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Abstract

Background

Postnatal human cardiomyocyte proliferation declines rapidly with age, which has been

suggested to be correlated with increases in oxidative DNA damage in mice and plays an

important role in regulating cardiomyocyte proliferation. However, the relationship between

oxidative DNA damage and age in humans is unclear.

Methods

Sixty right ventricular outflow myocardial tissue specimens were obtained from ventricular

septal defect infant patients during routine congenital cardiac surgery. These specimens

were divided into three groups based on age: group A (age 0–6 months), group B (age,

7–12 months), and group C (>12 months). Each tissue specimen was subjected to DNA

extraction, RNA extraction, and immunofluorescence.

Results

Immunofluorescence and qRT-PCR analysis revealed that DNA damage markers—mitochon-

drial DNA copy number, oxoguanine 8, and phosphorylated ataxia telangiectasia mutated—

were highest in Group B. However immunofluorescence and qRT-PCR demonstrated that two

cell proliferation markers, Ki67 and cyclin D2, were decreased with age. In addition, wheat

germ agglutinin-staining indicated that the average size of cardiomyocytes increased with age.

Conclusions

Oxidative DNA damage of cardiomyocytes was not correlated positively with age in human

beings. Oxidative DNA damage is unable to fully explain the reduced proliferation of human

cardiomyocytes.
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Introduction

Cardiomyocyte deficiency underlies most causes of heart failure, which is the most common

cause of disease-related deaths among citizens within industrialized nations [1]. Cardiomyo-

cyte deficiency is mostly due to limited amounts of proliferating cardiomyocytes, which are

not sufficient for ameliorating contractile dysfunction [2]. Thus, there is a profound demand

to replenish the cardiomyocytes that are lost during heart failure by either promoting the pro-

liferation of endogenous cardiomyocytes or facilitating stem cell differentiation (3,4)[3,4]. The

percentage of proliferating cardiomyocytes in mammals declines with age, especially past the

neonatal period, during which both humans and rodents have more proliferating cardiomyo-

cytes than in any other period [5, 6]. The mechanism that underlies this reduced proliferation

of cardiomyocytes remains unknown.

Reduced levels of proliferating cardiomyocytes could be due to oxidative DNA damage.

Puente et al. observed that the oxygen-rich postnatal environment induces mouse cardiomyo-

cyte cell-cycle arrest through DNA-damage [7] and that cycling cardiomyocytes in adults exist

within a relatively hypoxic environment [8]. Further, ventricular assist devices are able to aid

in heart function recovery by reducing oxidative damage to DNA [9]. These findings suggest

that oxidative DNA damage might be responsible for the correlation between decreased cardi-

omyocytes proliferation of and age. In addition, age was also associated with an increase in

mouse heart DNA oxidative damage markers: mitochondria DNA (mtDNA), oxoguanine 8

(8-oxoG), and phosphorylated ataxia telangiectasia mutated (p-ATM) [7]. However, there is

little information available regarding similar amounts of oxidative DNA damage in human

heart.

In humans, the mitochondrion is considered to be the major production site of free radi-

cals, which can lead to DNA damage [10]. The presence of mtDNA is considered to be an indi-

cator of mitochondrion damage[7,9], while 8-oxoG is an extremely common DNA lesion that

caused by reactive oxygen species [11] and can promote mismatched pairings with adenine,

resulting in G to T and C to A substitutions within the genome [12]. Ataxia telangiectasia

mutated (ATM), a serine/threonine protein kinase that is activated by DNA double strand

breaks, phosphorylates several key proteins activate DNA damage checkpoints, and subse-

quently leads to cell cycle arrest or DNA repair. [13], suggesting that p-ATM is an essential

mediator in activating the DNA damage response [7]. In this study, mtDNA copy number,

8-oxoG, and p-ATM were quantified from human hearts and assessed for correlation with age.

Proliferating markers Ki67 and cyclin D2 were also detected in order to determine a correla-

tion between cardiomyocyte proliferation and oxidative DNA damage.

