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Sources of predictive information 
in dynamical neural networks
Madhavun Candadai1,2 & Eduardo J. Izquierdo1,2*

Behavior involves the ongoing interaction between an organism and its environment. One of 
the prevailing theories of adaptive behavior is that organisms are constantly making predictions 
about their future environmental stimuli. However, how they acquire that predictive information 
is still poorly understood. Two complementary mechanisms have been proposed: predictions are 
generated from an agent’s internal model of the world or predictions are extracted directly from the 
environmental stimulus. In this work, we demonstrate that predictive information, measured using 
bivariate mutual information, cannot distinguish between these two kinds of systems. Furthermore, 
we show that predictive information cannot distinguish between organisms that are adapted to their 
environments and random dynamical systems exposed to the same environment. To understand 
the role of predictive information in adaptive behavior, we need to be able to identify where it is 
generated. To do this, we decompose information transfer across the different components of 
the organism-environment system and track the flow of information in the system over time. To 
validate the proposed framework, we examined it on a set of computational models of idealized 
agent-environment systems. Analysis of the systems revealed three key insights. First, predictive 
information, when sourced from the environment, can be reflected in any agent irrespective of 
its ability to perform a task. Second, predictive information, when sourced from the nervous 
system, requires special dynamics acquired during the process of adapting to the environment. 
Third, the magnitude of predictive information in a system can be different for the same task if the 
environmental structure changes.

Predictive coding is emerging as a strong candidate for its ability to provide a general framework for understand-
ing the neural basis of behavior1–4. The idea is that organisms encode information about future environmental 
stimuli in their neural activity based on their knowledge of the environment. Intuitively, an organism that is 
able to predict the consequences of its action on its future sensory experiences is more likely to be adapted to 
its environment. There are two prominent research fronts that study the role of predictive coding in behavior: 
the hierarchical predictive processing framework5,6 and the efficient coding principle7,8. These two fronts are 
complementary because they address different aspects of how a nervous system acquires predictive information. 
The hierarchical predictive processing framework focuses on how predictions are generated in the organism’s 
brain. The efficient coding principle focuses on how the nervous system extracts predictive information from 
environmental stimuli. Both theories have been supported by experimental evidence, primarily in the visual 
and auditory systems9–12.

In living organisms, predictive information is likely acquired from a dynamically changing contribution 
of the environment and the agent’s own internal dynamics2. Consequently, although different systems may be 
equally predictive about their future stimuli, the operation of their nervous systems may be entirely different. 
Understanding the role of predictive information in behavior requires that the source of information is identi-
fied. In this paper, we address the following questions. How do we identify the source of predictive information 
and study its dynamics during a behavior? Does tracking the source of predictive information better explain 
an agent’s ability to perform a task? What are the factors that influence the source and magnitude of predictive 
information encoded in a neural network?

In the first part of this paper, we demonstrate that predictive information will generate indistinguishable 
results for systems that are at the two extremes of potential agent-environment interaction: a system whose 
only source of predictive information is the nervous system and a system whose only source of predictive 
information is the environmental stimuli. Understanding the operation of neural circuits in agent-environment 

OPEN

1Cognitive Science program, Indiana University, Bloomington, IN, USA. 2The Luddy School of Informatics, 
Computing, and Engineering, Indiana University, Bloomington, IN, USA. *email: edizquie@iu.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73380-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16901  | https://doi.org/10.1038/s41598-020-73380-x

www.nature.com/scientificreports/

systems involves understanding the information flow dynamics across its components13,14. The principal con-
tribution of this paper is the application of an information-theoretic framework, specifically Partial Informa-
tion Decomposition15, to quantify the contributions from the nervous system and the contributions from the 
environmental stimuli to the total predictive information in an agent. First, we decompose the total predictive 
information in the neural system into information that was uniquely transferred from each source. In order to 
do this, we employ multivariate extensions to information theory15. Second, we unroll information over time 
to backtrack the origin of the source of predictive information and how they change over time. To validate the 
proposed theoretical framework, we examine it on a set of computational models of agent-environment systems, 
where the agent is driven by a dynamical recurrent neural network16,17. The systems have been deliberately 
designed so that the source of predictive information is tractable and manipulable. We demonstrate how the pro-
posed framework correctly reveals different sources of predictive information in systems with otherwise similar 
amounts of predictive information. Ultimately, we demonstrate how revealing the flow of information across 
the agent-environment system can help us to better understand the mechanisms underlying predictive coding.

