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Connecting neural mechanisms of behavior to their underlying molecular and genetic
substrates has important scientific and clinical implications. However, despite rapid growth
in our knowledge of the functions and computational properties of neural circuitry
underlying behavior in a number of important domains, there has been much less progress
in extending this understanding to their molecular and genetic substrates, even in an
age marked by exploding availability of genomic data. Here we describe recent advances
in analytical strategies that aim to overcome two important challenges associated with
studying the complex relationship between genes and behavior: (i) reducing distal
behavioral phenotypes to a set of molecular, physiological, and neural processes that
render them closer to the actions of genetic forces, and (ii) striking a balance between
the competing demands of discovery and interpretability when dealing with genomic data
containing up to millions of markers. Our proposed approach involves linking, on one hand,
models of neural computations and circuits hypothesized to underlie behavior, and on
the other hand, the set of the genes carrying out biochemical processes related to the
functioning of these neural systems. In particular, we focus on the specific example of
value-based decision-making, and discuss how such a combination allows researchers to
leverage existing biological knowledge at both neural and genetic levels to advance our
understanding of the neurogenetic mechanisms underlying behavior.
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INTRODUCTION
There is widespread interest in the application of formal compu-
tational models to connect behavior to its underlying biological
substrates (Glimcher and Rustichini, 2004; Sugrue et al., 2005;
Landis and Insel, 2008; Rangel et al., 2008; Behrens et al., 2009;
Ebstein et al., 2010). At the neural level, we now have substan-
tial knowledge of computational properties underlying a number
of important domains of human cognition and behavior, and
the set of brain regions that perform these functions (Glimcher
and Rustichini, 2004; Landis and Insel, 2008; Rangel et al., 2008;
Behrens et al., 2009; Ebstein et al., 2010). An intriguing ques-
tion that has only recently become possible to address is the
extent to which we can extend this understanding to uncover the
genetic forces shaping and constraining these systems (Frank and
Fossella, 2011; den Ouden et al., 2013).

This has important scientific and clinical implications. First,
identifying mechanisms by which genomic differences lead to
variations at cellular and neural circuit levels, resulting in changes
in behavior and cognition, is an important step toward informing
and improving the diagnosis and treatments of behavioral disor-
ders (Glimcher and Rustichini, 2004; Sugrue et al., 2005; Landis
and Insel, 2008; Ebstein et al., 2010; Insel, 2010; Kapur et al.,
2012). In addition, the prospect that computational models can
uncover not only computations at the circuit level, but also gene

variation that influences these circuits, should substantially bol-
ster the prospect that they have clinical utility (Meyer-Lindenberg
and Weinberger, 2006; Rangel et al., 2008; Behrens et al., 2009;
Montague et al., 2012).

However, despite the growing number of studies linking gene
variation to complex behavioral traits in humans, comparatively
few studies have attempted to link genotype data to behavioral
phenotypes through the lens of computational models of behav-
ior. This is even so in cases where existing models have shown
considerable validity at both neurophysiological and molecular
levels, as in the case of reinforcement learning models of reward-
guided behavior (Schultz et al., 1997; Dayan and Niv, 2008; Doya,
2008; Frank and Fossella, 2011; den Ouden et al., 2013). One
possible reason is these computational models, which are most
often used in neuroimaging studies and therefore focus on cap-
turing variation at the circuit level, are simply not well suited
for capturing variation that operates on the developmental and
evolutionary timescales (Bell and Robinson, 2011).

Here we argue that, on the contrary, computational models
are useful precisely because they provide valuable mechanistic
explanations at the intermediate neural levels so often absent in
human studies linking genes, and behavior (Frank and Fossella,
2011). That is, because the effects of genetic and molecular mech-
anisms operating at longer timescales are necessarily mediated by
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neural mechanisms, computational models provide a framework
through which we can unveil the impact of more distal effects
of genes and molecules on the intermediate systems (Landis and
Insel, 2008; Zhong et al., 2009; Bogdan et al., 2012).

Perhaps most importantly, when combined with emerging
analytical approaches in genomics that enable researchers to focus
on specific biological pathways and networks, these models allow
behavior across different studies to be unified within a com-
mon biological framework. In doing so, this promises to move
us beyond accumulating lists of significant gene-behavior pair-
ings, and toward attempting to organize them in a unified and
coherent mechanistic framework.

Here, we review analytical strategies and concepts to enable
a biologically informed characterization of neurogenetic mecha-
nisms underlying value-based decision-making in humans, and
describe how to integrate them with computational principles
that are beginning to emerge from the burgeoning neuroimaging
literature tying formal mathematical models to choice behavior at
the level of neural circuits. Our goal is to propose a new analytical
strategy that combines computational models and gene path-
ways that can be used to unveil mechanistic relationship between
genetic variants and behavior. To this end, we will review the
foundations of the approach: (1) computational models of behav-
ior, and how they can be used as cognitive phenotypes, and (2)
the use of gene pathways as a strategy to balance the compet-
ing demands of interpretability and discovery in the analysis of
human genetic data; finally, we will review a prior application of
these principles (Set et al., 2014) as a case study that illustrates the
fruitful combination of these two approaches.

