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Viruses are able to interfere with the immune system by docking to receptors on host cells 
that are important for proper functioning of the immune system. A well-known example 
is the human immunodeficiency virus that uses CD4 cell surface molecules to enter host 
lymphocytes and thereby deleteriously destroying the helper cell population of the immune 
system. A more complicated mechanism is seen in multiple sclerosis (MS) where human 
herpes virus-6A (HHV-6A) infects astrocytes by docking to the CD46 surface receptor. 
Such HHV-6A infection in the brain of MS patients has recently been postulated to enable 
Epstein–Barr virus (EBV) to transform latently infected B-lymphocytes in brain lesions 
leading to the well-known phenomenon of oligoclonal immunoglobulin production that is 
widely used in the diagnosis of MS. The cellular immune response to HHV-6A and EBV is 
one part of the pathogenic mechanisms in MS. A more subtle pathogenic mechanism can 
be seen in the downregulation of CD46 on astrocytes by the infecting HHV-6A. Since CD46 
is central in regulating the complement system, a lack of CD46 can lead to hyperactivation 
of the complement system. In fact, activation of the complement system in brain lesions 
is a well-known pathogenic mechanism in MS. In this review, it is postulated that a similar 
mechanism is central in the development of age-related macular degeneration (AMD). 
One of the earliest changes in the retina of AMD patients is the loss of CD46 expression in 
the retinal pigment epithelial (RPE) cells in the course of geographic atrophy. Furthermore, 
CD46 deficient mice spontaneously develop dry-type AMD-like changes in their retina.  
It is also well known that certain genetic polymorphisms in the complement-inhibiting 
pathways correlate with higher risks of AMD development. The tenet is that HHV-6A infec-
tion of the retina leads to downregulation of CD46 and consequently to hyperactivation of 
the complement system in the eyes of susceptible individuals.

Keywords: human herpes virus-6a, age-related macular degeneration, Cd46, complement system proteins, 
autophagy, parainflammation, inflammaging

introdUCtion

Many microorganisms use a survival strategy based on their interference with the immune 
system of their hosts. One way to do so is to acquire immune regulatory proteins from the host 
that subsequently protect them from immune-mediated attacks by the host. Examples are human 
immunodeficiency virus (HIV) (1) and cytomegalovirus (2) that both incorporate host cell-derived 
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complement control proteins like CD55 and CD59 to protect 
themselves against complement attacks by the host. Similarly, 
certain Borrelia burgdorferi strains arm themselves with the 
complement regulatory proteins FHL-1/reconectin and Factor 
H by using complement regulators acquiring surface proteins 
(3). Another strategy is to use cell surface receptors of host 
immune cells for infection and thereby directly interfering with 
immune functions. A well-known example is HIV that infects 
host T-helper cells using the CD4 receptor (4, 5).

Other pathogenic effects can be seen when viruses infect 
host cells and thereby change the cell functions without killing 
the cells in the process. In multiple sclerosis (MS), e.g., human 
herpes virus-6A (HHV-6A) infects astrocytes in the brain by 
docking to the CD46 molecules (6–11). One effect of such 
HHV-6A infection in MS patients has recently been postulated 
to interfere with Epstein–Barr virus (EBV) in latently infected 
B-cells in brain lesions (12). Consequently, B-cells would be 
transformed by EBV and produce clonal immunoglobulins that 
are common in MS patients and are used as diagnostic mark-
ers in the cerebrospinal fluid. In addition, cellular immune 
responses to HHV-6A and EBV would induce and sustain the 
inflammatory lesions in MS brains. Furthermore, the infection 
of astrocytes with HHV-6A also leads to downregulation of 
the receptor CD46 that was used for entering the cell (8). Since 
CD46 is important in limiting the activity of the complement 
system, the downregulation of CD46 leads to hyperactivity 
of complement (13). In recent years, it has become clear that 
complement activity in the brain itself is an important factor in 
the pathogenesis of MS (14).

Based on these observations, it is postulated here that similar 
HHV-6A/CD46/complement interactions are central in the 
development of age-related macular degeneration (AMD). In 
this article, pathogenic mechanisms in AMD as they are known 
today are summarized and then a link to HHV-6A via CD46 is 
proposed. Finally, the relation of AMD to MS and other diseases 
where HHV-6A infection plays a pathogenic role is explored.