Predictive information is studied in living organisms because it is considered a signature of their adaptive 
capacities5,8,9. In the second part of this paper we study the relationship between a system’s ability to perform 
a task and its predictive information. In order to do this, we turn to a computational model of an agent that is 
required to process the received stimulus from the environment and make a decision based on it. Specifically, 
we study predictive information in the context of a relational categorization task18,19. We generate model systems 
that are adapted to their environment and yet remain tractable to analysis by optimizing dynamical recur-
rent neural networks using an evolutionary algorithm to perform the task20,21. We then proceed to analyze the 
resulting systems using predictive information and we compare the results against that of random systems that 
cannot solve the task. Counterintuitively, we observe that predictive information in trained neural networks is 
similar to predictive information in random neural networks. This suggests that predictive information alone is 
not sufficient to distinguish between living organisms that are adapted to their environments and non-adaptive 
systems. The rest of the paper focuses on an analysis of optimized and random systems using the framework 
proposed. Altogether, we demonstrate that decomposing predictive information across the components of an 
agent-environment system, and unrolling it over time reveals its true nature.

Identifying the source of predictive information
Predictive information is the information encoded in neural activity about its future stimulus. Formally, it is 
defined as mutual information between current neural activity ( Nt ) and the stimulus at a future time ( St′)9,22–25. 
Predictive information, I(St′ ,Nt) , is given by:

where t ′ = t + δt with δt > 0 , PS is the distribution of environmental stimuli, PN is the distribution of neural 
activity across the entire experiment, P(st′ |nt) is the conditional probability that the stimulus is s at a future time 
t ′ given that we have observed a neural activity of n at time t. When this measure is estimated using the stimulus 
and neural activity across all data points separated in time by some δt , it is a measure of reduction in uncertainty 
in future stimulus given the current neural activity.

The presence of predictive information in a neural network suggests there is a source where this information 
was generated. In an idealized agent-environment system (Fig. 1A), the source of information can be either the 
neural activity in the previous time step, the environmental stimulus in the previous time step, or both (Fig. 1B). 
Measuring predictive information as defined in Eq. (1) requires that we examine two variables: current neural 
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Figure 1.   Predictive information source estimation based on idealized agent-environment interaction. (A) 
Sensory stimuli (S) and neural activity (N) are two coupled dynamical systems. (B) Agent-environment 
interaction unrolled over time. X represents current neural activity, N(t), Y, future environmental state, 
S(t + δt) , and A and B represent the sources, namely past neural activity N(t − δt) and past environmental 
state, s(t − δt) respectively. (C) Partial information diagram for calculating the sources of predictive information 
in an agent-environment system. The total information that X has about Y is a combination of information 
that is available uniquely from A alone (green), uniquely from B alone (yellow), synergistically from their 
combination [A, B] (pink), and redundantly from both of them (purple). PID allows us to measure information 
transfer using these components. Alternatively, they can also be measured by estimating the total redundant 
information from both sources combined (red) and removing the information from the other source.
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activity ( Nt , henceforth X) and future stimulus ( St+δt , henceforth Y). Identifying the source of this predictive 
information requires that we examine two additional variables: past neural network activity ( Nt−δt , henceforth 
A) and past stimulus ( St−δt , henceforth B). Such an analysis requires that we adopt multivariate extensions to 
information theory. We focus specifically on Partial Information Decomposition (PID)15, a method for decom-
posing multivariate mutual information into combinations of unique, redundant and synergistic contributions, 
as well as measures of information gain, loss and transfer15,26–35. PID allows us to decompose the total informa-
tion about Y in the combined set of variables A, B and X into the constituent unique, redundant and synergistic 
information atoms. In this work we utilize these partial information atoms to identify the source of predictive 
information by measuring the following information transfer terms: (a) information uniquely transferred from 
past environmental stimulus, TY;A→X ; (b) information uniquely transferred from past neural network activity, 
TY;B→X ; and (c) information redundantly transferred from past environment stimulus and past neural network 
activity, TY;{A,B}→X.

In words, a systematic development of how PID atoms can be utilized to measures these terms is as follows:

•	 Current neural activity, X, has information about future environmental state, Y - I(Y; X)
•	 Past neural activity, A, has information about future stimulus, Y - I(Y; A)
•	 Past environmental state, B, has information about future stimulus, Y - I(Y; B)
•	 Sources A and B have synergistic and redundant information about Y
•	 The variable of interest, current neural activity X, has information about Y that is redundant with information 

from the combined sources A and B - �R(Y; {[A,B]}{X}) (red outlined region in Fig. 1C)
•	 Of that information, some of it uniquely came from A, (green in Fig. 1C); some of it uniquely came from B, 

(yellow in Fig. 1C); some of it is redundant between them, (purple in Fig. 1C); and some synergistic (pink in 
Fig. 1C).

•	 Information transferred from a given source is then measured as information that was uniquely provided by 
the source plus the information that was synergistically transferred by the combined sources35.

•	 As shown by the equations in Fig. 1C, the sum of the unique and synergistic information is equivalent to the 
difference between the total redundant information and the unique contribution from the other source.