GENETICS OF HUMAN BEHAVIOR
Two main research strategies exist for the identification of genes
associated with heritable traits—candidate gene approaches and
genome-wide association (GWAS) approaches (Yang et al., 2010;
Flint and Munafo, 2013) (see Box 1 for glossary of genetic terms).
While linkage studies are also available, we focus on association
studies in this perspective as they are increasingly the primary
tool in the case of human studies (Sabb et al., 2009). First, in can-
didate gene studies, one or a small number of gene variants with
known effects on the protein structure or expression are used to
detect genotype-phenotype associations (Flint et al., 2001; Flint
and Munafo, 2013). These studies are typically motivated by prior
knowledge of biological mechanisms underlying the physiology
of a certain trait. In GWAS studies, this goal is achieved using all
gene variants across the entire genome, which are independently
tested in a hypothesis-free manner (International Schizophrenia
Consortium, 2009; Rucker et al., 2011).

Despite the rapid growth of studies based on these approaches,
and the accumulation of gene markers implicated in behavior,
findings from these studies have been subject to widespread skep-
ticism about their (i) reliability, and (ii) ability to inform us
about the genetic architecture underlying behaviors and disor-
ders where they are affected (Figure 1A) (Hart et al., 2013). At
least in the case of human behavior, many behaviors of inter-
est relate to highly human-specific activities that are the result of
complex social, cognitive, and cultural influences. Thus, even in
cases where candidate genes are carefully motivated and have clear

biological implications, their connection to basic cognitive pro-
cesses underlying the trait of interest can be unclear (Figure 1A)
(Flint et al., 2001; Reuter et al., 2011; Flint and Munafo, 2013).

To use a concrete example, consider a previous study finding
that voting propensity is associated with serotonin gene polymor-
phisms, specifically alleles in the MAOA and SERT (Fowler and
Dawes, 2008) (Box 1). Although such studies provide valuable
insights into possible biological substrates of an important fea-
ture of modern human civilization, a vast gap exists between the
functions of these genes on the one hand, and the act of voting in
an election in a modern Western democracy.

As the authors of the study point out, even taking genetic
associations identified in the study as given, the nature of the
genetic contribution remains far from clear (Fowler and Dawes,
2008). First, the identified polymorphisms may play a role in pro-
moting prosociality, but it could also be related to aggression. It
may increase the sense of satisfaction one derives from fulfilling a
civic duty. It may increase the strength of desire for expression. It
may be part of a broad constellation of personality traits. This is
only a partial list of the possible ways that serotonin genes might
influence voting propensity.

Perhaps more importantly, the lack of mechanistic insights
has contributed to a fragmentation that impedes the accumula-
tion of knowledge critical for scientific advancement. A central
question, therefore, is whether it is possible for genetic stud-
ies of behavior, like those in morphology or simpler types of
phenotypes, to trace through the complex biological pathways
connecting genes and behavior in a way that makes it possible to
integrate diverse behavior-genotype associations in a biologically
based framework.

COGNITIVE MODELS AS CANDIDATE MECHANISMS
Note that in all the above cases, the key question is how to relate
and map diverse behavioral phenotypes to a more constrained set
of intermediate cognitive phenotypes (Houle et al., 2010; Rasetti
and Weinberger, 2011; Bogdan et al., 2012). That is, a crucial step
in overcoming these hurdles is to reduce the distal behavioral phe-
notype to a set of molecular, physiological, and neural processes
that render them closer to the actions of genetic forces. In the case
of model organisms we have the ability to interrogate these molec-
ular and neural mechanisms directly, but most are unavailable in
humans due to their invasive nature.

At least in the case of the brain, our understanding has
been transformed by recent applications of formal computational
models that connect behavior to their underlying neural circuitry
(Schultz et al., 1997; Montague et al., 2004; Behrens et al., 2009;
Maia and Frank, 2011). In a number of cases, these models have
been shown to have considerable validity at both behavioral and
neural levels (O’Doherty et al., 2007; Rangel et al., 2008). For
example, the basic temporal difference model is able to explain
a variety of reward-guided behavior using a single parameter
governing the strength of impact of the reward prediction error
on future behavior (Figure 1B) (Schultz et al., 1997; Montague
et al., 2004). At the neural level, although details regarding inter-
pretation remain debated (Berridge, 2007), substantial evidence
points to a key role of midbrain dopaminergic neurons in car-
rying a quantitative signal guiding choice behavior, which can be

Frontiers in Neuroscience | Decision Neuroscience November 2014 | Volume 8 | Article 336 | 2

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Saez et al. From genes to behavior