HypotHesis

Age-related macular degeneration, a degenerative disease of 
the retina, is the leading cause of irreversible central blindness 
in elderly people [for review, see Ref. (15)]. Although many 
risk factors are known [for review, see Ref. (16)], the etiology of 
AMD remains elusive. Based on known pathogenic mechanisms 
described below, it is proposed that HHV-6A is an etiologic agent 
for AMD.

inflammation/parainflammation/
inflammaging
Inflammation plays an important role in the pathogenesis of  
AMD [for review, see Ref. (17–20)]; however, the exact inflam-
matory mechanisms involved remain unclear. Individuals with 
elevated C-reactive protein, a general systemic marker for 
inflammation, carry a higher risk of developing AMD (21). 
Locally in the retina, proinflammatory macrophages (M1) are 
enriched at the expense of scavenging and anti-inflammatory 

M2 macrophages (22). A chronic low-grade inflammation, called 
parainflammation, is generally considered a beneficial response 
to chronic insults also in AMD (23). A chronic, parainflamma-
tion characteristic for aging is called inflammaging [for review, 
see Ref. (24)]. Similar to age-related diseases in other organs, 
inflammaging is supposed to manifest itself also in AMD (25, 26).

Complement and Cd46
A central role in the inflammatory pathogenesis of AMD is 
accredited to the regulation of the complement system [for 
review, see Ref. (27, 28)]. The strong genetic risk conferred by 
a polymorphism of complement factor H (29–33), but also 
polymorphisms of ARMS2/HTRA1 (34) support this notion.  
At present, the function of the ARMS2 protein and the bio-
logical consequences of the polymorphism are not completely 
unraveled, but it has recently been found that ARMS2 functions 
as surface complement regulator and that ARMS2 is involved in 
complement-mediated clearance of cellular debris (35).

The spectrum of complement activation in the retina of AMD 
patients ranges from beneficial to detrimental. Therefore, com-
plement regulation plays a key role in the pathogenesis of AMD. 
Membrane cofactor protein (MCP, CD46) is a well-known regula-
tory membrane protein that guards cells from complement attack 
[for review, see Ref. (36)]. CD46 acts as a cofactor for complement 
factor I, which protects autologous cells against complement-
mediated injury by cleaving C3b and C4b deposited on the cells 
surface. An intergenic single-nucleotide polymorphism just 3′ of 
complement factor I on chromosome 4 is indeed associated with 
risk of advanced AMD (37).

The importance of the complement regulatory CD46 is dem-
onstrated by the finding that retinal pigment epithelial (RPE) 
cells lose their CD46 expression very early in the development 
of geographic atrophy even before any morphological change of 
RPE (38). The loss of CD46 makes the RPE vulnerable to comple-
ment. Furthermore, an additional role of CD46 in RPE seems to 
lay in the adhesion of the RPE to its basement membrane and 
Bruch’s membrane, thereby safeguarding its integrity (39). The 
key pathogenic role of CD46 loss in AMD is also demonstrated by 
an experimental animal model in which Cd46−/− knockout mice 
develop a dry-type AMD-like phenotype (40).

autophagy and Cd46
Autophagy is a hot topic in AMD research (41) and it is likely to 
play an important role in the pathogenesis of AMD as a highly 
regulated clearance and recycling mechanism of cytoplasmic 
contents [for review, see Ref. (42, 43)]. Transforming growth 
factor β activated kinase 1 (TAK1), a key player in the regula-
tion of autophagy, maintains the normal function of RPE cells  
(44, 45). Recently, it was discovered that autophagy is triggered, 
when pathogens are bound to CD46 (46). This may be a cellular 
adaptation to infection via CD46.

Chemokines and Chemokine receptors
Associations of polymorphisms in the gene of chemokine 
(C-X3-C motif) receptor 1 (CX3CR1) with AMD susceptibility 
have been reported in several studies (47–49). The CX3CR1 
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taBLe 1 | Association of human herpes virus-6A (HHV-6A) and age-related macular degeneration (AMD) with AIDS, Hashimoto’s thyroiditis (HT), and  
multiple sclerosis (MS).

disease association with HHV-6a association with aMd

AIDS HIV-1 infection is epidemiologically associated with HHV-6A infection  
(63, 64). Particularly, HHV-6 is found in demyelinating lesions in AIDS patients 
with cerebral involvement (65) and HIV-1 and HHV-6 antigens and transcripts 
are found in the retina of patients with AIDS (66)

Persons with AIDS appear to have an approximately 4-fold increased 
prevalence of intermediate-stage AMD when compared to a similarly aged 
human immunodeficiency virus (HIV)-uninfected population (67)

HT The most frequent cause of hypothyroidism is HT. In a study examining thyroid 
fine needle aspirates (FNA) and peripheral blood mononuclear cells, HHV-6 
DNA prevalence was much higher in HT (82%) than in controls (10%). and viral 
load was significantly increased in FNA from HT patients, and thyrocytes from 
HT FNA displayed a 100-fold higher HHV-6 DNA load compared to infiltrating 
lymphocytes (68). Variant analysis performed in 10 HT samples showed that all 
samples harbored HHV-6A. In vitro infection of thyrocytes with HHV-6A induces 
modulation of miRNAs considered markers of autoimmune thyroid disease 
in vivo. These alterations were not seen thyrocytes infected with HHV-6B or 
HHV-7 (69)

The association of AMD with thyroid function is somewhat controversial.  
In a study with 356 people with AMD 21% reported to have 
hypothyroidism compared to 11% of those 9,321 without AMD giving an 
odds ratio of 2.33 (70). On the other side, in a prospective population-
based cohort study with 5,573 participants of age ≥55 years, higher free 
thyroxine (FT4) values were associated with a higher risk of AMD, odds 
ratio albeit being very small (1.35 for the highest quartile of FT4 levels) (71). 
However, participants with AMD at baseline (N = 567) were excluded from 
the study. Interestingly, another study found that thyroxine substitution, 
which can be considered a surrogate marker for hypothyroidism, also 
correlated with AMD (72).
In a smaller study with 114 patients, an association of AMD with not further 
specified thyroidopathy was found (73).

