 15 types
of immune cells were retained after eliminating low expression
cells (such as memory B cells, CD4 naive T cells, gamma delta
T cells, activated NK cells, monocytes, resting mast cells, and
eosinophils). The detailed results of the CIBERSORT analysis are
shown in Supplementary Table S4. Then, the ESTIMATE
algorithm was used to calculate patients’ immune scores and
stromal scores. Collectively, CIBERSORT and ESTIMATE
algorithms were used to comprehensively describe the
correlations among the immune cells, immune score, and
stromal score in the tumor microenvironment of patients with
CRC (Figure 2E). Resting NK cells were inversely correlated with
M0/M1/M2 macrophages (correlation values = −0.09, correlation
values = −0.28, correlation values = −0.26; p-value < 0.05;
Supplementary Table S4). Furthermore, CD8 T cells were
negatively related to M0 macrophages (correlation values =
−0.31, p-value < 0.05) and positively related to M1
macrophages (correlation values = 0.16, p-value < 0.05).

Tumor Microenvironment Cluster 2 has
Better Survival and Exhibits a Different
Immune State
Based on these quantitative indicators describing the TME, we
conducted unsupervised clustering in these 1,175 patients using
the “ConsesusClusterPlus” package. As shown in Supplementary
Figure S1, the clustering result was the most stable when K = 2. The
PCA plot also demonstrated significant differences between the two
clusters (Figure 3A). Then, survival analysis was employed to
compare the prognosis between the two TME clusters
(Supplementary Table S5). The OS in TME cluster 2 was
significantly better than that in TME cluster 1 (Figure 3B log-
rank test, p = 0.047). Furthermore, we explored 11 critical biological

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8848394

Wang et al. Score System Predicts CRC Outcome

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


gene signatures between the two TME subtypes using a heat map
(Mariathasan et al., 2018). The results indicated that cell cycle genes
and DNA damage repair (DDR) genes were markedly decreased,
and angiogenesis (Angio) markers, TGFβ receptor and ligand
(TGFβ), antigen-processing machinery (APM), and F-TBRS
genes were significantly increased in TME cluster 1 as compared
to TME cluster 2 (Figure 3C). In addition, CD8 Teff cells and
immune checkpoint signatures (ICI) were highly expressed in TME
cluster 1 (Figures 3C–E). The low expression of cell cycle-associated
genes may indicate that tumor cells in TME cluster 1 were in a
dormant phase and were not easily cleared by the immune system. A
comparison of the immune score and stromal score revealed that the
immune score and stromal score of TME cluster 1 were higher than
those of TME cluster 2 (Figure 3D). CIBERSORT analysis
demonstrated that immunosuppressive cells (M0, M1, and M2)
were significantly reduced, and immunoreactive cells (CD8 T cell,

CD4 memory resting T cells, resting dendritic cells, and activated
dendritic cells) were significantly increased in the TME cluster 2
(Figure 3F). Furthermore, the GSEA results indicated that immune-
related functions (activation of immune response, positive regulation
of cytokine production, cytokine–cytokine receptor interaction, and
IL6-JAK-STAT3 signaling) significantly varied between TME
clusters 1 and 2 (Figures 3G–I; Supplementary Table S6).

Identification of Key Tumor
Microenvironment Immune Genes Between
Tumor Microenvironment Subtype
To identify key gene modules in TME clusters 1 and 2,
WGCNA analysis was employed. The WGCNA analysis
processes are shown in Supplementary Figures S2A–E.
Adaptive immunity and innate immunity were derived from

FIGURE 1 | Flow diagram of the study describing the process by which tumor microenvironment (TME) subtypes and the key tumor microenvironment immune
gene (TMEIG) scoring system were identified. (A) Identification of TME subtypes. (B) Construction of TMEIG subtypes. (C) Establishment of TMEIG score. (D) Validation
of TMEIG score in immune therapy cohorts.
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ssGSEA analysis. Stromal score, immune score, estimate score,
tumor purity, adaptive immunity, innate immunity, and TME
clusters 1 and 2 were used as traits. The heat map of
module–trait relationships is shown in Figure 4A. Results
indicated that blue (cor = 0.79, p < 1e−200), brown (cor =
0.53, p = 2.2e−63), and green (cor = 0.98, p < 1e−200) modules
displayed the high correlations with adaptive immunity
(Figures 4B–D).

Thus, the blue, brown, and green modules were identified as
the key modules. We performed GO and KEGG analyses to
explore the biological functions of genes within the key modules.
As shown in Supplementary Figures S2F–H, GO and KEGG
terms were closely related to the immune function, such as
regulation of immune system process, cytokine production,
TNF signaling pathway, TNF superfamily cytokine production,

and TNF superfamily cytokine production. In the three modules,
223 genes with GS > 0.2 and MM > 0.8 were identified as
candidate genes. We used the “Limma” package to obtain the
differentially expressed genes (DEGs) between TME clusters 1
and 2, and the results are shown in the volcano map (Figure 4E).
p-value < 0.05 and logFC >0.5 were set as parameters, and 719
DEGs were obtained (698 upregulated and 21 downregulated).
Since there were very few downregulated genes, we mainly used
the upregulated genes to compare with the candidate genes of
WGCNA. A total of 202 TMEIGs were eventually identified after
comparing candidate genes with upregulated genes (Figure 4F).