FIGURE 1 | Cognitive models as quantitative descriptions of putative

intermediate mechanisms. (A) For most human behaviors of interest, the
intermediate neural, synaptic, and molecular mechanisms are far from clear.
As a result, studies of the genetic basis of these behaviors are forced to
directly examine the effects of the chosen genotype onto behavior, without
consideration of the ways in which genetic variation propagates through and
constrains these intermediate levels. (B) Computational models provide a
principled way in which complex patterns of behavior can be quantified and
reduced to a lower-dimensional space via the set of parameters governing
the computations. Variation of the parameters in the population can be
related to underlying genetic variation and other inter-individual factors (i.e.,

environmental) and interactions. In the example, a schematic of a simple
reinforcement learning model is presented where the parameter αi governs
the extent to which an individual organism is sensitive to more recent
rewards relative to past ones. This parameter in turn can be thought of as an
intermediate cognitive phenotype that is under the influence of genes,
environment, and their interaction. (C) When validated at the neural level,
these models can serve as quantitative descriptions of the missing
intermediate mechanisms through which genes exert their influence on
behavior. In this sense, model parameters are equivalent to cognitive
phenotypes and can act as a nexus that mechanistically connects different
biological levels underlying behavior.

captured using both neurophysiological evidence in model organ-
isms and neuroimaging evidence in humans (Dayan and Niv,
2008).

At the genetic level, then, cognitive models provide a princi-
pled way in which complex patterns of behavior can be quantified
and reduced to a lower-dimensional space via the set of parame-
ters governing the computations. Variation of the parameters in
the population can be related to underlying genetic variation, and
other inter-individual factors (i.e., environmental), and interac-
tions (Figure 1C). This parameter in turn can be thought of as an
intermediate cognitive phenotype that is under the influence of
genes, environment, and their interaction.

In an early example of this approach, (Frank et al., 2007) inves-
tigated how genetic polymorphisms in candidate genes affected
reward and avoidance learning in humans. Using a cognitive
model that captures distinct computational components con-
nected to reward and avoidance learning, the authors found that
variation in different dopaminergic genes, specifically DARPP-
32, DRD2, and COMT, were associated with separate parameters
governing reward and avoidance learning. Importantly, these
findings can be directly connected to our knowledge of how these
genes relate to dopaminergic functioning. For example, both
DARPP-32 and DRD2 are thought to affect primarily striatal, as

opposed to prefrontal, dopamine (Missale et al., 1998), whereas
the reverse is true for COMT (Männistö and Kaakkola, 1999). The
fact that striatal dopamine genes affected the speed of learning
is notable as it is consistent with a broad class of neurophys-
iological and neuroimaging work in both human and animal
studies.

For example, associations of D2 receptor gene variation to
behavior can be linked to its potential effects on striatal D2
receptor density, which are then linked to systems-level changes
that translate to changes in behavior. Importantly, the predic-
tions of this working model can be tested using pharmacological
manipulation, PET imaging, or via invasive methods using model
organisms. In contrast, such a systems approach would be con-
siderably more challenging in distal phenotypes such as voting
behavior.

Taken together, connecting genes to computational models
therefore would help to address a key limitation in many stud-
ies of genetic basis of behavior (Figure 1C) (Frank and Fossella,
2011; den Ouden et al., 2013; Set et al., 2014). Importantly, a
focus on mechanisms can advance existing conversation from one
focused on “gene-hunting,” with a goal of accumulating highly
significant polymorphisms regardless of their functional impor-
tance (or “behavior hunting” in the case of candidate genes,
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Box 1 | Some prerequisites for understanding neural and genetic studies of behavior.

• Allele: One of two or more forms of a gene, located on a specific position on a chromosome.
• Candidate gene studies: Studies that focus on association of pre-specified genes of interest, typically based on prior knowledge,

and phenotypes.
• Genome-wide association studies (GWAS): Studies that aims to find associations by scanning common genetic variation in the

entire genome in hypothesis-free manner.
• Gene pathway: A group of functionally related genes that mediate a particular biological process, e.g., DA functioning.
• Linkage Disequilibrium: Extent to which alleles are correlated due to common inheritance. Alleles of nearby genes are typically in

high linkage disequilibrium.
• Minor allele frequency (MAF): The frequency at which the least common allele occurs in a given population. Typically alleles with

MAF below 5% or 10% are excluded from the study.
• Single Nucleotide Polymorphism (SNP): In genetics, a difference in DNA sequence among individuals. A common form of a genetic

polymorphism is a SNP, which occurs when a nucleotide—A, T, C or, G—differs between individuals. The human genome contains
millions of SNPs. Below are a list of common types of polymorphisms.

◦ Exonic mutation: Polymorphisms in gene region that remains present within the final mature RNA product.
◦ Synonymous mutation: Exonic mutations that do not modify the protein encoded by the gene. Previously thought to be silent

but now known to have potential effects on transcription, splicing, mRNA transport, and translation (Sauna and Kimchi-Sarfaty,
2011).