Materials and Methods

Study population and tissue sampling

All patients who were diagnosed as having a ventricular septal defect (VSD) with right ventric-

ular outflow tract hypertrophy were selected for investigation at the Shanghai Children’s Medical

Center between January 2016 and September 2016. A total of sixty-four patients were included in

the study—sixty were male and four were female. In order to balance the study, the four female

samples were excluded and sixty male right ventricular outflow myocardial tissue specimens were

collected during required resections in relieving obstructions from infant VSD (S1 Table). Each

specimen was preserved in liquid nitrogen and later divided into three portions, which were used

for DNA extraction, quantitative real-time polymerase chain reaction (qRT-PCR), and immuno-

fluorescence. The Animal Welfare and Human Studies Committee at the Shanghai Jiaotong
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University School of Medicine approved all procedures and parental written informed consent

was obtained prior to initiating the study.

mtDNA quantification by real-time polymerase chain reaction (RT-PCR)

For mtDNA quantification [9], DNA was extracted and purified from tissue samples directly

following proteinase K digestion and phenol:chloroform extraction. mtDNA was quantified

using RT-PCR with primers that targeted a relatively stable site in the mitochondrial DNA

minimal arc [10]: mtDNA F- CTAAATAGCCCACACGTTCCC;and mtDNA R- AGAGCTCCCG
TGAGTGGTTA. Total nuclear DNA was also quantified using RT-PCR with the following prim-

ers that targeted single-copy nuclear DNA within the beta-2M gene [9]: nuclear DNA F- GCTG
GGTAGCTCTAAACAATGTATTCAand nuclear DNA R- CCATGT ACTAACAAATGTCTAAAAT
GGT. Quantification was performed using a SYBR Green PCR Master Mix and a 7900 Sequence

Detection System (Applied Biosystems, Foster City, California). The relative mtDNA copy num-

ber was calculated from the ratio of mtDNA copies to nuclear DNA copies per gram of tissue.

The relative fold change was then calculated using the ΔΔCT method.

Immunostaining and quantification of oxidative DNA damage marker

8-oxoG and p-ATM

VSD heart tissue(0.3 cm × 0.2 cm × 0.1 cm) were fixed in 4% paraformaldehyde in phosphate

buffer solution (PBS) overnight at 4˚C, dehydrated with 30% sucrose in PBS overnight at 4˚C,

and frozen in Tissue-Tek optimum cutting temperature compound on a liquid nitrogen-cooled

metal block before being cut into 8 μm cryosections. The sections were mounted on coverslips

and used for 8-oxoG and p-ATM staining. The initial slide was selected using a random number

generator and every sixth slide after was chosen for microscopy by systematic random selection.

The slides were washed three times with phosphate buffer solution (PBS) and then permeabi-

lized for 15 min with 5% Triton X-100. After washing with PBS three times, the slides were

incubated overnight at 4˚C with a rabbit antibody against cardiac sarcomeric alpha actinin

(Abcam, ab90776, 1:200) and a mouse monoclonal anti-8-oxoG antibody (Abcam, ab64548,

1:200) or a mouse antibody against cardiac troponin T (Abcam, ab8295, 1:100) and a rabbit

antibody against p-ATM (Abcam, ab81292, 1:100). The slides were then incubated for 30 min

with an Alexa Fluor1 555-conjugated anti-rabbit secondary antibody (CST, 4409, 1:500) and

an Alexa Fluor1 488-conjugated anti-mouse secondary antibody (Abcam, ab150073, 1:500).

Nuclei were stained with 4’,6-diamidino-2-phenylindole(DAPI,R37606, life technologies). For

quantification, 8-oxoG and pATM foci were counted using the spot detection function of the

Imaris software (Bitplane, South Windsor, Connecticut) [9]. For each sample, the average num-

ber of foci per myocyte was quantified using the images from 10 fields.