Mathematically, the three transfer terms namely, transfer from A, transfer from B, and redundantly from both 
sources can be expressed as follows:

where �R(Y; {A1}{A2}..{Ak}) is the redundant information that random variables A1 through Ak have about the 
random variable Y and [A, B] refers to a random variable that is a concatenation of A and B. In words, informa-
tion about Y transferred uniquely from source A to X is estimated as the total redundant information from the 
combined sources [A, B] minus the information that is redundant with the other source B. This decomposition 
of the total information into different contributions is typically represented using a PI-decomposition diagram 
(Fig. 1C). Several approaches have been proposed to measure redundant information, �R

26,36,37. Here, we use 
Imin because this is the only approach that can guarantee non-negative information decomposition in a system 
with four random variables, as is the case here.

During the course of behavior, the flow of information in a system changes over time38,39. In order to under-
stand the source of predictive information for any agent-environment system, it is not enough to decompose 
information from multiple sources; we must also track its flow of information over time. Although information 
theoretic measures are typically averaged over time, the measures described above can be unrolled over time13,39. 
This is done by measuring information transfer at each time-point using data collected across several trials 
thereby allowing us to study the dynamics of predictive information sources.

Disparate systems with similar predictive information
Neural systems can be predictive in fundamentally different ways: they can generate predictive information 
internally or they can extract it from environmental stimulus. We use computational models of two extreme 
conditions where the ground-truth predictive information source is known to be the environment in one con-
dition and the neural network in the other, to demonstrate that (a) predictive information cannot distinguish 
between these different kinds of systems and (b) it is only through decomposing the information across sources 
and unrolling over time that we can distinguish the two systems based on their operation. The two conditions 
we consider are agent-environment interactions at two extremes of the range of possible interactions: a central 
pattern generator (CPG) and a passive perceiver (PP). In the CPG condition, the neural network influences the 
environment by producing spontaneous oscillatory activity but receives no input from the environment (Fig. 2A). 
In the PP condition, the neural network is influenced by input from the environment, but it does not affect the 
environment (Fig. 2B). We evolved 100 different dynamical recurrent neural network CPGs, and in each case, 
we fed the sum of the neurons’ outputs to the environment (Fig. S1A,B). For the PPs, we generated 100 random 
neural networks and fed them an oscillatory input. In order to provide the same distribution of activity as the 
CPG condition, we provided the random neural networks with the same oscillatory environmental signal that 
CPGs generated (Fig. S1C). The environmental signal and neural data were recorded from each instance for 500 
trials where, in each trial the environment started with a different initial condition. Although, the environmental 
signal and the neural activity exhibit oscillatory activity in both conditions, the key difference in the operation 

(2)
TY;A→X = �R(Y; {[A,B]}{X})−�R(Y; {B}{X})

TY;B→X = �R(Y; {[A,B]}{X})−�R(Y; {A}{X})

TY;{A,B}→X = �R(Y; {A}{B}{X})
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of these systems is that in the CPGs the neural network drives its own activity and in the PP, the environment 
drives the neural network. Therefore, the neural network is the source of predictive information in the CPGs 
and the environment is the source of predictive information in the PPs.

As a first step in the analysis of these two systems, we used the recorded data to measure predictive infor-
mation in the neural network about the environmental signal in the next time-step ( δt = 0.02s ). To calculate 
predictive information, data distributions were constructed using all tuples of neural activity at time t and envi-
ronmental signal at time t + δt , averaged across time and trials. The analysis revealed that the neural networks, 
in these two otherwise diametrically opposed systems, encoded similar levels of information about stimulus in 
the next time step (Fig. 2C). From this first experiment, we conclude that predictive information is not sufficient 
to distinguish systems that generate their own predictive information from systems that encode the information 
available from the environmental stimuli.

To understand what makes these two neural systems different, it is necessary to identify the source of their 
predictive information. As a next step in our analysis, we decomposed the information in the neural system 
about the future stimuli across the different possible sources and we unrolled the analysis over time. At each 
time-point, we measured information in the neural network about the environmental signal in the next time-
step that was uniquely transferred from the environment, uniquely transferred from the neural network and 
redundantly from both.

In the CPG condition, since the neural networks are not influenced by the environment (Fig.  2A), the only 
source of information about the future environmental signal is from the neural network itself. Accordingly, 
the dynamics of information transfer for CPG systems reveals correctly that the neural network is the source 
of predictive information (Fig.  2D). At the start of the interaction between agent and environment, the neural 
network uniquely transfers information about the future environmental state to the environment. Following 
that, the environment quickly becomes synchronized with the neural activity. This means that the state of the 
environment becomes informative of its own future state. This results in the environment and the neural network 
becoming redundant sources of predictive information. Crucially, however, the environment never provides any 
unique information to the neural network about its future stimulus.