TMEIG Cluster a Has a Better Prognosis
A total of 202 TMEIGs were again used for unsupervised
clustering in the combined GEO cohort, and the clustering

FIGURE 2 |Heterogeneity of the TME in patients with colorectal cancer. (A,B) PCA diagrams of five cohorts (GSE39582, GSE14333, GSE17536, GSE17537, and
GSE72968) before and after batch effect removal. (C) Boxplot cells, immune score, and stromal score (calculated using the ESTIMATE algorithm) in TME of patients with
CRC were analyzed using the “corrplot” R package. Red and blue colors represent positive and negative, depicting the proportion of 22 types of immune cells in TME
estimated using the CIBERSORT algorithm. (D) The distribution of 22 types of immune cells in each patient. (E) Pearson correlation between immune correlations,
respectively. The correlation p-values were less than 0.05 in all cases except those marked with “x” symbols.
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process is shown in Supplementary Figures S3A–E. The
clustering result was most stable when k = 2. PCA plot also
revealed significant differences between the TMEIG subtypes
(Figure 4G; Supplementary Table S7). The KM plots revealed
that patients in TMEIG cluster A exhibited better OS (Figure 4H,
log-rank test, p = 0.047). Similarly, the heat map of tumor-related

pathways showed that cell cycle and DDR signatures were
significantly decreased in TMEIG cluster B. Angio,
transforming growth factor-beta (TGFβ), antigen processing
machinery (APM), TGF-beta response signatures (TBRS) of
fibroblasts (F-TBRS), and immune checkpoint signatures were
increased in TMEIG cluster B as compared to that in cluster A

FIGURE 3 | Identification of the TME subtypes and analysis of biological functions. (A) PCA analysis demonstrates that the TME subtypes display distinct gene
expression signatures. (B) The survival analysis of TME subtypes in the combined GEO cohort. (C) Relationship between TME subtypes and 11 critical biological
pathways. Rows of the heat map represent gene expression grouped by pathway. Red and blue colors represent high and low expression, respectively. EMT (epithelial
to mesenchymal transition), Angio (angiogenesis), ICI (immune checkpoint genes), DDR (DNA damage-repair), and APM (antigen-processing machinery). (D) The
boxplot of the immune score and stromal score between TME subtypes calculated by ESTIMATE analysis. (E) The boxplot of seven immune checkpoint genes between
TME subtypes. (F) The distribution of 15 types of immune cells between TME subtypes estimated by CIBERSORT analysis. (G–I) GSEA analysis of GO function, KEGG
pathway, and Hallmark gene set of both TME subtypes. The difference between the two groups was assessed using the Wilcox test. The log-rank test was used for KM
survival analysis.
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(Supplementary Figure S3J). ESTIMATE analysis showed that
TMEIG cluster B had higher immune and stromal scores than
TMEIG cluster A (Figure 4I). CIBERSORT analysis showed that
immunosuppressive cells (M0/M1/M2 macrophages) increased
significantly in TMEIG cluster B, whereas immunoreactive cells
(CD8 T cell, CD4 memory resting T cells, resting dendritic cells,
and activated dendritic cells) decreased significantly compared to

TMEIG cluster A (Figure 4K). GSEA results indicated that
immune-related functions (activation of immune response,
cytokine-cytokine receptor interaction, and inflammatory
response) significantly varied between TMEIG cluster A and
TMEIG cluster B (Figures 4L–N). These results demonstrated
that TMEIG subtype clustering accurately reflected the
differences between TME subtypes.

FIGURE 4 | Identification of TMEIG and TMEIG subtypes. (A) Heatmap of module trait relationships in the combined GEO cohort. Each row contains the
corresponding correlation values and p-value. Red and blue colors represent the positive and negative correlations, respectively. (B–D) Scatter plots of the correlation
betweenmodule eigengenes and adaptive immune in blue, brown, and greenmodules. (E) The volcano plot of the differentially expressed genes between TME clusters 1
and 2. (F) The intersection genes of WGCNA module genes and differentially expressed genes were considered the TMEIGs. (G) PCA plot demonstrates that the
TMEIG subtypes display distinct gene expression patterns. (H) The survival analysis of TMEIG subtypes in the combined GEO cohort. (I) The boxplot of the immune
score and stromal score between TMEIG subtypes. (J) The boxplot of seven immune checkpoint genes between TMEIG subtypes. (K) The distribution of 15 types of
immune cells between TMEIG subtypes. (L–N) GSEA analysis of GO function, KEGG pathway, and Hallmark gene set between TMEIG subtypes. The difference
between the two groups was assessed using the Wilcox test. The log-rank test was used for KM survival analysis.
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Patients With High Tumor
Microenvironment Immune Gene Scores
Have a Poorer Prognosis in Multiple CRC
Cohorts
Gene signature is a simple and effective model widely used in clinical
practice (Paik et al., 2004; van ’t Veer et al., 2002; Parker et al., 2009).
To further facilitate the application of TME subtypes in CRC, we

intended to construct a TMEIG score system. First, 662 genes were
obtained by comparing 2,799 genes in blue, brown, and green
modules with 698 DEGs (Supplementary Figure S4A).
Univariate Cox regression analysis was performed in the
combined GEO cohort and TCGA COAD cohort. With a
p-value less than 0.05, 287 and 47 prognostic genes were
obtained from the combined GEO and TCGA COAD cohorts,
respectively. Then, Lasso regression was used to identify 27 common