Laser scanning confocal microscopy analysis of Ki67 and cyclin D2

expression

VSD heart tissue sections (8μm) were used for Ki67 and cyclin D2 staining. The initial slide

was selected using a random number generator and every seventh slide after was chosen for

microscopy by systematic random selection. The slides were stained overnight with mouse

monoclonal antibodies against cardiac troponin T (Abcam, ab8295, 1:200) and an Alexa

Fluor1 488-conjugated rabbit anti-Ki67 antibodies (Abcam, ab154201; 1:200) or rabbit anti-

body against cardiac sarcomeric alpha actinin (Abcam, ab90776, 1:200) and mouse antibody

against cyclin D2(Abcam, ab3085,1:200). After three washes, the sections were incubated with

Alexa Fluor1 555-conjugated anti-mouse secondary antibodies (Abcam, ab150107; 1:200) or
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Alexa Fluor1 555-conjugated anti-rabbit secondary antibody (CST, 4409, 1:500) and an Alexa

Fluor1 488-conjugated anti-mouse secondary antibody (Abcam, ab150073, 1:500) for 30 min.

Three researchers who were blinded to sample identities performed the quantification of cellu-

lar Ki67 and cyclin D2 events using either manual counting or digital thresholding (image seg-

mentation and the creation of a binary image from a gray scale) methods. Analysis of the

converted binary images was performed using ImageJ (National Institutes of Health).

Ki67 and cyclin D2 quantification by qRT-PCR analysis

Total RNA was extracted using Trizol (Invitrogen) reagent. RT-PCR was performed using a Pri-

meScriptTM reagent kit (Takara, Japan). qRT-PCR was performed using a SYBR Green Power

Premix Kit (ABI) according to the manufacturer’s instructions. The qRT-PCR reactions were per-

formed in an Applied Biosystems 7900 Fast Real-Time PCR System and the following conditions

were utilized: 1 cycle at 95˚C for 10 s, followed by 40 cycles of 95˚C for 15 s and 60˚C for 60 s.

The primers were obtained from Generay Bio (China). The sequences were as follows: Ki67 for-

ward primer- 5’-ACTTCCCCATGTCTCCAAGG-3’; Ki67 reverse primer- 5’-GCAGTGGTATC
AACGCAGAG-3’; GAPDH forward primer- 5’-TGCACCACCAACTGCTTAGC-3’; GAPDH

reverse primer- 5’-GGCATGGACTGTGGTCATGAG-3’; Cyclin D2 forward primer- 5’-GCAAA
TGTGTACGTGCATGC-3’;and Cyclin D2 reverse primer- 5’-CGATGATTTGCTGGGGATG-3’.

Cell size measurement by wheat germ agglutinin staining

Following antigen retrieval, slides were rinsed three times in PBS and then incubated for

10 min at room temperature with wheat germ agglutinin conjugated to Alexa Fluor 488

(MP00831, Life Technologies), as described by the manufacturer. The slides were subse-

quently washed three times with PBS and incubated overnight at 4˚C with an anti-troponin

T antibody (Abcam, ab8295, 1:200). The following day, the slides were rinsed three times

with PBS and then incubated for 30 min at room temperature with Alexa Fluor1 555-con-

jugated anti-mouse secondary antibodies (Abcam, ab150107; 1:200). After washing three

times with PBS, the slides were mounted in Vectashield (Vector Laboratories, Burlingame,

California). In order to quantify cell size, images were captured and ImageJ was used to

determine the area of each cell. Quantitative analysis involved counting multiple fields from

six independent samples for each group (100 cells per field were assessed from a total of

1000 cells per group).

Statistical analysis

Continuous data—including age, weight, protein expression, mRNA levels, and the number

of Ki67-positive cells—were expressed as mean ± standard deviation. One-way ANOVA and SNK

were used to determine statistical significance. Categorical variables were expressed using counts

and percentages, which were compared for survival and death using Fisher’s exact test. P-values<

0.05 were considered to be statistically significant. Statistical analyses were performed using SAS

software version 9.2 (SAS Institute Inc., Cary, NC, USA).

