
Gold(I)-Catalyzed 1,6-Enyne Single-Cleavage Rearrangements: The
Complete Picture
Eduardo García-Padilla, Feliu Maseras,* and Antonio M. Echavarren*

Cite This: ACS Org. Inorg. Au 2023, 3, 312−320 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We identify the factors that rule the selectivity in
single-cleavage skeletal rearrangements promoted by gold(I)
catalysts. We find that stereoconvergence is enabled by a rotational
equilibrium when electron-rich substituents are used. The
anomalous Z-selective skeletal rearrangement is found to be due
to electronic factors, whereas endo-selectivity depends on both
steric and electronic factors.
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■ INTRODUCTION
Due to its high affinity for alkynes, gold(I) complexes have been
extensively studied in the cycloisomerization of alkyne-
containing substrates.1−5 Among these cycloisomerizations,
gold(I)-catalyzed skeletal rearrangements of 1,n-enynes cleave
at least one of the carbon−carbon bonds and lead to structural
diversity.6,7 In principle, both exocyclic or endocyclic single-
cleavage and double-cleavage rearrangements can occur, leading
to a variety of distinct potential diene products for a given
substrate.8,9 In the case of 1,6-enynes, the initial η2-alkyne
gold(I) complex 1 can form bicyclic gold(I) carbene 2, which
can undergo a single-cleavage rearrangement to form exo-type
1,3-diene 3 and/or endo-type 1,3-diene 4 (Scheme 1a).7−13

Alternatively, a double-cleavage rearrangement of 2 can lead to
new gold(I) carbene intermediate 5 by formal insertion of the
terminal carbon of the alkene into the alkyne triple bond
(Scheme 1). Gold(I) carbene 5 can undergo α-proton
elimination to give rise to 1,3-dienes of type 6.
The exo-type versus endo-type single-cleavage rearrangement

leading to products 3 or 4 depends on the substitution of the
double bond of 1,6-enynes, as well as on the nature of the tether.
Thus, for example, 1,6-enynes 7a and 7b give rise to exo-type
products 8a and 8b, whereas 7c preferentially affords six-
membered ring endo-type product 9.8,9,13

Prior to the discovery that gold(I) complexes were highly
active and selective for the skeletal rearrangement of 1,6-
enynes,8,9 complexes of ruthenium(II),14 platinum(II)15−17

platinum(IV),18 rhodium(II),19 iridium(I),20 as well as Lewis
acids GaCl3

21 and InCl3,
22−24 were studied. While most

substrates undergo these transformations preferentially, seem-
ingly minor changes in the substrate, catalyst, or solvent have
important effects on the selectivity.8,25−29

In general, metal-catalyzed rearrangement of 1,6-enynes
proceeding by single-cleavage is stereospecific. (Scheme 2a).14

The stereospecific rearrangements of E- and Z-7d into E- and Z-
8d, respectively, promoted by GaCl3

21 and the gold(I)-catalyzed
conversions of E-7e into E-8e and Z-7f into Z-8f8,9 illustrate this
general trend (Scheme 1a). However, in an early example
catalyzed by ruthenium(II), both E- and Z-configured 7e gave
the most stable E-isomer of 8e.14 Similar formation of the E-
isomer from both E- and Z-configured 1,6-enynes was observed
in the rhodium(II)-catalyzed19 transformation.
We observed a more surprising exception in the gold(I)-

catalyzed skeletal rearrangement of some 1,6-enynes that were
found to form the less stableZ-isomers (Scheme 2b).30 Thus, for
example, 1,6-enynes E-7g and E-7h with electron-donating
substituents at the alkene (cyclopropyl and p-MeOC6H4)
underwent a selective skeletal rearrangement to give thermody-
namically less favorable products Z-8g and Z-8h. The
rearrangement of the Z-configured 1,6-enynes also afforded Z-
configured products, in a stereoconvergent manner. It is
interesting to note, that, in contrast, the iridium(I)-catalyzed
rearrangement of the diethyl malonate analogue of E-7g
provides exclusively the E-configured 1,3-diene.20

In this study, we investigate the factors that contribute to the
anomalous Z-selective skeletal rearrangement using computa-
tional methods to gain insights into the underlying mechanisms.
In addition, we explore the steric and electronic effects on the
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Scheme 1. (a) Single versus Double Skeletal Rearrangement of 1,6-Enynes. (b) Tether Dependence on exo- and endo-Selectivity

Scheme 2. (a) Examples of E-Selective or Stereospecific Single-Cleavage Skeletal Rearrangement and (b) Abnormal Z-Selective
Single-Cleavage Skeletal Rearrangement
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exo-type or endo-type single-cleavage rearrangement and
whether the latter endo-type could also lead to products in a
stereoconvergent manner.