FIGURE 5 | Clinical significance of TMEIG score. (A–H) The survival analysis of TMEIG score in multiple colorectal cancer cohorts. OS represents overall survival,
DFS represents disease-free survival, and DSS represents disease-specific survival. (I–N) The relationship between clinicopathological parameters and TMEIG score in
TCGA COAD. The TMEIG score was transformed to log2 format for analysis. Clinicopathological parameters are collated from the UCSC website. (O) The risk factor
diagrams of the combined GEO cohort. (P) The Sankey diagram revealed the correlation between the TME cluster, TMEIG score, and TMEIG cluster in the
combined GEO cohort. (Q,R) The stacked histogram exhibits the distribution of the TME cluster and TMEIG cluster between high and low TMEIG score groups. (S) ROC
plot shows the predictive value of the TMEIG score combined with age, sex, M stage, and TNM stage in the GSE39582 cohort using stepwise Cox regression. The
difference between the two groups was assessed using the Wilcox test. The log-rank test was used for KM survival analysis.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 8848399

Wang et al. Score System Predicts CRC Outcome

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


genes in the combined GEO cohort (Supplementary Figure S4B).
Details of the Lasso regression are shown in Supplementary Figures
S4C and D. After cross-validating the results ten times, five genes
(SERPINE1, FABP4, SCG2, CALB2, and HOXC6) and their
corresponding lambda coefficients were obtained when lambda =
0.0713387182. The TMEIG score was constructed based on the
expression and coefficient of the five genes as described in the
methods. According to the optimal cutoff value, patients were
divided based on whether their TMEIG scores were high or low
(Supplementary Table S8). OS analysis suggested that the high
TMEIG scores were associated with poor prognosis in patients with
CRC (Figure 5A, log-rank test, p < 0.0001).

Internal validation cohorts indicated that the OS of the patients
with high TMEIG scores was poorer than those with low scores
(Figures 5B–D, GSE39582, GSE17536, GSE17537, log-rank test, p <
0.0001). In addition, the PFS andDSS in the lowTMEIG score group
were superior to those of the high TMEIG score group (Figures
5E–G, GSE17536 DFS, GSE17536 DSS, GSE17537 DFS, log-rank
test, p < 0.0001). Then, the TCGA COAD cohort also revealed that
the overall survival of the high TMEIG score group was poorer
(Figure 5H; Supplementary Table S8). When analyzing the
relationship between clinicopathological parameters and the
TMEIG score, we observed that the scores of patients exhibiting
stage III & IV, T 3 & 4, lymphatic invasion, and venous invasion
were significantly higher (Figures 5I–N; Supplementary Table S9),
suggesting the high TMEIG score was associated with poor clinical
prognosis. Furthermore, the risk factor diagrams of the combined
GEO and TCGA COAD cohorts indicated that the high TMEIG
score group had significantly higher mortality than the low TMEIG
score group (Figure 5O; Supplementary Figure S4E). All the results
demonstrated poor prognoses in patients with high scores. The
distribution of patients in the TME clusters, TMEIG clusters, and
TMEIG score groups are shown in Figure 5P, which indicates that
most patients in TME cluster 1 belonged to TMEIG cluster B and the
high TMEIG score group. Consistent with the results, the high
TMEIG score group had a higher proportion of patients in TME
cluster 1 and TMEIG cluster B (Figures 5Q,R). Moreover, patients
in TME cluster 1 and TMEIG cluster B exhibited higher TMEIG
scores than that in TME cluster 2 and TMEIG cluster A
(Supplementary Figures S4F,G). This evidence demonstrated
that the TMEIG score could effectively surrogate TME and
TMEIG subtypes. Furthermore, TMEIG score, age, sex, and T, N,
M, and TNM stages were included in stepwise Cox regression in the
GSE39582 cohort, which possessed comprehensive clinical
information. Results indicated that TMEIG score combined with
age, sex, M stage, and TNM stage exhibited the best predictive power
(Supplementary Figure 5S, AUC: 0.75, 0.69, 0.7, 0.72, and 0.73 at 1,
3, 5, 7, and 10 years, respectively), and was validated in the TCGA
COAD cohort (Supplementary Figure S4H).