◦ Non-synonymous mutation: Exonic mutations where the protein encoded by the gene is modified.
◦ Intronic mutation: Region within a gene that is removed by RNA splicing while the final mature RNA product of a gene is being

generated. Previously thought to be silent but now known to have potential effects on splicing accuracy and translational efficiency
(Cartegni et al., 2002).

◦ Untranslated region (UTR): Region directly adjacent of coding region of the gene, important for regulation of RNA translation.
◦ Intergenic regions: Stretches of DNA sequences located between genes. Most variants in this region have no currently known

function, but some are thought to have regulatory functions. In humans, intergenic regions comprise about 80%–90% of the
genome.

where one seeks to accumulate a list of behaviors regardless of
their interdependence), to one focused on mechanism and the
phenotype of interest.

GENE PATHWAYS
Despite these promising features, candidate mechanisms are not
by themselves sufficient to overcome the formidable challenges
arising from the inherent complexity of genomic data. First, the
sheer size of modern gene array data have resulted in a situ-
ation where it is often the rule rather than the exception that
significant gene markers have little direct relationship to plau-
sible biological mechanisms (Figure 2A). For example, a recent
study (Rietveld et al., 2013) identified a genome-wide significant
SNP that is significantly associated with a complex and distal phe-
notype, academic achievement; however, this SNP is not located
in the proximity of any genes which might mediate its biologi-
cal effect, and so how the effect comes to be is unclear even if we
had a precise cognitive model of academic achievement. That is,
even when there are candidate mechanisms available, the associ-
ated gene markers often have no discernible relationship with the
mechanism.

Second, genes do not function independently but within bio-
logical pathways, and they interact within biological networks
(Figure 2B) (Wang et al., 2007; Ramanan et al., 2012). In particu-
lar, the accumulation of weak but coordinated effects arising from
multiple alleles within specific biological systems is increasingly
thought to be an important source of phenotypic variation. The
fact that both GWAS and candidate gene studies focus on individ-
ual genotype markers poses a challenge for them to detect subtle

effects distributed across the genome (Wang and Abbott, 2008).
This point is particularly crucial as it is now widely accepted that
common alleles, including those used in candidate gene stud-
ies, exhibit modest effect sizes. As such, the statistical approach
of treating individual alleles as independent results in a poten-
tially serious loss of power by ignoring the underlying biological
structure.

In recent years, studies that strike a middle ground, using
so-called pathway approaches, are becoming increasingly popu-
lar (Figure 2A and Box 1) (Wang et al., 2007, 2010; Yaspan and
Veatch, 2011; Ramanan et al., 2012). A genetic pathway consists
of a group of functionally related genes that mediate a partic-
ular biological process, e.g., DA functioning (Figure 2B). Each
gene along the pathway encodes a protein that carries out a spe-
cific biological function. For example, the DAT1 gene encodes
the dopamine transporter (DAT), whose function is to remove
dopamine from the synaptic cleft, thus terminating the signal
of the neurotransmitter. Although these pathways are abstrac-
tions of complex biological process that have no discrete start or
end points, they have been invaluable to researchers as they cap-
ture and organize our knowledge in a parsimonious and tractable
manner.

The pathway approach addresses these issues by limiting our
search to a set of genes underlying a specific biological pro-
cess, thereby improving the interpretability of potential results
(Wang et al., 2007, 2010; Yaspan and Veatch, 2011; Ramanan
et al., 2012). For behavior, there are a number of molecularly
defined pathways that are suitable as candidates based on previous
anatomical, pharmacological and physiological studies in both
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FIGURE 2 | (A) Comparison of genomic analysis approaches illustrated on a
DNA schematic, including 22 pairs of autosomal and sex chromosomes.
Orange shaded regions indicate genetic materials used for analysis. (Left)
GWAS analyses assess association of phenotype of interest with all
sequenced SNPs, often hundreds of thousands, independently. Hence all
chromosomes are shaded orange. (Right) On the other side of the technical
spectrum, candidate gene approaches focus on a single polymorphism, often
well motivated by prior biological data. In this example, the non-synonymous
rs4680 SNP of the COMT gene is selected. (Middle) A pathway approach

offers a compromise, where prior biological information is leveraged to define
a set of genes, organized around a biological process. In this example, all
genes whose products have an impact on dopaminergic neurotransmission
are selected. (B) Dopamine metabolic pathway captures the biological
process involved in neurotransmission, including dopamine synthesis (blue),
dopamine signal transduction (orange), and dopamine transport and
clearance (green). In principle, genes that regulate/act on these dopaminergic
genes can also be included, although we do not include them here as they
have broad functions in the nervous system.

humans and animals: neuromodulatory pathways (serotonergic,
dopaminergic, noradrenergic, etc.), hormonal and, neuropeptide
pathways (oxytocin, vasopressin), synaptic plasticity related path-
ways, growth factors such as neurotrophins (BDNF, NT-3, NT-4,
etc.), and transcription factors, to name a few.