Results

Baseline patient characteristics

Sixty infants diagnosed with VSD (S1 Fig) that had right ventricular outflow tract muscle bun-

dle thickening were included in this study. As oxygen saturation and pressure load have an

impact on cardiomyocyte proliferation [7–9], patients were selected to ensure that there were

no differences in oxygen saturation, gender, or pulmonary arterial pressure (increasing right

Oxidative DNA Damage and Age
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ventricular pressure load) among the three groups (Table 1). As neuregulin1 has been demon-

strated to stimulate the proliferation of human cardiomyocytes that are < 6 mo old [14], the

sixty heart samples were divided into three groups based on age: Group A, 0–6 mo; Group B,

7–12 mo; and Group C,>12 mo. The twenty patients from each group were analyzed to deter-

mine putative correlations between age and oxidative DNA damage in human hearts. The

patient characteristics were deemed to be comparable and suitable for studying the effects of

age on cardiomyocyte oxidative DNA damage.

Oxidative DNA damage in hearts from different ages analyzed by

mtDNA content

The ratio of mtDNA to nuclear DNA is often used to estimate the mtDNA copy number [14]

and this serves as a high-level indicator of mitochondrial biogenesis [15], which is also consid-

ered to be a marker for oxidative DNA damage [7,9]. mtDNA copy number was measured in

hearts from the three groups and the average fold change of mtDNA in groups A, B, and C

were 2.72 ± 1.12, 5.52 ± 0.78, and 1.87 ± 0.74, respectively (p < 0.01, n = 20, Fig 1), suggesting

that mtDNA content in human heart did not increase with age, although Group B (7–12 mo)

did have the highest mtDNA copy number. These results are distinct from those obtained in

mice, in which the mtDNA content of heart increased with age [7].

Table 1. Patients’ clinical information (Individual information provided in S1 Table).

Group A Group B Group C P

Age(mo) 3.5 ± 0.4 8.3 ± 0.9 18.5 ± 3.8 <0.001**

Body weight(kg) 5.2±0.9 6.7±0.3 12.2±0.5 <0.001**

Oxygen saturation 99.5±0.6% 99.5±0.7% 99.7±0.6% 1

Pulmonary arterial pressure 33.4 ± 5.7 33.2 ± 4.6 29.8 ± 4.6 0.4673

Mean ± standard deviation

**p < 0.01, ANOVA, SNK, n = 20.

doi:10.1371/journal.pone.0170351.t001

Fig 1. Oxidative DNA damage in different age hearts analyzed by mtDNA copy number. qRT-PCR was

used to analyze the levels of mtDNA in VSD patient hearts. mtDNA was not positively correlated with age,

although group B (7–12 mo) had the highest amount of mtDNA. Bars indicate mean ±standard deviation. Both

ANOVA and SNK were performed to evaluate statistical significance, n = 20, **p < 0.01.

doi:10.1371/journal.pone.0170351.g001
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Oxidative DNA damage in hearts from different ages analyzed by

8-oxoG levels

Increased levels of mtDNA are often correlated with increased amounts of oxidative DNA

damage. In order to validate the results observed with mtDNA copy number, 8-oxoG levels

were measured from the three groups [12]. 8-oxoG levels were significantly increased in

Group B, and 8-oxoG signaling was observed in or near the cell nucleus in both cardiomyo-

cytes and non-cardiomyocytes (Fig 2). These results indicated that oxidative DNA damage was

highest in group B (7–12 mo).

Oxidative DNA damage in hearts from different ages analyzed by p-ATM

ATM is the primary DNA double-strand break-sensor protein and autophosphorylation at res-

idue Ser1981 plays a central role in cell cycle delay after DNA damage [13]. In order to further

confirm that Group B had higher levels of DNA damage, p-ATM levels were measured in

hearts from different ages. p-ATM was expressed only in the nucleus and was significantly

increased in Group B (Fig 3), further confirming that oxidative DNA damage was highest in

group B (7–12 mo).