Patients With High Tumor
Microenvironment Immune Scores Are
More Likely to Benefit From Immune
Checkpoint Blockers
To evaluate whether the TMEIG score could predict the
efficacy of ICB treatment, we analyzed the expression of

crucial immune checkpoint molecules between high and low
TMEIG score groups. The results showed that the expression
of immune checkpoint molecules (PD-1 [PDCD1], PD-L1
[CD274], cytotoxic T-lymphocyte associated protein 4
[CTLA4], B- and T-lymphocyte attenuator [BTLA], T cell
immunoglobulin and ITIM domain [TIGIT], hepatitis A
virus cellular receptor 2 [HAVCR2], and lymphocyte-
activation gene 3 [LAG3]) was significantly higher in the
high score group (Figure 6A). Patients with CRC who have
microsatellite instability-high (MSI-H) tumors are more likely
to benefit from immune checkpoint inhibitors than patients
with microsatellite stable (MSS)/MSI-low (MSI-L). To explore
the relationship between TMEIG score and MSI status, the
MSI status of TCGA COAD patients was downloaded from the
supplements of previous studies focusing on MSI detection
(Supplementary Table S10). There were 72 patients identified
as MSI-H and 355 identified as MSI-L/MSS in TCGA COAD
determined by MSI-PCR. We then analyzed whether the
TMEIG score had prognostic value across MSI-H and MSI-
L/MSS subgroups. KM plots demonstrated that patients with
high TMEIG scores exhibited poor overall survival in MSI-H
and MSI-L/MSS subgroups (Supplementary Figures S5A,B).
Further analysis showed that patients with MSI-H possessed
higher TMEIG scores (Figure 6B, p = 6.9e−06). Next, we
explored the proportion of patients with MSI-H and MSI-L/
MSS in high and low TMEIG score groups. We observed more
MSI-H CRC patients in the high TMEIG score group
(Supplementary Figure S5C, High: 26%, Low: 14%).
Previous studies reported that TMB was a predictor of the
efficacy of ICB therapy. When exploring the TMB of patients
from the TCGA COAD cohort, results indicated no statistical
difference between high and low TMEIG score groups
(Figure 6C). In addition, the top six driver genes with the
highest alteration frequency were further analyzed. The
alteration frequency of APC, TP53, TTN, KRAS, PIK3CA,
and MUC16 in high and low TMEIG score groups are
displayed in Supplementary Figure S5D. The ESTIMATE
algorithm revealed that immune, stromal, and estimate
scores were significantly higher in the high TMEIG score
group (Figure 6D). Furthermore, pathway heat maps
demonstrated that EMT, angiogenesis (vimentin [VIM],
Twist-related protein 1 [TWIST1], zinc finger E-box
binding homeobox 1 and 2 [ZEB1 and ZEB2]), and T-cell
factor-beta (TCFβ) signatures were significantly more
activated in the high TMEIG score group. In contrast, cell
cycle and DDR signatures were highly expressed in the low
TMEIG score group (Figure 6E). These results indicated
significant differences in the TME and biological pathways
between high and low TMEIG score groups. To dissect the
relationship between TMEIG score and ICB response, we used
the TIDE algorithm to predict ICB response based on
transcriptome signatures. The TIDE algorithm (Figure 6F)
showed that the TMEIG score was positively correlated with
CAF (R = 0.68, p < 2.2e−16), Dysfunction (R = 0.37, p <
1.7e−15), and Exclusion (R = 0.14, p < 0.0036), and negatively
correlated with M2 macrophages (R = 0.51, p < 2.2e−16) and
MDSC (R = −0.3, p < 2.7e−10). In addition, there was a strong
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positive correlation between the TMEIG and TIDE scores
(Figure 6F, R = −0.15, p < 0.003).

Then, we explored the predictive power of the TMEIG
score in two ICB therapy cohorts. In IMvigor210 and
GSE78220 cohorts, the ICB response rates were
significantly lower in the high TMEIG score group (Figures
6G,H). Notably, patients with high TMEIG scores exhibited
worse overall survival (Figures 6I,J; IMvigor210: log-rank
test, p = 0.018, GSE78220: log-rank test, p = 0.053). The

insignificant result in GSE78220 (28 patients) can be
attributed to the small sample size. Furthermore, the
biomarker evaluation module on the TIDE website was
used to assess the accuracy of the TMEIG score using
multiple ICB cohorts as compared to other published
biomarkers. The TMEIG score demonstrated an AUC of
more than 0.5 in nine out of 16 ICB cohorts
(Supplementary Figure S6), demonstrating its robustness
as a predictive biomarker (Fu et al., 2020).