In particular, because a pathway approach fosters a view
centered on biological processes, as opposed to individual poly-
morphisms, statistical inference can be made at multiple level
of analysis, from SNP, to gene, to pathway, in a way that can
adapt to the particular question, but without being completely
unconstrained as in GWA studies (Chen et al., 2010; Ramanan
et al., 2012). For example, compared to previous studies mak-
ing inferences at the level of individual SNP or VNTR, in Set
et al. [36] we considered the combined impact of all com-
mon polymorphisms within individual DA genes. With larger
sample sizes, it is possible to compare whole pathways with hun-
dreds of variants, as have been done in a number of disease
studies.

CASE STUDY: CONNECTING COGNITIVE MODELS TO GENE
PATHWAYS
Given the number of analytical steps involved in our proposed
approach, we give in this section a detailed step-by-step guide
to conducting pathway studies of cognition and behavior. To
fix ideas we will use the specific example of a recent study by
Set et al. (2014) that applied dopaminergic pathways to strategic
learning.

PHENOTYPE
Strategic learning refers to decisions made in the presence of com-
petitive or cooperative intelligent agents, where, in addition to
learning about rewards and punishments available in the envi-
ronment, agents need to also anticipate and respond to actions of
others competing for the same rewards (Figure 3A) (Fudenberg,
1998; Hofbauer and Sigmund, 1998). Specifically, Set et al. (2014),
applied the well-established experience weighted attraction
(EWA) model to reduce individual variation in competitive
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FIGURE 3 | Mapping neural and genetic correlates of strategic learning.

(A) Choice behavior in economic games provides basic material to
characterize neural and genetic correlates of behavior. In this example,
subjects make sequential choices over 240 rounds of a multi-strategy
competitive learning paradigm, the patent race. (B) Trial-by-trial variation in
behavior is captured by a model—experience weighted attraction
(EWA)—containing two parameters governing two distinct aspects of
strategic learning. (i) Belief learning parameter δ that captures the degree to
which participants anticipate and respond to the actions of others, and (ii)
learning rate parameter ρ captures the strength of past experiences on
behavior. Individual differences, i.e., person-by-person variation, is captured
by different parameter values of δi and ρi for participant i. (C) Neural circuits
subserving specific computations can be mapped using outputs of the
calibrated model outputs at a trial-by-trial level. In the example, belief
learning signals were localized to mPFC activity, whereas reinforcement
learning signals to striatal activity. Adapted from Zhu et al. (2012). (D)

Genetic influence on behavior can similarly be mapped by connecting gene
variation in the dopaminergic pathway to intermediate phenotype, captured
by parameter variation at the individual level. In the example, variation in
belief learning δi is significantly associated with variation in genes
responsible for dopaminergic degradation (COMT, MAOB, MAOA), which
govern dopaminergic levels in the prefrontal cortex but not striatum. In
contrast, variation in learning rate ρi is significantly associated with variation
in genes highly expressed in the striatum (DAT1, DRD2), but not prefrontal
cortex. Interestingly, COMT variation is also associated with learning rate.
Adapted from Zhu et al. (2012) and Adapted from Set et al. (2014) should be
made consistent.

winner-take-all paradigm to two key parameters capturing (1) the
degree to which players are sensitive to actions of others, captured
by δ, and (2) learning rate or sensitivity of players to more recent
observations relative to past ones, captured by ρ (Figure 3B)
(Sutton and Barto, 1998; Camerer, 2003; Zhu et al., 2012).

Importantly, this computational characterization of behavior
was able to capture trial-by-trial variation in fMRI BOLD activity
of players during game play (Hsu and Zhu, 2012; Zhu et al., 2012).
Specifically, whereas the medial prefrontal cortex was found to
respond selectively to belief-based inputs and reflected individ-
ual differences in degree of engagement of belief learning, striatal
activity was correlated with both reinforcement and belief-based
signals, suggesting possible convergence of these signals in the
striatum (Figure 3C) (Zhu et al., 2012).

PATHWAY SELECTION
First, given the phenotype of interest and candidate cognitive
model, one needs to determine the appropriate pathway involved.
One option is to select a set of genes that are related to a spe-
cific biological function, such as neurotransmission. For many
behavioral or cognitive processes, neuromodulatory systems such
as dopamine and serotonin are particularly attractive targets (e.g.,
Figure 2B).