In the PP condition, since the neural networks are driven by the environment (Fig.  2B), the only source of 
information about the future environmental signal is the stimulus from the environment itself. Accordingly, the 
dynamics of information transfer for PP systems reveals correctly that the environment is the source of predic-
tive information (Fig.  2E). As opposed to the CPG systems, at the start of the interaction between the neural 
network and the environment, it is the environment that transfers unique information to the neural network. 
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Figure 2.   Predictive information in systems on the extremes of the range of possible agent-environment 
interactions (A) Schematic and traces of a Central Pattern Generator (CPG) that influences the environment 
through intrinsically generated oscillations. (B) Schematic and traces of a Passive Perceiver (PP) that is driven 
by oscillatory inputs from the environment (in this case, by the environmental signals recorded from the CPGs). 
(C) Estimating total predictive information as shown in Eq. (1) shows that CPG and PP models encode similar 
amounts of predictive information about environmental state in the next time-step. (D) Decomposing that total 
information into information that came from the environment and the neural network consistently showed that 
information about the next time-step in the CPG originated in the neural network (yellow) before becoming 
redundant (purple) as the environment and the neural network synchronized. (E) Conversely, with PPs, the 
environment was consistently shown to be the source of information (blue) before they environment and neural 
network synchronize and become redundant (purple).
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Subsequently, and similarly to the CPG condition, as the state of the neural network begins to encode the 
information from the environmental stimulus, the predictive information is redundantly transferred by both 
the neural network and the environmental stimulus. Consistent with our expectation, the neural network never 
provides any unique information to itself about the future of the stimulus.

In summary, in this section we show that predictive information alone cannot distinguish between two 
extremely different kinds of neural systems, both of which encode predictive information about the future of the 
environment. This is because when the entire time course of the data is considered, the environment and neural 
network are synchronized for a majority of the time. Information uniquely transferred from any source is only 
detectable within a short time window before they synchronize. However, in reality, both the environment and 
the neural network would have independent dynamics that would be continuously evolving. Thus, there will be 
transfer of information to or from the neural network (or both) at every time-step. We show a minimal version 
of such a setting where changes in the environment after synchronization results in new information transfer 
to the neural network, in the next section. In this section, we have shown that decomposing information across 
sources and unrolling over time allows us to study information source dynamics at every perturbation to the 
agent-environment interaction and hence reveals the source of predictive information.

Predictive information with structured stimuli
The natural environment is not uniformly random but is in fact highly structured with spatial and temporal 
regularities2,40,41. This structure is reflected in the stimulus that agents receive from the environment. Accordingly, 
this is emulated in most preparations in neuroscience, where a neural system is presented with artificial stimuli 
with some underlying structure designed by the experimenter. We posit that the structure in the environment 
will strongly influence the amount of predictive information encoded by the neural network and its sources. In 
order to study this, we examined the flow of information in a neural network model trained to solve a relational 
categorization task.

Relational categorization is the ability to discriminate objects based on the relative value of their attributes18,19. 
This task allows us to specify the inherent structure in the environment by changing the distribution of objects 
whose attributes are compared thus making it especially suited for studying the influence of environmental 
structure on predictive information. It involves providing the neural network with stimuli across three stages: 
cue, delay, and probe. In the cue stage, the neural network is provided with a stimulus of specific magnitude for 
a duration of time. This is followed by a delay stage, where no stimulus is provided. Finally, in the probe stage, 
the neural network is provided with a second stimulus. The magnitudes for the cue and probe stage stimuli are 
picked from a predesignated distribution (Fig. 3A). It is this distribution that defines the structure in the environ-
ment. For this study, we design it such that the stimulus in the probe stage can have a magnitude that is one of 
two values: smaller ( cue − 1 ) or larger ( cue + 1 ) than the stimulus provided during the cue stage (Fig. 3B). The 
goal of the neural network in this task to perform a relational categorization of “greater than” or “lesser than” 
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Figure 3.   Predictive information source dynamics with structured stimuli. (A) Distribution of cue and 
corresponding probes in the relational categorization task. For each cue, the probe can be one of two values: 
greater, cue + 1 , or lesser, cue − 1 , with the expected outputs of +1 (red) and −1 (blue) respectively. (B) One 
trial of the relational categorization task. The cue stimulus is presented till t=5, followed by a delay period with 
no stimulus (t=5 to t=15) and then a probe that is greater (red) or lesser (blue) than the cue is provided. (C) 
Behavior of the best out of 100 dynamical neural networks optimized to perform this task showing perfect 
categorization of the relational value from 35 trials where the probe was greater (red) and 35 where the probe 
was lesser (blue). (D) Dynamics of information about the cue during the cue stage show information uniquely 
provided by the environment (green) initially, but becoming redundantly available in the neural network 
and environment (purple) as it encoded the cue. (E) Towards the end of the cue stage, information is entirely 
redundant (purple). When the stimulus stops being provided at t=5, the neural network is the unique source of 
information about the cue (orange). (F) Dynamics of information about the cue just before the probe arrives 
showing that the neural network continues to retain information about the cue (orange). At t=15, when the 
probe is provided, information quickly becomes redundant (purple) denoting that the probe has information 
about the cue.
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by producing an output of +1 or −1 respectively, during the probe phase. This task has been widely studied in a 
variety of contexts including in humans42, pigeons43, rats44, insects45, as well as using computational models46,47.