FIGURE 6 | The correlation between TMEIG score and ICB response. (A) The boxplot of seven immune checkpoint genes between the high and low TMEIG score
groups in the TCGA COAD cohort. (B) The TMEIG score between MSI-H and MSI-L/MSS subgroups. The boxplot showed that patients with MSI-H possessed higher
TMEIG scores than MSI-L/MSS (Wilcox test, p = 6.9e−06). The TMEIG score was transformed to log2 format for analysis. (C) TMB difference in the high and low TMEIG
score groups in the TCGA COAD cohort. (D) Relationship between TME subtypes and 11 critical biological pathways in the TCGA COAD cohort. Rows of the heat
map represent gene expression grouped by pathway. (F) The Pearson correlation analysis between TMEIG score and tumor-associated fibroblast (CAF), T cell
dysfunction (Dysfunction), T cell exclusion (Exclusion), M2 macrophage (M2), myeloid-derived suppressor cell (MDSCs), and TIDE score. The TMEIG score was
transformed to log2 format for analysis. (G,H) The stacked histogram exhibits the distribution of ICB response rates between high and low TMEIG score groups in
IMvigor210 and GSE78220 cohorts. The blue (CR/PR) indicates patients who responded to ICB, whereas the red (SD/PD) represents patients who did not respond to
ICB treatment. (I and J) Survival analysis in ICB treatment cohorts (IMvigor210 and GSE78220) using the log-rank test. The difference between the two groups was
assessed using the Wilcox test.
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The Biomarker Genes Are Differentially
Expressed in CRC and Significantly
Correlate With Immune Cells
To further understand the functions of the biomarker genes
consisting of the TMEIG score, we analyzed the expression
levels of SERPINE1, FABP4, SCG2, CALB2, and HOXC6 in the
TCGA-COAD cohort. The results demonstrated that the
expression values of SERPINE1 and HOXC6 were significantly

upregulated in tumors, whereas FABP4, SCG2, and CALB2 were
highly expressed in normal tissues (Figure 7A). Furthermore, the
same results were found in paired differential expression in
multiple CRC cohorts (Figures 7B–E, GSE32323, GSE44076,
GSE89076, and GSE113513). Our immunohistochemistry
(IHC) results revealed that CALB2 exhibited relevant stronger
staining in two cases of tumor (2/16), with the other 14 cases
displaying low expression (14/16). For FABP4, seven and two
cases in tumor and normal samples, respectively, exhibited

FIGURE 7 | Exploring the biological functions of biomarker genes. (A)Comparison of biomarker gene expression between normal tissue and cancer tissue in TCGA
COAD. (B–E) Comparison of biomarker gene expression between cancer tissues and paired normal tissues, statistically assessed using Wilcox test. (F) The
representative immunohistochemical images of FABP4, SCG2, CALB2, SERPINE1, and HOXC6. A total of 16 pairs of CRC tissue (cancer and adjacent normal tissue)
were collected for IHC. (G) The heatmap shows the Pearson’s correlation between five biomarker genes and immune cells in the combined GEO cohort. Red
represents positive correlation, whereas blue represents negative correlation. (H) The correlation between five biomarker genes and four immunosuppressive indices
(columns), including T cell dysfunction score (first column, T dysfunction value in core dataset), association with ICB survival outcome (second column, z-score in the
Cox-PH regression in immunotherapy), log-fold change (logFC) in CRISPR screens (third column, helping identify regulators whose knockout can mediate the efficacy of
lymphocyte-mediated tumor killing in cancer models), and T cell exclusion score (fourth column, assessing the gene expression levels in immunosuppressive cell types
that drive T cell exclusion). Genes (rows) are ranked by average value across four immunosuppressive indices analyzed using the TIDE website.
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stronger staining, whereas nine and 14 cases in tumor and normal
samples, respectively, were with low staining intensity. For
HOXC6, seven and nine samples out of 16 exhibited strong
staining in normal and tumor samples, respectively. The
protein level of SCG2 was high in 12 cases of CRC samples
(12/16) and 11 cases of normal samples (11/16). SEP1NG1 was
found strongly stained in 11 cases of tumor samples (11/16) and
nine cases of normal samples (9/16). Representative
immunohistochemical images are shown in Figure 7F, and the
high-resolution images are shown in Supplementary Figure S7.
The qPCR experiments (Supplementary Figure S8A) revealed
that the expression of HOXC6 and SERPINE1 was significantly
upregulated in RKO and HT29 cell lines, and FABP4 expression
was downregulated in nearly all CRC cell lines analyzed.
Although SCG2 and CALB2 were downregulated in patients
with CRC in multiple cohorts, qPCR experiments showed that
their expression was upregulated in several CRC cell lines (such as
HCT116 and HT29). This discrepancy may be due to false
positives in RNA sequencing or the heterogeneity between
clinical tissues and tumor cells. Studies involving more clinical
samples or cell lines may be needed to confirm the expression of
the two genes at the RNA and protein levels in the future. KM
plots of these genes are displayed in Supplementary Figure S9A.
Results indicated that all genes were closely related to OS. GSEA
analysis indicated that the five genes were involved in multiple
cancer biological functions: cell motility, angiogenesis, cell
migration, programmed cell death, MAPK signaling pathway,
and PI3K-Akt signaling pathway. Notably, the immune-related
pathway “cytokine-cytokine receptor interaction” was also
significantly enriched in most of these genes (SERPINE1,
FABP4, SCG2, and HOXC6) (Supplementary Figure S9B).
Next, we summarized several immunological molecules from
our previous studies, such as immune checkpoint genes and
cytotoxic genes, and analyzed the correlation with five genes
in TCGA COAD (Supplementary Figures S8B,C). Results
demonstrated that most of the five genes were significantly
correlated with immune checkpoint genes (BTLA, CD274,
CTLA4, HAVCR2, LAG3, PDCD1, and TIGIT) and cytotoxic
genes (granzyme A [GZMA], GZMB, GZMK, GZMM,
interferon-gamma [IFNG], perforin 1 [PRF1], and tumor
necrosis factor superfamily member 11 [TNFSF11]), which
revealed that these genes might play an important role in
tumor immunity. We then explored the correlation between
the five genes and immune cells infiltrating the TME. As
shown in the correlation heatmap, the five genes were
positively related to macrophages (such as M0, M1, and M2),
inversely correlated with resting NK cells and resting memory
CD4+ T cells, CD8+ T cells, and activated memory CD4+ T cells
(Figure 7G), which might explain the poor ICB response in the
high TMEIG score group. Moreover, the gene set prioritization
module on the TIDE website indicated thatHOXC6 was the most
appropriate target to treat TME resistance to ICB (Figure 7H).
The expression of HOXC6 was positively associated with T cell
dysfunction in GSE12417, METABRIC, and TCGA Endometria
datasets (Figure 7H, left panel). In addition, high HOXC6
expression was also associated with poorer ICB outcomes in
multiple cohorts treated with ICB (Figure 7H, second to left