In the case of strategic learning, dopaminergic mechanisms are
a natural candidate owing to the involvement of reward learn-
ing processes. Moreover, DA transmission is known to exhibit
remarkable regional variation in expression levels of genes cod-
ing for the set of enzymes, receptors, and transporters involved
in DA functioning (Pierce and Kumaresan, 2006; O’Connell and
Hofmann, 2012) (Figure 2B). In the prefrontal cortex, where
DAT1 expression is low, genes regulating enzymatic breakdown,
in particular COMT and to a lesser extent isoforms of the MAO
genes, are important determinants of DA flux (Nemoda et al.,
2011). In contrast, these genes have much less impact on striatal
DA levels, where DAT1 expression is high (Frank and Fossella,
2011). On the receptor side, regional variation results from dis-
tribution of DA receptor types (Missale et al., 1998). Receptors of
the D1 family, D1 and, D5, are expressed throughout the brain. In
contrast, receptors in the D2 family exhibit more regional speci-
ficity: D2 receptors are expressed primarily in the dorsal striatum,
D3 receptors in the ventral striatum, including nucleus accum-
bens but less so in dorsal striatum, and D4 receptors in the frontal
cortex and limbic regions (Missale et al., 1998).

Another popular technique is to use gene ontology annota-
tions, such as the Gene Ontology (GO) database (Harris et al.,
2004). A third option is to select genes that are expressed at a given
developmental time in brain areas that are known or suspected to
be implicated in said processes. Yet many others are possible, and
we are only beginning to appreciate how to best divide the com-
plex set of molecular and cellular processes in ways that shed light
on cognitive processes.

Because the underlying biological processes have no real
starting or ending points, the pathway definitions require deci-
sions that trade off between coverage and interpretability. For
example, for neurotransmitter-centered pathways, the focus
point is the locus of action of the neurotransmitter, i.e., the
neurotransmitter-receptor interaction in the synaptic cleft. From
that pivot point, sets of genes that are involved in neurotransmit-
ter synthesis, signal transduction, and signal degradation form the
core of the pathway, which can then be concentrically expanded to
include secondary messengers in the postsynaptic side, regulatory
elements such as kinases and phosphatases, transcription factors,
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etc. The cost of such an expansion is a loss of statistical power
and biological interpretability; for example, secondary messen-
gers are promiscuous and are typically activated in response to
activation of numerous membrane receptors, a characteristic akin
to the pleiotropy of genetic effects.

ASSIGNING DATA ELEMENTS TO GENES
Once the gene set underlying the pathway is determined, the
set of data elements, whether SNPs, variable number of tandem
repeats, or copy number variations (Box 1), must be decided. Due
to the current technical capability and low cost of SNP sequenc-
ing, the former is by far the most common. All SNPs located in
known coding or regulatory regions are typically analyzed, since
they offer a straightforward connection to the biological effects of
the genetic variation, mediated by changes in protein sequence.
However, to capture possible regulatory variations, all SNPs
within the coding region of the gene (both exonic and intronic)
as defined by current genomic atlases may be included, as was the
case in Set et al. (2014). Furthermore, upstream or downstream
SNPs can have regulatory functions such as effect in transcrip-
tional or translational efficiency, and may also be included.

DEALING WITH LINKAGE DISEQUILIBRIUM
Genes often contain multiple SNPs. Due to their physical prox-
imity, they are often co-inherited and thus variation in them is
typically correlated, an effect called linkage disequilibrium (LD)
(Box 1). Analyzing each of these as an independent factor inflates
the multiple comparison problem, and therefore statistical meth-
ods have been proposed to deal with this issue, such as principal
component regression (PCR) (Wang and Abbott, 2008).

Specifically, this approach uses the first few principal com-
ponents (PCs), so-called eigenSNPs, computed from the sample
covariance matrix of SNP genotype scores as regressors, and has
been used in a number of previous gene expression and SNP
marker studies (10). For example, in Set et al. (2014), 4 eigen-
SNPs contained 91% of the variation in the COMT gene, from an
initial set of 17 SNPs that exceeded an MAF threshold of 0.1.

Compared to traditional candidate gene approaches, this mul-
tilocus approach can be used to detect association between a
phenotype and groups of SNPs (genes), and is more efficient
when there exists weaker but coordinated effects arising from
multiple SNP markers. Other solutions, such as shrinkage meth-
ods including LASSO and random forests, have been developed
but increase the computational burden substantially (Bridges
et al., 2011).

COMBINING PATHWAYS AND MODELS
Once inter-subject genetic (through pathway analysis) and phe-
notypic (through computational models) variability have been
assessed, they must be mapped onto one another. A multiple lin-
ear regression of genetic variation on estimated parameter values
offers a simple way of doing this. Effectively, optimal weights for
each piece of genetic variation (SNP, eigenSNP, etc.) are assigned
to explain as much of the variation in parameter space as possible
(Wang and Abbott, 2008).

For example, in Set et al. (2014), this involved allowing each
parameter (e.g., δ) of the model to vary according to the set of

associated eigenSNPs of each gene in the DA pathway. In the case
of the COMT gene, this included the addition of four additional
parameters {δ1, δ2, δ3, δ4} corresponding to the four eigenSNPs
of the DAT1 gene, in addition to the population (mean) param-
eter δ. Intuitively, this analysis asks the question of whether
inclusion of genetic information can improve statistical fit of the
model by capturing individual differences.