In this section, we show results from analysis of neural networks performing the relational categorization 
task. We demonstrate that decomposing information across the sources and unrolling over time reveals that the 
environment is structured by appropriately attributing the observed predictive information to either the environ-
ment or the dynamics of the neural network. Furthermore, we demonstrate that encoding predictive information 
alone is not indicative of task performance and that the magnitude and source of predictive information can 
change during the course of a behavior depending on environmental structure and neural network dynamics.

Characterizing information source dynamics in the best optimized neural network.  Dynami-
cal recurrent neural networks were optimized using an evolutionary algorithm to perform the relational catego-
rization task. A total of 100 independent evolutionary runs yielded an ensemble of 100 different neural networks 
that could successfully perform the task (Fig. S2A). The best neural network from this ensemble achieved a 
performance of 93.12% . Although this neural network correctly classified all probes, the performance score was 
not perfect due to slight deviations in the output (Fig. 3C).

In order to better understand how a neural network performed this task, we can characterize the flow of 
information across the agent-environment system. To this end, we decomposed the total information that the 
best neural network from the ensemble had about the cue into information uniquely transferred from the 
environment, uniquely transferred from the neural network, and redundantly from both, during the course of 
the task. During the cue stage, the environment was initially the unique source of information about the cue 
(Fig. 3D). As the neural network encoded the stimulus, the source became redundant. During the delay stage, 
the environment ceases to be a source of information. As the neural network had already encoded information 
about the cue, it becomes the unique source (Fig. 3E). Crucially, the neural network preserves this information 
throughout the delay stage. Finally, during the probe stage, the environment once again becomes a source, and 
therefore the source is redundant (Fig. 3F). Note that when the environment provides the probe stimulus it 
became the source of information about the cue. Since the neural network already contained information about 
the cue, the neural network and the environment both redundantly act as the source.

As explained previously, predictive information in this task arises from the relationship between cue and 
probe stimuli. Encoding information about the cue automatically results in encoding information about the 
probe (and vice versa). This is because knowing the cue significantly reduces uncertainty about the probe; the 
probe can only be one of two values given a cue. Predictive information that the neural network has about the 
probe and its sources is qualitatively similar to the information it has encoded about the cue (Fig. S3A). The 
neural network encodes information about the probe stimulus upon receiving the cue, and retains that predictive 
information during the delay stage. This is merely a consequence of encoding and retaining the cue. The entire 
ensemble of neural networks optimized to perform this task consistently exhibit this phenomenon of encoding 
information about the probe transferred uniquely from the cue stimulus (Fig. S3B) and is even robust to noise 
in the neural network (Fig. S5).

Environmental regularities induces predictive information in any neural network.  Since 
optimized neural networks encode information about the probe merely by encoding the cue, does any neural 
network that encodes the cue also encode information about the probe, and therefore have similar predictive 
information? In order to study this, we created 100 random neural networks and presented them with the same 
task. Although these neural networks were not able to perform the relational categorization task (Fig. S2B), they 
encoded similar amounts of total predictive information as the trained neural networks (Fig. 4A). Specifically, 
they encode the same amount of information about the probe during the cue stage (Fig.  4B). Furthermore, 
decomposing that information revealed that the information originated from the environmental stimulus and 
that the neural network dynamics had no role in its encoding of predictive information in both random and 
optimized neural networks (Fig. 4C). Thus, predictive information alone is not sufficient to distinguish neural 
networks optimized to perform specific tasks from random neural networks that are merely reflecting the infor-
mation provided by the environment.

Information decomposition distinguishes between random and optimized neural net-
works.  Unlike CPG and PP that were distinguished based on having different information sources, random 
and optimized neural networks in the relational categorization task have the same information sources. Even 
under this condition, decomposing the total information across sources and unrolling over time helps distin-
guish them by revealing differences in the magnitude of information transferred from each source over time. 
Specifically, predictive information sourced by the neural network during the delay stage is markedly differ-
ent between random and optimized neural networks. As discussed in the previous section, optimized neural 
networks preserve information about the cue (and hence predictive information about the probe) during the 
delay stage. In contrast, random neural networks tend to lose that information. As a consequence, the amount 
of unique information provided by the neural network at the end of the delay period is higher for the trained 
neural networks than for the random neural networks (Fig. 5A). This difference disappears when information is 
measured across time, and can only be observed by unrolling it over time.