panel). Among the immune-suppressive cell types, HOXC6 was
highly expressed on the MDSC and CAF (Figure 7H, right
panel).

DISCUSSION

Understanding the heterogeneity of the tumor
microenvironment is required to elucidate the biological
properties of CRC and guide the treatment strategies.
Moreover, the TME heterogeneity is closely related to the
efficacy of ICB therapy (Lee et al., 2014; Nishino et al., 2017;
Cristescu et al., 2018; Mariathasan et al., 2018). Thus,
understanding TME heterogeneity may provide new insights
into CRC immunotherapy.

In this study, we constructed TME subtypes based on the TME
landscape of patients with CRC, which can accurately distinguish
the heterogeneity of the TME and predict the clinical prognosis.
The patients were then re-clustered by TMEIGs identified by
WGCNA and differential expression analysis. Two TMEIG
subtypes were obtained, reflecting heterogeneity in TME and
clinical prognosis. Gene signature is a simple and effective model
widely used in clinical practice (Paik et al., 2004; van ’t Veer et al.,
2002; Parker et al., 2009). Therefore, we established a TMEIG
score system to quantify the TME heterogeneity in patients with
CRC. The Sankey plots revealed that the TME and TMEIG
subtypes were consistent with the TMEIG score, suggesting
that the TMEIG score could be utilized as a surrogate
biomarker of TME heterogeneity.

Tumor mutation burden (TMB) (Chan et al., 2019),
microsatellite instability (MSI) status (Ganesh et al., 2019),
and immune checkpoint genes are important factors affecting
ICB therapy. Patients with high levels of TMB and MSI-H
exhibited better ICB therapy responses. In this study, there
was no significant difference in TMB between high and low
TMEIG score groups. However, patients with MSI-H possessed a
higher TMEIG score, and there were more patients with MSI-
high CRC in the high TMEIG score group. In addition, the
expression of immune checkpoint molecules was higher in
patients with high TMEIG scores. Patients with high
expression of PD-L1 and PD-1 are more likely to benefit from
ICB therapy (Topalian et al., 2012; Nishino et al., 2017). These
results indicate that patients with high TMEIG scores tend to
respond better to ICB therapy. However, ICB response is
influenced by numerous factors, such as EMT (Jiang and
Zhan, 2020), angiogenesis (Tian et al., 2017; Voron et al.,
2014), and the TCF-β pathway (Mariathasan et al., 2018;
Tauriello et al., 2018). EMT, angiogenesis, and TCFβ pathway
activation inhibit the efficacy of immune checkpoint therapy. The
pathway heatmap revealed that EMT, angiogenesis (VIM,
TWIST1, ZEB1, and ZEB2), and TCFβ signatures were
significantly activated in the high TMEIG score group
(Figure 7E). Furthermore, the TIDE score predicted the
efficacy of ICB therapy based on two mechanisms of tumor
immune escape (T cell dysfunction and T cell exclusion)
(Jiang et al., 2018). A higher TIDE score is related to poorer
ICB response and survival in patients receiving anti–PD-1 and
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anti-CTLA4 therapies (Jiang et al., 2018). In the present study, the
TMEIG score was positively related to dysfunction and exclusion
scores (Figure 6F). It indicated that patients with high TMEIG
scores possessed fewer CTL cells, which were majorly
dysfunctional in the TME. In line with the above results, the
TMEIG score was positively correlated with the TIDE score (R =
0.15, p = 0.003), indicating that patients in the high TMEIG score
group exhibited poorer ICB response. The prediction of ICB
response by MSI, TMB, or PD-L1 is based on the presence of CTL
cells in the TME. Hence, we speculated that patients with high
TMEIG scores mainly tend to exhibit poor ICB therapy response
due to fewer CTL cells that are primarily dysfunctional. Since
there was no suitable public ICB treatment CRC cohorts at the
time of publication, we only used transcriptome data from other
tumor types to verify the predictive power of the TMEIG score.
Nevertheless, validation in melanoma and urothelial cancer
datasets may indirectly suggest that the TMEIG score predicts
the efficacy of immune checkpoint therapy in CRC. In accordance
with TIDE results, a higher TMEIG score was associated with
poorer ICB response and prognosis in two ICB treatment cohorts.
In conclusion, the evidence demonstrated that the TMEIG score
might serve as a reliable ICB biomarker in CRC. We will further
validate our results once transcriptome data of CRC patients
undergoing immune checkpoint therapy becomes publicly
available or establish our own cohort regarding this point.