Fig 2. Oxidative DNA damage in hearts from different ages analyzed by 8-oxoG. (A) Representative graph of groups A, B, and C. 8-oxoG was not

positively correlated with age, and group B (7–12 mo) had the highest amount of 8-oxoG. Cardiac sarcomeric alpha actinin (red), 8-oxoG (green), and DAPI

(blue) staining; Scale bar = 25 μm. (B) Quantification of 8-oxoG foci per cardiomyocyte in each group, n = 20, **p < 0.01.

doi:10.1371/journal.pone.0170351.g002
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Proliferation activity of cardiomyocytes from different age groups

Ki67 is present during all active phases of the cell cycle (G1, S, G2 and mitosis) and serves as an

excellent marker for cell proliferation. Thus, Ki67-positive cells were measured from all three

groups, resulting in 46 ± 10, 5 ± 3, and 2 ± 2 Ki67-positive cardiomyocytes (troponin T positive)

in groups A, B, and C, respectively, (p = 0.021, n = 20). The number of Ki67-positive non-cardi-

omyocytes (troponin T negative) in the three groups was 78 ± 16, 42 ± 11, and 23 ± 7, respec-

tively (p = 0.0015, n = 20). A total of 20,124 ± 1442, 20,344 ± 3463, and 21123 ± 1463 cells were

counted for groups A, B, and C (n = 20) and the percentage of Ki67-positive cardiomyocytes in

Fig 3. Oxidative DNA damage in hearts from different ages analyzed by p-ATM. (A) Representative graph of groups A, B, and C. p-ATM was not

positively correlated with ages, and group B (7–12 mo) had the highest amount of p-ATM. Cardiac troponin T (green), p-ATM (red), and DAPI (blue) staining;

Scale bar = 25 μm. (B) Negtive control. Primary antibody was substituted with PBS. (C) Quantification of p-ATM foci per cardiomyocyte in each group, n = 20,

**p < 0.01.

doi:10.1371/journal.pone.0170351.g003
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each group was 0.23 ± 0.05, 0.02 ± 0.01, and 0.01±0.01, respectively (p< 0.05). The percentage

of Ki67-positive non-cardiomyocytes in each group was 0.39 ± 0.06, 0.17 ± 0.04, and 0.11 ±
0.02, respectively (p< 0.05; Fig 4). These results indicated that both cardiomyocyte and non-

cardiomyocyte proliferation activities were decreased with age, which is consistent with previ-

ous reports [6,16].

Immunofluorescence was performed to detect and quantify cyclin D2-positive cardiomyo-

cytes. The number of cyclin D2-positive cardiomyocytes (sarcomeric alpha actinin positive) in

the three groups was 35 ± 7, 4 ± 2, and 2± 1, respectively (p = 0.003, n = 20) and the number of

cyclin D2-positive non-cardiomyocytes (sarcomeric alpha actinin negative) in the three groups

was 65 ± 10, 37 ± 12, and 21 ± 8, respectively (p = 0.005, n = 20), A total of 19,223 ± 1553, 19445

± 2212, and 19023 ± 1654 cells were counted for groups A, B, and C (n = 20) and the percentage

of Ki67-positive cardiomyocytes in each group was 0.18 ± 0.02, 0.02 ± 0.01, and 0.01 ± 0.01,

respectively (p< 0.01). The percentage of Ki67-positive non-cardiomyocytes in each group was

0.34 ± 0.02, 0.02 ± 0.01, and 0.01 ± 0.01, respectively (p< 0.01; Fig 5).

In order to further support the above results, qRT-PCR was performed to detect the mRNA

levels of Ki67 and cyclin D2. The relative expression of Ki67 and cyclin D2 decreased with age

(Fig 6), confirming that cardiac cell proliferation activity decreased with age.

Fig 4. Cardiomyocyte proliferation from different age groups analyzed via confocal microscopy.

Confocal microscopy of tissue sections using Ki67 and troponin T indicated that proliferating cardio-

myocytes were decreased relative to age. (A) Representative Ki67-positive cardiomyocytes in Group B.