Statistics of the environment influences magnitude of predictive information.  Encoding the 
cue results in encoding information about the probe in this task because of the relationship between them. How 
does changing this relationship impact predictive information in the neural networks? In order to study this, 
without changing the nature of the relational categorization task we merely changed the structure in the environ-
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Figure 4.   Comparison of predictive information sources in optimized and random neural networks. (A) 
Total predictive information estimated by averaging over the entire course of the task is similar in random and 
optimized neural networks. (B) Total predictive information about the probe averaged across the cue stage of 
the task, is the same in random and optimized neural networks. (C) Decomposition of that total predictive 
information showing that information about the probe in both random and optimized neural networks was 
from the environment (green), eventually becoming redundant as they both encoded the cue stimulus (pink). 
The neural network had no role to play in its encoding of predictive information about the probe during the cue 
stage (orange).

Figure 5.   Influence of neural network and environmental properties on predictive Information (A) Both 
random and optimized neural networks have similar levels of information about the probe at the beginning 
of the delay stage (light orange), but unlike optimized neural networks, random neural networks lose that 
information by the end of the delay stage (dark orange). (B) Total predictive information in the optimized 
neural networks about the probe during the cue stage showed a significant drop upon changing environmental 
statistics from 2 probes/cue to 9 probes/cue. (C) Drop in total information show in B can be attributed to the 
drop in information uniquely from the environment about the probe in the 9 probes/cue setting.
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ment. This was achieved by modifying the task such that the probe could be one of 9 possible values for a given 
cue, rather than one of two possible values (Fig. S4B). Reduction in uncertainty about the probe’s value given 
the cue is now much less compared to the original environmental structure (Fig. S4D,E). This will be reflected in 
the information that the cue can provide about the probe. However, this came at no cost to performance because 
the neural networks were still encoding the cue just as well. The same ensemble of optimized neural networks 
were able to perform this task successfully without any more training (Fig. S4E). Information dynamics was 
then measured using data recorded under this 9-probe condition. Measuring the total information in the neural 
network during the cue stage about the probe revealed that there was significantly less information in the neural 
network in 9 probes per cue condition (Fig. 5B). The reduction in total predictive information can be wholly 
attributed to the reduction in information about the probe (Fig. 5C). Thus, differences in environmental struc-
ture can result in significantly different amounts of predictive information encoded in neural networks without 
any behavioral differences.

Discussion
The study of predictive coding and its relevance to behavior has been studied from multiple perspectives in 
the literature: with regards to the source of information, predictive information can be generated by the neural 
network5,6 and predictive information can be provided by the environment7,22. In this work, using computational 
models where the ground-truth about the source of information was known, we demonstrate that predictive 
information can originate from either the environment or the neural network or both, and that the source of 
information can dynamically change during the course of a behavior. In order to do this, we first presented a 
theoretical framework based on multivariate information theory that allows us to infer the source of predictive 
information and its dynamics. This involved decomposing the total information that neural networks encode 
about a future stimulus into information transferred uniquely from the neural network, uniquely from the envi-
ronment and redundantly from both sources. We validated this framework using the CPG and PP models where 
information is known to originate from the neural network and the environment respectively. Second, using 
the more structured relational categorization task, we demonstrated that (a) amount of predictive information 
encoded in a neural network is not indicative of its performance; (b) the source of information about a future 
stimulus can change during the course of the task; and (c) the source of information about a future stimulus can 
change within the same task depending on the regularities of the environment. Thus, predictive information 
might be necessary but is not sufficient to explain the neural basis of a behavior. Decomposing information across 
sources and studying its dynamics over time takes us one step further in understanding the role of predictive 
information in a behavior.