At this stage, nuisance regressors that are known or suspected
to impact the behavior under study can be included. For example,
inclusion of the first 10–20 whole-genome principal components
is an effective way of controlling for population stratification
(Price et al., 2006).

ASSESSMENT OF SIGNIFICANCE
Although asymptotic tests are possible in this approach, potential
violations of standard assumptions have led to the widespread use
of permutation tests, which requires a weaker set of assumptions
to be valid (Wang et al., 2010; Winkler et al., 2014). Here, the null
distribution is created by shuffle the gene-behavior pairings, such
that the observed association has to be significantly higher than
that of a “random” genome (Wang et al., 2010; Winkler et al.,
2014).

Alternatively, if one has access to GWAS data, one can com-
pare the association in a particular gene to comparison “null”
genes outside of the pathway that possess similar statistical prop-
erties (e.g., same number of SNPs that reduce to similar number
of eigenSNPs). In Set et al. (2014), this is referred to as the
“empirical p-value,” to distinguish from the permutation p-value.
Importantly, because these genes are selected because of a hypoth-
esized negative relationship (e.g., genes that do not express in the
CNS), they provide a highly useful negative control with which to
dissociate candidate pathways against null pathways.

BIOLOGICAL INTERPRETATION OF RESULTS
In the past, a significant hurdle existed in attempting to connect
gene association findings to intermediate neural mechanisms. In
the case of Set et al. (2014), restricting attention to the gene
level and pathway alleviated potential interpretational issues con-
siderably. First, the fact that belief learning processes engaged
primarily medial prefrontal cortex accord well with the associa-
tions between belief learning parameter δ and variations in the
COMT, MAOB, and, MAOA genes (Figure 3D). All three are
genes implicated in dopamine catabolism and are responsible for
regulating dopaminergic levels in the prefrontal cortex. In con-
trast, learning rate ρ was found to be significantly associated
with variation in striatal genes DAT1 and DRD2 (Figure 3D).
Overall, these findings raise a number of interesting questions
regarding the anatomical specificity of the genetic effects, which
can be tested in imaging genetic studies. For example, an inter-
esting question is whether the COMT effect on learning rate is
exerted through prefrontal DA or its indirect effects on striatal
dopamine, as has been reported in previous imaging genetics
findings (Dreher et al., 2009).

VALIDATION AND FOLLOWUP
One important drawback of including all polymorphisms is that
the functionality of the identified polymorphisms can be obscure.
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For example, of the 143 common SNPs in Set et al. (2014), only
one, the extremely well-studied rs4680, is associated with a change
in protein structure. The rest were either synonymous mutations
or resided in intronic or untranslated regions. In recent years,
however, there are a growing number of computational meth-
ods available to gain further insight into these potential biological
functions. They rely on identifying sequences with known bio-
logical effects in the DNA sequence including and surrounding
SNPs of interest. The SNPInfo web server (http://snpinfo.niehs.
nih.gov), for instance, provides a web interface where multiple
SNPs can be queried to obtain information about their poten-
tial biological effects for SNPs located in coding (protein sequence
changes, changes in stop codons) and non-coding (transcription
factor binding sites, splicing regulation, miRNA binding sites,
etc.) regions.

In addition to mining existing data, new data can be acquired
to gain insight into the nature of the association. For example,
in the case of polymorphisms that putatively result in changes
in protein concentration, what is the association between pro-
tein levels and the behavioral effect? Imaging genetics approaches
can be used to gain further insight into the mechanisms
whereby a genetic change affects neural mechanisms underlying
a cognitive phenotype (Hariri et al., 2006; Klein et al., 2007).
Pharmacological manipulations can further be carried out to
demonstrate the causal involvement of the identified molecular
mechanism. Although not all genes can be targeted, in the case of
neural pathways there are a variety of drugs that have been applied
to the study of behavior which affect different neurotransmitter
systems such as dopamine, serotonin, neuropeptides (e.g., oxy-
tocin) (Kosfeld et al., 2005; Pessiglione et al., 2006; Crockett et al.,
2008). For the cases in which a more detailed examination is war-
ranted or for which no pharmacological manipulation is possible,
animal models can be used to investigate the impact of a single
gene (e.g., gene knockouts, gene knockdowns).

CONCLUSION
In contrast to phenotypes such as morphology, behavior has
always presented special challenges for biological studies because
of its temporal nature and context dependence (Houle et al.,
2010). In the case of human behavior, the situation is even more
challenging as many behaviors of interest relate to highly human-
specific activities that are the result of complex social, cognitive,
and, cultural influences (Bilder et al., 2009; Houle et al., 2010).