MS There is abundant evidence that HHV-6A has an etiopathologic role in MS 
[for review, see Ref. (74)]. HHV-6A infects astrocytes via the CD46, thereby 
interfering with complement regulation (13, 14), in much the same way as is 
proposed here for RPE cells. Furthermore, it has recently been postulated 
that HHV-6A also interacts with Epstein–Barr virus in the CNS of MS patients 
leading to B-cell transformation and production of oligoclonal immunoglobulins 
that are typical for MS (12)

Although there are no epidemiologic studies directly examining a possible 
association between MS and AMD, ocular pathology has been studied in 
MS patients (75). MS cases with variable clinical severity demonstrated 
evidence of retinal atrophy and prominent inflammation
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polymorphisms result in decreased affinity for its ligand 
(CX3CL1,  fractalkine), which in turn negatively affects micro-
glial and macrophage migration (50). A chemotactic cytokine, 
RANTES or CCL5, produced by RPE cells also seems to regulate 
inflammatory cell migration (51).

HHV-6a: regulating Complement, 
autophagy, and Chemokines
Human herpes virus-6A uses the membrane protein CD46 as 
a receptor to enter cells (8, 52, 53). Such infection is followed 
by downregulation of CD46. Other viruses, like measles virus 
(CD46), HIV (CD4), and EBV (CD21), also follow similar strate-
gies of receptor downregulation after infection (54). The CD46 
downregulation by HHV-6A may functionally impair the protec-
tive effect of CD46 against the activation of autologous comple-
ment and the consequent cellular damage as shown in vitro using 
measles virus (55). In this way, HHV-6A would interfere with key 
pathogenic complement mechanisms in AMD when RPE cells 
are infected via CD46.

HHV-6 infection can also impair Toll-like receptor signaling 
by reducing TAK1 activity as shown in infected dendritic cells 
(56). When RPE cells are infected with HHV-6A, the essential role 
of TAK1 for maintaining normal function of RPE cells through 
regulation of autophagy would be impaired (44, 45).

HHV-6 expresses its own chemokine receptors encoded by the 
U12, and U51 genes. The open reading frame U12 functionally 
encodes a calcium-mobilizing receptor for the β-chemokines 
RANTES, MIP-1α and -1β, and MCP-1 (57, 58), thereby poten-
tially interfering with RANTES regulation of inflammatory cell 
migration (51). In epithelial cells already secreting RANTES, U51 

expression results in specific transcriptional downregulation of 
the cytokine (59).

Altogether, HHV-6A, infecting RPE cells via CD46, would 
have the potential to interfere on several levels with the parain-
flammatory mechanisms central to AMD pathogenesis.

association of aMd with HHV-6a-related 
diseases
If HHV-6A has an etiologic role in the development of AMD, 
as hypothesized here, a higher prevalence of AMD would be 
expected in other diseases where HHV-6A infection is observed. 
In contrast to HHV-6B, which is the infectious agent of roseola in 
childhood, no definite clinical picture of acute HHV-6A infection 
could be established so far (60–62). On the other hand, HHV-6A 
infection has been associated with several chronic diseases like 
AIDS, Hashimoto’s thyroiditis, and MS and their epidemiological 
association is summarized in Table 1.

ConCLUsion

Despite the fact that more and more molecular and genetic 
mechanisms involved in the pathogenesis of AMD are known 
today (76–79), the etiologic trigger of the disease has not been 
identified so far. Center stage is taken by the CD46 on RPE cells 
with its regulatory role in complement activation, autophagy, 
and the chemokine/cytokine network. Since CD46 is also the 
sole cellular receptor for HHV-6A, one is tempted to speculate 
that HHV-6A might be the trigger for AMD. Supporting evidence 
comes from the potential of HHV-6A to interfere with inflam-
matory mechanisms (62, 80). Indirect evidence comes from 
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epidemiological studies that link HHV-6A-related diseases with 
AMD (Table 1).

In order to substantiate the hypothesis, several approaches are 
possible:

• Looking for HHV-6A DNA, viral proteins, and HHV-6A-
encoded miRNA in pathology samples of AMD.

• Studying experimental infection of RPE cells with HHV-6A 
in vitro.

• Further epidemiological studies evaluating HHV-6A infection 
and AMD.
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