Although there are other methods of measuring the amount of information transferred from a source to a 
target, information transfer measured according to our approach captures crucial aspects relevant to predic-
tive coding that others do not. Two widely-used alternative approaches are input-corrected Active Information 
Storage48 and Transfer Entropy49. Input-corrected Active Information Storage measures the information from the 
past of one source that is actively in use by the target for the current time-step. In order to apply this framework 
to identifying the source of predictive information, one can measure mutual information about the target vari-
able, Y, in the current neural activity, X, conditioned on one source, say A, namely I(Y; X|A). This assumes that 
any information in X that does not come from A must have come from B. Alternatively, one can find I(A; Y|B), 
which measures the information in A about Y conditioned on the other source B. This measure, however, does 
not capture the information in current neural activity, X which is the information quantity we are interested in. 
In other words, this latter conditional mutual information measure assumes perfect transfer of all information 
from A to X. The difference between this approach and ours is that essentially these approaches consider the 
three variable decomposition whereas we consider the four variable decomposition. While this approach can 
be expanded to include other variables, it requires that we know all the other factors, our approach explicitly by 
only decomposing the information in X, about Y, that came from the sources A, B. Another relevant measure 
is Transfer Entropy (TE) which allows us to measure the information transferred from the past environmental 
state, B, to the current neural network state, X. Similarly, from past neural network state, A, to the current neural 
network state, X. However, conventional TE measures information in each source about the target, and not infor-
mation in the target about the variable of interest, Y. There exists multivariate extensions to TE50 that allow us to 
measure polyadic interactions between multiple sources. The equivalence between dyadic TE and three variable 
PID has been shown in Williams and Beer, 201135. For the four variable case as shown in this work, multivariate 
extensions to TE potentially can be shown to be equivalent, an interesting research direction that could unite 
the different methodologies. Further, TE is also often estimated at several delays beyond just the previous time 
step51,52. Similarly, in the future, our proposed approach could be evaluated at different delays for conditions 
when there is a delay in the interaction between environment and neural network. In this work, we have already 
utilized different delays by evaluating information in the current neural activity about an environmental state 
further in the future rather than the next time step.

The framework presented here for inferring the source of predictive information takes us beyond general 
correlations that information theoretic measures are known to measure by capturing the effects of perturbation 
on the neural system. Identifying the sources of predictive information requires that the system under study be 
perturbed. The presentation, removal or sudden change of a stimulus is a perturbation. This causes the system to 
break the redundant encoding observed in a steady-state. It is during such a perturbation that we can use partial 
information decomposition to determine the source of information in a coupled system. Note that, like any 
other information theoretic measure, the use of PID alone does not automatically guarantee inference of causal 
effect31,34,53,54. It is through the combination of information decomposition, time-unrolling and perturbation 
that we are able to infer the directed causal influences in the models we have analyzed. However, in the strictest 
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sense, inferring causal relationships require that the system is studied beyond perturbations involving changes 
in the stimuli, but through selective manipulation of one variable at a time55. While, our information theoretic 
analyses and causality coincide in the models we have analyzed, it cannot be assumed in the general case.

The framework presented here can be applied to experimental data across multiple scales. In fact, it can be 
applied to any time-series data spanning multiple trials corresponding to several perturbations from the steady 
state. However, in this work, we focus on open-loop systems. Specifically, we focus on agent-environment sys-
tems where the agent influences its environment or where the agent is influenced by the environment. Such an 
open-loop setup is typical in experiments in neuroscience, where the subject receives a stimulus, but does not 
have the ability to influence the future stimulus through their state or actions. In natural behavior, the agent and 
environment are in closed-loop interaction. The analysis of closed-loop systems introduces an added complex-
ity. The regularities of the environment can be generated by the regularities of the neural network’s dynamics 
and vice-versa. As a result, the distribution of environmental stimuli and the distribution of the neural activity 
are dependent on each other, unlike the open-loop setup where one of them is independent of the other. As it 
is, the framework requires that one of the distributions be fixed across time in order to make fair comparisons 
of information at different time-points. Future work in this direction will involve extending the framework and 
designing the experimental setting that would allow us to infer the source of predictive information in a freely 
moving animal.

Methods
In the agent-environment models used throughout this paper, the agents were modeled using dynamical recur-
rent neural networks. The parameters of the neural network were optimized using an evolutionary algorithm 
such that it was able perform the required task. In this section, we specify implementation details about the 
neural network model, the tasks, and the optimization algorithm.

Neural network model.  A Continuous-Time Recurrent Neural Network (CTRNN) was used as the model 
neural network16,17. The neural network consisted of three layers: the input layer which was connected by a set 
of feed-forward weights to the interneuron layer; the interneuron layer was a CTRNN which fed into the output 
layer; the output layer produced the output of the neural network which was given by a weighted combination 
of the interneurons’ output. The dynamics of each interneuron was governed based on state equations given by

where yi refers to the internal state of neuron i; τi , the time-constant; wij , the strength of connection from neuron 
j to neuron i; oj , the output of the neuron; I, the input and win

i  , the weight from the input to the neuron. Based 
on the state of the neuron its output is given by Eq. (4), where σ() refers to the sigmoid activation function 
given by σ(x) = 1/(1+ e−x) , and θj refers to the bias of neuron j. The output of the network at any time t, O(t), 
is estimated as a weighted sum of the outputs of each neuron (weights given by wo

i  ), passed through a sigmoid 
function and scaled to be in the range [−1, 1].

All neural networks described in this paper were made up of N = 3 neurons. The tunable parameters of such 
a model include the weights between the neurons ( wij ), the input weights ( win

i  ), the output weights ( wo
i  ), time-

constants ( τi ) and biases ( θi j ) of each neuron. The model was simulated using Euler integration with a step-size 
of 0.02.