■ RESULTS AND DISCUSSION
As the N-sulfonamide tether was known to increase selectivity
for the endo-cleavage product in gold(I)-catalyzed skeletal
rearrangements of 1,6-enynes,8,9 substrate E-7jwith an electron-
rich alkene and the N-sulfonamide tether was synthesized
(Scheme 3a). The reaction of E-7j with commercially available
[JohnPhosAu(MeCN)]SbF6 (A) led to Z-8 as the major
product, along with small amounts of endo-type product 9j.
On the other hand, whereas cinnamyl propargyl ether (E-7k) led
to small amounts of E-8k together with endo-type 9k as the
major product (Scheme 3b), both E-7l and E-7m with more
electron-rich p- and o-methoxyphenyl groups, afforded Z-8l and
Z-8m, together with endo-type products 9l and 9m, respectively
(Scheme 3c,d). 1,6-Enyne E-7n, with a trisubstituted alkene,
gave endo-type 9n and tricyclic derivative 10, which is
presumably formed in the Nazarov-type cyclization of 9n
(Scheme 3e).

We also synthesized two 1,6-enynes Z-7a-d3 and Z-7c-d3
bearing Me and CD3 at the terminal carbon of the alkene as well
as different tethers to confirm the stereospecificity of the
gold(I)-catalyzed single-cleavage rearrangements (Scheme 3d).
Thus, Z-7a-d3 reacted in the presence of catalyst A to give exo-
type Z-8a-d3 in quantitative yield, and endo-type Z-7c-d3 gave
9a-d3 in 94% yield. Although the two different types of single-
cleavage rearrangements were observed depending on the
tether, both reactions took place with full retention of the
configuration at the alkene.
With the aim of explaining all these observations, we carried

out density functional theory (DFT) calculations. The B3LYP-
D3 functional was used with implicit dichloromethane
solvation.31 Unless otherwise specified, trimethylphosphine
gold(I) was used as a model for the catalyst in most of the
computational work, as Buchwald phosphines, triaryl phos-
phites, and NHC ligands all showed similar behavior
experimentally.30

The mechanism for the exo-single-cleavage rearrangement
was explored first (Scheme 4). 1,6-Enynes E-7h and Z-7h with a
strongly electron-donating p-methoxyphenyl group at the alkene

Scheme 3. (a−f) Gold(I)-Catalyzed 1,6-Enyne Single-Cleavage Skeletal Rearrangements
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were chosen as the substrates, and their corresponding gold(I)
complexes E-A1 and Z-A1 were the reference points in the
reaction coordinate (Scheme 4). The exo-cyclization of E-A1
and Z-A1 give cyclopropyl gold(I) carbenes E-A2 and Z-A2,
respectively, through transition states TSE-A2 and TSZ-A2.
Although E-A2 is significantly more stable than Z-A2, its
rearrangement to give E-A3 proceeds through TSE-A3, which is
3.9 kcal/mol higher than TSZ-A3, leading to Z-A3. The direct
E/Z isomerization of the alkene is not feasible, but E-A2 and Z-
A2 are in equilibrium through accessible transition stateTSArot
(9.1 kcal/mol), which has lower energy than TSE-A3 and TSZ-
A3 (18.6 and 14.7 kcal/mol, respectively). Therefore, the most
favorable pathway from either E-A1 or Z-A1 takes place via Z-
A2 and TSZ-A3 to finally give rise to Z-A1, in agreement with
the experimental results (Scheme 2b).30