In our study, the TMEIG score was determined by SERPINE1,
FABP4, SCG2, CALB2, and HOXC6 expression. HOXC6 is a
member of the homeobox family, which encode transcription
factors that play a critical role in morphogenesis in all
multicellular organisms. HOXC6 expression was higher and
negatively associated with prognosis in right-sided colon
cancer than in left-sided colon cancer. This finding was
further validated by tissue microarray analysis. HOXC6
facilitated proliferation and metastasis through the dickkopf-1
(DKK1)/Wnt/β-catenin axis in right-sided colon cancer (Qi et al.,
2021; Garris et al., 2018). The role of FABP4, which encodes the
fatty acid–binding protein found in adipocytes, is unclear in CRC.
A study demonstrated that FABP4 was downregulated in CRC
(Zhao et al., 2019). IHC and ELISA data from another study
revealed that FABP4 and plasma FABP4 concentrations were
higher in CRC tissues than in normal tissues (Zhang et al., 2021).
Thus, the role of FABP4 in CRC must be investigated further. In
addition, mRNA and protein levels of SCG2, a member of the
chromogranin family of acidic secretory proteins, were
significantly downregulated in CRC tissues (Wang et al., 2021;
Fang et al., 2021). Mechanistically, SCG2 inhibits tumor growth
and angiogenesis by disrupting the activities of HIF-1α/VEGF in
malignant CRC tissues (Fang et al., 2021). In vitro and in vivo
studies have shown that CALB2 promotes hepatocellular
carcinoma metastasis via the TRPV2-Ca2+-ERK1/2 signaling
pathway (Chu et al., 2022). Although fluorouracil (5-FU)
treatment reduced the mRNA and protein expression of
CALB2 in CRC, their expression levels were not quantified
and compared in tumor and normal tissues (Stevenson et al.,
2011). SERPINE1 expression is reportedly upregulated in CRC
tissues and is associated with tumor invasiveness and
aggressiveness (Mazzoccoli et al., 2012). Our study also reports

the same trend (Figures 7A–E). Nevertheless, the roles of
HOXC6, SERPINE1, FABP4, SCG2, and CALB2 in
tumorigenesis, cancer immunity, and ICB treatment are poorly
understood. In the present study, IHC and qPCR results
preliminarily elucidated the expression levels of these five
molecules in CRC and normal tissues. Larger clinical sample
sizes are required to verify mRNA and protein expression levels
reported in this study and whether protein levels can be used to
predict the prognosis of patients suffering from CRC and their
response to ICB therapy. In addition, we observed that the five
genes were significantly associated with immune cells of TME,
immune checkpoint genes, and cytotoxic genes. Immune
checkpoint genes and cytotoxic genes were collected from our
previous study (Wang et al., 2022). Moreover, heatmaps also
demonstrated that these genes, especially HOXC6, were closely
associated with four immunosuppressive indices, including T cell
dysfunction score, T cell exclusion score, association with ICB
survival outcome, and logFC in CRISPR screens. Collectively, the
roles of the five genes in tumor immunity are worthy of
investigation, which will be the focus of our future research.

Our study has numerous advantages. First, datasets of the
combined GEO cohort were downloaded from the GPL570
platform, which reduced the batch effect caused by different
platform processes. Second, a large cohort with more than 1,000
samples was used for clustering, guaranteeing stable clustering
results. Third, the prognostic power and predictive ICB response
of the TMEIG score have been validated in multiple cohorts.
However, the study design does have a few drawbacks. First, the
predictive ICB response power of the TMEIG score was assessed
in melanomas and metastatic urothelial cancer. These data must
be verified using patients with CRC. Second, the relationship
between the five molecules of the TMEIG score system and
tumorigenesis, immune system, and ICB response were not
investigated in this study. Future in vivo and in vitro studies
from our group will focus on these aspects.