At the neural level, recent applications of functional neu-
roimaging, combined with formal economic models, have greatly
expanded our understanding of the neurocognitive processes
underlying complex behaviors, such as decision-making in strate-
gic environments (Behrens et al., 2009; Burke et al., 2010; Hsu
and Zhu, 2012; Zhu et al., 2012). At the same time, recent tech-
nical advancements have significantly advanced our knowledge of
human genetic variation and the location and impact of human
genetic polymorphisms.

Despite such progress, however, there has been surprisingly lit-
tle attempt to connect and cross-pollinate these different levels in
ways that emphasize the relative strengths of each approach while
minimizing their weaknesses. In this perspective, we described an
approach focusing on specific biological processes in ways that

relate systems of functionally-related genes to putative mechanis-
tic models of behavior (Wang et al., 2010; Yaspan and Veatch,
2011; Ramanan et al., 2012). Specifically, this involves linking, on
one hand, working models of neural computations carried out by
local circuits (Frank and Fossella, 2011), and on the other hand,
the set of the biochemical processes that are carried out by genes
(Wang et al., 2007; Ramanan et al., 2012).

Clinically, a better integration of genetic and neural data is
an important step toward improving diagnosis and treatment of
neuropsychiatric disorders (Gottesman and Gould, 2003; Kapur
et al., 2012; Miller and Rockstroh, 2013). Genes involved in
dopamine functioning may be directly involved in neuropsy-
chiatric disorders (Gottesman and Gould, 2003; Insel, 2010;
Miller and Rockstroh, 2013). In this case, a combined neuro-
genetic approach would be invaluable in the identification of
endophenotypes—patterns of brain function that can be linked
to a particular genotype (Gottesman and Gould, 2003; Insel,
2010; Miller and Rockstroh, 2013). The elucidation of genetic
differences among patients may, for example, lead to improved
understanding of diagnostic subtypes or creation of new subtypes
(Charney et al., 2002).

An alternative, and perhaps more likely scenario is that
the causative gene resides elsewhere but yet indirectly affect
many related systems and circuits, including those mediated by
dopaminergic genes (Insel et al., 2010; Papassotiropoulos and de
Quervain, 2011). In this case, an understanding of the dopamin-
ergic variation in genetically normal systems is no less valuable by
facilitating understanding of therapeutic impacts (Charney et al.,
2002). This is in particular if key defective genes identified prove
to be difficult to target, in which case downstream genes or path-
ways affected by the illness that can be repaired constitutes a
natural target of intervention (Wang et al., 2007; Chen et al., 2010;
Yaspan and Veatch, 2011).

For some phenotypes of interest to social scientists, such as
wealth or the aforementioned education attainment, the pheno-
type is sufficiently far removed from the underlying biology that
little is gained by applying a pathway approach. In these cases,
a purely exploratory GWAS approach may well be an appro-
priate choice. Even in these cases, however, exploratory versions
of pathway analyses can be used. For example, “genome-wide
pathway analysis” attempts to segment the genome in terms of
biological processes and then attempts to find pathways differ-
entially involved in a particular phenotype. This method has
proved fruitful in identifying an association between IQ, a com-
plex proxy-phenotype, and heterotrimeric G proteins that are
central relay factors that may serve as “signaling bottleneck” for
neuronal responses (Ruano et al., 2010). Another set of network-
based methods uses graph theory methods to infer networks of
genes that are involved in a phenotype, and are particularly useful
for dealing with gene-gene interactions (Ramanan et al., 2012).

However, for a growing class of behavioral and clinical mea-
sures, the underlying biologically processes mapping sensory
input to behavioral outcomes are increasingly mapped out at both
neural and molecular levels. In these cases, pathways represent
an important way of capturing our prior knowledge regarding
biological processes mediating specific outcomes, and action-
able therapeutic targets (Veenstra-VanderWeele and Anderson,
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2000). Thus, if we think of a priori pathway selection as a “top-
down” approach that generalizes the candidate gene approach,
data-driven approaches can be thought of as a “bottom-up”
approaches that generalizes the GWAS approach.

Overall, our approach explicitly acknowledges the inherent
tension regarding our current state of knowledge (Robinson
et al., 2008; Set et al., 2014). On the one hand, we now have an
immense and growing base of knowledge regarding the biological
basis of economic behavior, which can explain observation across
multiple biological levels and, in some cases, across multiple
species (Robinson et al., 2008; Connell and Hofmann, 2011).
On the other hand, our knowledge is highly incomplete. For
example, we still know little about the precise quantitative
relationship between many of the allele variants in DA genes and
gene expression levels, nor of their influence on neural circuits
(Jia et al., 2011; Set et al., 2014). Finally, and perhaps most
importantly, by centering the focus on biological processes as
opposed to individual genes, a combined neurogenetic approach
allows behavior across different studies to be related to a common
set of mathematical principles, thereby moving beyond merely
cataloging lists of genes and the myriad of associated behaviors.
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