The rearrangement through TSZ-A3 (or TSE-A3) is a
concerted 1,3-migration of the ArCH fragment across an allyl π
system (Figure 1). This single-cleavage skeletal rearrangement

can therefore be described as a suprafacial 1,3-sigmatropic shift
of an sp2 carbon. The distances between the migrating carbene
ArCH fragment and the allyl cation carbons (all 1.70−1.71 Å)
suggest significant backdonation into the π system. Bicyclobu-
tonium cations are in fact known in the context of non-classical
carbocationic species.32 However, in this case, the bicyclobuto-
nium form would correspond to a transition state and not as a
minimum in the reaction coordinate.
Alternative mechanisms to that presented in Scheme 4 could

be envisaged, but we found them to be non-competitive.31 A
possibility would be the involvement of cyclobutene inter-
mediates and subsequent gold(I)-catalyzed ring opening.10,33

While some [4,5]-fused cyclobutenes are known in cyclo-
isomerizations,34−36 the reaction coordinate for their formation
would be very similar to that of the single cleavage. This leads to
the presence of a substrate-dependent bifurcation.33 In this case,
there is no transition state connecting gold(I) α-cyclopropyl
carbene E-A2 to bicyclo[3.2.0]heptane A4 (Scheme 5). A retro-
scan from fused cyclobutene A4 to the starting material only
gave A5 (Scheme 5), which is not formed from E-A1 (Scheme
4). Therefore, the involvement of bicyclo[3.2.0]heptenes is
discarded for the studied terminal 1,6-enynes. Due to the partial
double bond nature of the C1−C2 bond in E-A2, the barrier to

Scheme 4. Mechanism of the Gold(I)-Catalyzed Z-Selective exo-Single-Cleavage Skeletal Rearrangement of E-7h and Z-7ha

aFree energy in kcal/mol.

Figure 1.Model for the 1,3-sigmatropic shift in the transition state as a
formal cyclobutonium cation. Cleavage of the single bond results in a
carbene migrating across an allyl cation.

Scheme 5. Formation of Bicyclo[3.2.0]heptenes is Not
Feasible from These Substrates
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formation of the cyclobutene would be comparable to that of
rotation around the double bond.37

For alkenes with strongly electron-donating substituents, this
barrier through transition states similar to TSArot between the
E- and Z-cyclopropyl gold(I) carbenes, such as E-A2 and Z-A2
in Scheme 4, is significantly lower than the rearrangement
transition states. The phenyl and p-chlorophenyl analogue
substrates were calculated to probe the influence of the
electronics on the stereoselectivity. The experimentally
observed fall in Z-selectivity for less electron-rich substrates
could arise either from the inversion in energy barriers, favoring
the E-product instead, or from a sufficient increase in energy in
the torsional barriers such that the system is no longer under
equilibrium conditions and becomes stereospecific. This is in
line with the experimental results of Z-7a-d3, which forms the
product stereospecifically, whereas any interconverting pathway
would show isomerization to a 1:1 ratio. While the full
mechanisms were calculated with trimethylphosphine, a model
of the E-migration and rotation was calculated with JohnPhos
while freezing the structure of the atoms in the substrate.31 The
results predict the shift from stereospecific to Z-stereo-
convergent reactions (Scheme 6).
The relative barriers of the Z- and E-migration TS are 2.5 kcal

mol−1 in the case of cinnamyl (R = Ph) and even higher for p-Cl
(ΔΔG‡ = 4.1 kcal mol−1) and p-MeO (ΔΔG‡ = 3.9 kcal mol−1)
substrates. The calculation of the torsional energy barriers
showed that these were greatly affected by the electronics on the
ring. Less electron-donating substituents on the alkene would
lead to stereospecific transformations.
As our calculations fully reproduce the experimental behavior,

we then sought to explain the reasons for the selectivity. The
barrier to rotation is defined by the α-cyclopropyl carbene
character of the intermediate in which the presence of electron-
rich stabilizing groups such as aryl or cyclopropyl groups lowers
the barrier to a greater extent than electron-poor aryl or methyl
groups.
The explanation for the electronic stabilization of the Z-

transition state is not trivial, as the delocalization of the aromatic

ring electron density into the migrating carbon empty orbital
should not be greatly affected by the configuration. Resorting to
the bicyclobutonium complexmodel, the selectivity may then be
reformulated as “the Z-configuration favors η3 coordination of
the allyl fragment”.
NBO analysis was performed on the optimized Z and E

transition state geometries on the smaller model molecule. The
NBO second-order perturbation analysis shows that in Z-TS
(TSZ-E3), there is much more delocalization of the formal C1−
C7 and C6−C7 σ bond NBOs to the C2 empty orbital,
accounting for a stabilization of 64 kcal mol−1 of the
bicyclobutonium structure (Figure 2). Moreover, there are
several weaker stabilizing interactions that account for a small
further increase in cis stabilization.31