CPG task.  The neural network model described above is capable of intrinsically producing oscillations. To 
create Central Pattern Generators (CPGs), neural networks were optimized to produce oscillations from a range 
of initial conditions. The neural network was started at 100 different initial conditions by systematically setting 
the neuron outputs in the range [0, 1]. For each condition, the neural activity was recorded for 10 simulation 
seconds. The ability to generate oscillations was assessed by measuring the absolute difference in each neuron’s 
as well as the neural network’s output in consecutive time-steps across all time-points in a trial, and then across 
trials. The neural network’s output was fed to an environment governed by

where s refers to the state of the environment, τ refers to its time-constant which was set to 0.5, and O refers to 
the output of the neural network given by Eq. (5).

Relational categorization task.  We adapted the relational categorization task to provide neural networks 
with structured stimuli18,19,46. This task involves first providing the neural network with a cue stimulus in the 
range [3, 11] for 5 units of time. This is followed by a delay period when no stimulus is provided for 10 units of 

(3)τi
dyi

dt
= − yi +

N
∑

j=1

wijoj + win
i I

(4)oj = σ(yj + θj)

(5)O(t) = 2 ∗ σ

(

N
∑

i=1

wo
i oi(t)

)

− 1

(6)τ
ds

dt
= −s + O
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time. Finally, a probe stimulus that is of magnitude greater or less than the cue is provided for 5 units of time. 
The goal of the task is for the neural network to distinguish probes that were larger than the cue or smaller than 
the cue, by producing an output of +1 or −1 respectively. In the first version of this task, the probe can take one 
of only two values, either cue + 1 or cue − 1 . In the second version of the task, the probe can take any value in 
[3, 11]. While the goal of the task remains the same in both versions, the distribution of the probes given the cue, 
and therefore information that the cue gives about the probe is significantly different (Fig. S4). Performance of 
a neural network in this task was estimated by measuring absolute deviation of the network’s output from the 
desired output of +1 or −1 during the probe stage. Time-averaged deviation was also averaged across all trials of 
cue-probe values, to obtain a score in the range [0, 1].

Neural network optimization.  Neural network models described previously were optimized to perform 
the relational categorization task using an evolutionary algorithm56,57. This optimization methodology involves 
instantiating a population of 100 random solutions that evolves over several generations to produce solutions 
capable of performing the task. A generation is defined as the process of creating a new population of solutions 
that has improved in “fitness” (task performance) from the last. Each solution, referred to as a genotype, is an 
N dimensional vector corresponding to the parameters to be optimized. The parameters were encoded to be in 
the range [0, 1] and scaled to produce the neural network that the genotype encoded. In each generation, the fit-
ness of every genotype is evaluated and a new population is created using a fitness-based selection and mutation 
strategy as follows: The genotypes that perform in the top 1% were retained as is for the next generation. The rest 
of the individuals were created by selecting two genotypes preferentially in proportion to their fitness and com-
bining them. To these offspring, Gaussian mutation noise with mean 0 and standard deviation 0.01 was added 
before being added to the population of genotypes for the next generation. After a fixed number of generations, 
the best individual in the population was selected as the representative solution from that optimization run. 100 
such runs were conducted to obtain an ensemble of 100 neural network models that successfully performed each 
task. For the relational categorization task, optimization was carried out for 500 generations. In the case of the 
CPG task, at the end of 50 generations the optimization process was terminated and deemed successful if the 
best agent in the population reached a fitness of 30 or greater. This was repeated until 100 CPGs were produced. 
See supporting information (Figs. S1 and  S2) for training curves, behavior of best optimized neural network, 
distribution of fitness of best models from 100 runs, and sample neural traces.

Random neural networks.  Matched random neural networks were created for the relational categoriza-
tion task by shuffling the parameters of the optimized neural networks. All parameter groups, namely time-con-
stants, input weights, recurrent weights, output weights, and biases were randomly shuffled within themselves 
rather than across groups. Thus, the ranges of parameters were preserved in each group but their associations 
with neurons were randomly shuffled.

Measuring information transfer.  To identify the source of information over time, information transfer 
measures were estimated independently at each time point. For any given time step, data for environmental 
stimulus at the previous time step, neural activity of previous time step, current neural activity, and stimulus 
at a future time step, was collected across multiple trials. Probability densities were estimated from this data 
using a kernel density estimation technique known as average shifted-histograms58 with 7 shifted binnings of 
100 bins along each dimension of the data space. These probability density estimates were then used to measure 
the redundant information terms in Eq. (2). Similar results were observed with 5 and 11 shifts and with 50 and 
200 bins per dimension (Fig. S6). All information theoretic quantities were estimated from raw data using the 
infotheory package59.
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