In conclusion, we identified the TME subtypes that
comprehensively depicted the TME, revealed multiple aspects of
CRC biology, and assessed variation in the prognosis of patients with
CRC. TMEIG score is a robust marker to predict patients’ prognosis
and may serve as a predictor of ICB response in CRC. Moreover, we
identified several potential targets that may play a critical role in ICB
treatment, of which HOXC6 may be the most significant.
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Supplementary Figure S1 | Processes of constructing TME subtypes. (A–D)
Consensus matrixes of the combined GEO cohort for each k (k = 2–5), displaying the
clustering stability using 1000 iterations of hierarchical clustering. (E) Empirical
cumulative distribution function plots display consensus distributions for each k.
When k = 2, the distribution reaches an approximate maximum, indicating maximum
stability.

Supplementary Figure S2 | Details of the WGCNA analysis. (A and B) Analysis of
the scale-free fit index and themean connectivity for various soft-thresholding power
values. (C) Hierarchical clustering dendrograms of co-expressed genes in modules.
(D and E) The correlation between modules. (F–H) The GO and KEGG enrichment
terms are in blue, brown, and green modules.

Supplementary Figure S3 | Details of constructing TMEIG subtypes. (A–D)
Consensus matrixes of the combined GEO cohort for each k (k = 2–5),
displaying the clustering stability using 1000 iterations of hierarchical clustering.

(E) Empirical cumulative distribution function plots display consensus distributions
for each k. When k = 2, the distribution reaches an approximate maximum, indicating
maximum stability. (F) Relationship between TMEIG subtypes and 11 critical
biological pathways.

Supplementary Figure S4 |Details of constructing the TMEIG score system. (A)
The Venn diagrams show the intersection between genes in blue, brown, and
green modules and DEGs. (B) The intersection of prognostic genes in the TCGA
COAD cohort and the combined GEO cohort. (C,D) Details of the Lasso
regression. (E) The risk factor diagrams of the TCGA COAD cohort. (F and
G) The TMEIG score between TME Clusters as well as TMEIG Cluster. (H) ROC
plot shows the predictive value of the TMEIG score combined with age, sex, M
stage, and TNM stage in the TCGA COAD cohort using stepwise Cox
regression.

Supplementary Figure S5 | Exploring the TMEIG score groups. (A) The KM plot of
high and low TMEIG groups in MSI-H subgroups (log-rank p-value = 0.037). (B) The
KM plot of high and low TMEIG groups in MSI-L/MSS subgroups (log-rank p-value =
0.0039). (C) The stacking histogram shows the proportion of patients with MSI-H
andMSI-L/MSS in high and TMEIG score groups. Red represents patients with MSI-
H, and blue represents those with MSI-L/MSS. (D) The OncoPrint shows the top six
mutated genes between high and low TMEIG score groups, including APC, TP53,
TTN, KRAS, PIK3CA, and MUC16. There are 100 and 274 patients in the high and
low TMEIG score groups, respectively. Individual patients are represented in each
column.

Supplementary Figure S6 | Comparison of TMEIG score and other biomarkers.
AUC is employed to evaluate the prediction performance of the TMEIG score
(Custom) and other common biomarkers on ICB response in 16 ICB treatment
cohorts using the TIDE website.

Supplementary Figure S7 | High-definition images of IHC.

Supplementary Figure S8 | Exploring the role of the five biomarker genes. (A) The
qPCR data of FABP4, SCG2, CALB2, SERPINE1, and HOXC6. NCM460 is a
normal human colonic epithelial cell line, whereas SW620, RKO, HCT116, and
HT29 are human CRC cell lines. NS, not significant. The statistical significance
was assessed using one-way ANOVA. (B) Pearson correlation between the five
genes and immune checkpoint genes (BTLA, CD274, CTLA4, HAVCR2, LAG3,
PDCD1, and TIGIT) in TCGA COAD. (C) Pearson correlation between the five
genes and cytotoxic genes (GZMA, GZMB, GZMK, GZMM, IFNG, PRF1, and
TNFSF11) in TCGA COAD.

Supplementary Figure S9 | Survival and GSEA analyses of the five biomarker
genes. (A) Survival analysis ofSERPINE1, FABP4,SCG2,CALB2, andHOXC6 in the
TCGA COAD cohort. (B) GSEA analysis of SERPINE1, FABP4, SCG2, CALB2, and
HOXC6 in the combined GEO cohort. Data from “c2.cp.kegg.v6.2.symbols.gmt”
and “c5.all.v7.0.symbols.gmt” in the MSigDB website were chosen as the reference
gene sets.

Supplementary Table S1 | Cohorts information used in this study.

Supplementary Table S2 | Survival data of the combined GEO and TCGA COAD
cohorts.

Supplementary Table S3 | Details of immunohistochemistry experiment in this
study.

Supplementary Table S4 | CIBERSORT results of the combined GEO cohort.

Supplementary Table S5 | TME clusters in the combined GEO cohort.

Supplementary Table S6 | Results of GSEA analysis between TME clusters in the
combined GEO cohort.

Supplementary Table S7 | TMEIG clusters in the combined GEO cohort.

Supplementary Table S8 | TMEIG score in the combined GEO and TCGA COAD
cohorts.

Supplementary Table S9 | Clinical data of the TCGA COAD cohort.

Supplementary Table S10 | MSI information of the TCGA COAD cohort.
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