The charges of the Me3PAu (E and Z = +1.13) and
benzylidene fragments (E = +0.17, Z = +0.18) are very similar
in both transition states. For this reason, the preference for the
Z-migration cannot arise from a change in the localization of
benzylic charge, as both isomers would be too similar in this
respect.
However, the resonance onto the allyl system is very different

according to the second-order perturbation analysis. This
corresponds to the stabilization of the η3-like allyl−carbene
system for Z-TS relative to that of E-TS. This result, in turn,
arises from the better overlap in aromatic π → σ* donation,

Scheme 6. Model Showing Competition between Internal Rotation and exo-Migration of Different Enynes Using [JohnPhosAu]
as a Catalyst

Figure 2. Lewis structure of the transition state used in NBO analysis
and 3D rendition showing the bicyclobutonium geometry.
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which is geometrically more accessible for the Z-isomer.
Therefore, the Z-configuration weakens the C1−C7 and C6−
C7 σ bond character of the migrating carbene by allowing π
backdonation, lowering the energy of the bicyclobutonium
geometry. For this explanation to be correct, the E-isomer
should show a worse overlap between the C2 p orbital and the σ
bonds to C7. This is confirmed by the NBO charge of C2 being
slightly higher for the E-isomer (E = +0.24, Z = +0.15), implying
less delocalized C1−C7 and C6−C7 bonds. Similar substituent
effects on the stability of bicyclobutonium cations, albeit as
intermediates, were reported in the solvolysis of substituted
cyclobutyl methanesulfonates.38

We also carried out calculations of the transition state for the
1,3-migration substituting the malonate tether by CH2 or CMe2,
and comparable energies were found in all cases (Table 1). This
shows that the difference in energy is not governed by
supramolecular interactions with the tether.

The endo-type single-cleavage skeletal rearrangement leads to
six-membered ring products by 5-exo-dig cyclization. 1,6-Enynes
with N-sulfonamide tethers or with less electron-rich alkenes
favor the endo-type skeletal rearrangement instead of the most
common exo-type single-cleavage.8,9,13 Using N-p-methoxycin-
namyl-N-propargylmethanesulfonamide as a model for sub-
strate E-7j (Scheme 3a), we have investigated computationally
the stereospecificity of this rearrangement as well as the causes of
the selectivity between exo-type and endo-type cleavage (Scheme
7).
We used E-F1 and Z-F1 (shown in the Supporting

Information) as the origin of the mechanism. They cyclize
analogously to E-A1 and Z-A1 to form E-F2 and Z-F2,
respectively, and the transition state corresponding to the bond
rotation was located. As had been observed with the malonate
tether, TSF1rot was energetically accessible and lower in energy
than either TSE-F3 or TSZ-F4, which led to products (Scheme
7). The exo-cleavage transition states TSZ-F3 and TSE-F3 also
showed a +2.4 kcal/mol preference for the Z pathway, leading to
Z-F3. In fact, of all four possible products, Z-F3 would be the
major product predicted by DFT, which fully reproduces the
experimental results in the preferential formation of Z-8j
(Scheme 3a).
The endo-cleavage products would form in a two-step process,

first involving the migration of the endo-carbene in TSE-F4 and
TSZ-F4 to form intermediate cyclopropyl gold intermediates E-

Table 1. ΔΔG‡ between the E- or Z-1,3-Migration for a
Cinnamyl Propargyl Substrate with Different Tethers Using
Me3PAu(I)

entry Z tether ΔΔG‡ (kcal/mol)

1 C(CO2Me)2 2.6
2 CH2 2.9
3 CMe2 2.9

Scheme 7. Mechanism of the Gold(I)-Catalyzed exo- and endo-Single-Cleavage Skeletal Rearrangements of N-Propargyl-N-(p-
methoxycinnamyl)methanesulfonamidea,b

aFree energy in kcal/mol. bFormation of the initial gold(I) cyclopropyl carbene (blue) can be found in the Supporting Information.
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F4 and Z-F4, respectively. This cyclopropyl gold intermediate
would form the six-membered ring product via concerted
asynchronous ring opening and change in hapticity afterTSE-F5
and TSZ-F5. Notably, even though there is a transition state
TSF2rot that can connect both precursors E-F4 and Z-F4 by
C−C bond rotation, this transition state is too high in energy to
compete with either TSE-F5 or TSZ-F5, so any stereo-
convergence in the endo-type products must arise fromTSF1rot.
These calculations also reproduce the formation of the second
product, 9j (Scheme 3a), in approximately the observed
experimental ratio.
While the energy profile above reproduces the experimental

data, the factors deciding the exo- and endo-type pathways, and
why electron-donating substituents switch the selectivity,
remained to be explained. We sought to explain both
observations, as the Z-selectivity of the exo-cleavage mechanism
is analogous to that observed in all previous mechanisms.
Transition states TSE-F4 and TSZ-F4, the rate-limiting steps
leading to the endo-type cleavage products, each has a fully
formed bond to the benzylic carbon. On the other hand, exo-
type cleavage transition statesTSE-F3 andTSZ-F3 both require
a partial cleavage thereof. As electron-rich substituents lead to
intermediates with a higher vinyl gold carbocation character, this
results in the exo-type cleavage being more favorable, as the
corresponding bond is weakened. For intermediates with a
higher cyclopropyl carbene character, the endo-type cleavage is
more accessible. This explains the increase in formation of the
exo-type product for very electron-rich alkenes.
In addition, and when comparing substrates with the same

alkenes in the endo-type cleavage, the cyclopropyl gold(I)
intermediates formed upon migration result in LAu facing endo
with respect to the bicyclic system. This may explain why more
sterically hindered tethers can favor the exo-type selectivity,
whereas a sulfonamide or an ether can point away from the
catalyst and facilitate endo-type cleavage. This is consistent with
the general trend seen experimentally for cinnamyl and prenyl
substrates (Scheme 3b,e,f).

■ CONCLUSIONS

The Z-selectivity of the single-cleavage skeletal rearrangement of
1,6-enynes is influenced by two primary factors: the ability to
access an equilibrium scenario between E- and Z-configured
cyclopropyl gold(I) carbenes and the electronic preference for
Z-migration of the most electron-rich substituent. Electron-rich
substituents on the alkene allow the interconversion between
the Z- and E-isomers by rotation, which explains the Z-selective
stereoconvergent process. The Z-selectivity is purely electronic
and is independent of the catalyst. This is significant, as it would
mean carbene-type migrations have intrinsic electronic prefer-
ences.
Less sterically hindered tethers can favor the endo-cleavage

pathways, but sufficiently electron-rich alkenes will still undergo
the analogous Z-selective exo-type cleavage. Stereoconvergence
in the endo-cleavage products could in principle also take place
but would be more difficult to observe, as the same factors that
lead to loss of stereospecificity also contribute to favoring
exocyclic migrations.

■ METHODS

General Procedure for the Cycloisomerization of
1,6-Enynes
To a stirred solution of enyne (400 μmol) in CH2Cl2 (4 mL) at 23 °C
was added [JohnPhosAu(NCMe)]SbF6 (8.0 μmol, 2 mol %). After
stirring for the given time, the reaction was quenched with a drop of
triethylamine, and the solution was concentrated in vacuo. The crude
product was purified by column chromatography on silica or neutral
alumina.
Computational Methods
All calculations were carried out on Gaussian09. The geometry
optimizations of the complexes were performed with B3LYP using
Grimme’s D3 dispersion correction with the 6-31G(d) basis set for
non-metal atoms and the SDD basis set and ECP for gold. Single-point
energy calculations were performed with the 6-311+G(d,p) basis set for
non-metal atoms and the SDD basis set and ECP for gold. The implicit
polarizable continuum model (PCM) for dichloromethane was used in
all calculations, and the cationic complexes were modeled with the
exclusion of the counteranions. All stationary points were verified by the
absence of imaginary vibrations and transition states confirmed by IRC
calculations. The transition states for the hindered rotations were
confirmed with IRC relaxation with Hratchian and Schlegel’s damped
velocity Verlet algorithm (DVV). The reported free energies were
calculated at 298 K and 1 atm. NBO analysis was performed with the
NBO3.0 program with B3LYP-D3, the 6-311+G(d,p) basis set for non-
metal atoms and the SDD basis set and ECP for gold.
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