(B) Representative Ki67-positive non-cardiomyocytes in Group B. (C) Quantification of Ki67-positive

cardiomyocytes. (D) Quantification of Ki67-positive non-cardiomyocytes. Data presented as mean

±standard devation; *p < 0.05, **p < 0.01. Cardiac troponin T (red), Ki67 (green), and DAPI (blue)

staining are shown. Arrows indicate proliferating cardiomyocytes and the triangle indicates non-

cardiomyocytes.

doi:10.1371/journal.pone.0170351.g004
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Cell size determined by WGA

Previously, hypertrophy was noted to act as an alternative method by which postnatal heart

growth and pathological hypertrophy of cardiomyocytes affected heart function [17]. Thus,

Fig 5. Cardiomyocyte proliferation from different age groups analyzed by cyclin D2. Confocal

microscopy of tissue sections using cyclin D2 and cardiac sarcomeric alpha actinin indicated that proliferating

cardiomyocytes were decreased relative to age. (A) Representative cyclin D2-positive cardiomyocytes in

Group B. (B) Representative cyclin D2-positive non-cardiomyocytes in Group B. (C) Quantification of cyclin

D2-positive cardiomyocytes. (D) Quantification of cyclin D2-positive non-cardiomyocytes. Data presented as

mean ± standard deviation; *p < 0.05, **p < 0.01. cardiac sarcomeric alpha actinin (red), cyclin D2 (green),

and DAPI (blue) staining are shown. Arrows indicate proliferating cardiomyocytes and triangle indicates non-

cardiomyocytes.

doi:10.1371/journal.pone.0170351.g005

Fig 6. Ki67 and cyclin D2 mRNA is significantly decreased relative to age. qRT-PCR was used to

analyze Ki67 and cyclin D2 mRNA levels. Both Ki67 (A) and cyclin D2 (B) were decreased with age. GAPDH

served as a control. Bars indicate mean ±standard deviation. * p < 0.05, **p < 0.01, n = 20.

doi:10.1371/journal.pone.0170351.g006
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the relationship between cardiomyocyte hypertrophy and age was assessed. WGA selectively

binds to both N-acetylglucosamine and N-acetylneuraminic acid (sialic acid) residues, and

serves as an effective probe for visualizing cell boundaries. An Alexa Fluor 488 conjugate of

WGA was used to visualize cardiomyocyte boundaries, and the size of cardiomyocytes was

found to increase with age (Fig 7), consistent with previous reports [1]. This suggested that

hypertrophy was an alternative growth method when cardiomyocytes exit proliferation [18].

Discussion

Cardiomyocyte proliferation contributes to postnatal heart growth in young humans and is

very important in recovering heart function [16]. However mammalian cardiomyocytes lose

proliferation activities during the aging process and cycling cardiomyocytes are almost undetectable

by adulthood [16]. These limited numbers of cycling cardiomyocytes renders heart regeneration

and functional recovery to be nearly impossible in adults, especially as the underling mechanism

for the loss of mammalian cardiomyocyte proliferation remains to be elucidated. Currently, there

are two possible explanations for this phenomenon: 1) The well-organized contractile architecture

of adult cardiomyocytes may physically encumber cell division [2] and 2) Cardiomyocyte centroso-

mal integrity is lost shortly after birth, which contributes to a post-mitotic state of mammalian car-

diomyocytes [19], as DNA integrity is a critical factor that impacts cell cycle activity [7,9]. However,

Fig 7. Cell size increased with age. (A) Representative graph of each group. Cardiac troponin T (red), WGA (green). (B) Quantification of the cell size for

each group. Data presented as mean ±standard deviation; ***p < 0.001, n = 1000 cells for each group.

doi:10.1371/journal.pone.0170351.g007
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these studies were performed using animal models and there are currently no data obtained from

human studies. This study is the first report to investigate the relationship between DNA integrity

and cardiomyocyte proliferation in humans.

All samples were obtained from the thickening muscle bundle of VSD patients. Although

previous studies have indicated that there is no significant difference in the number of Ki67-

positive cardiomyocytes between normal and VSD hearts [20], the effect of VSD or muscle

thickening on oxidative damage remains unclear. Therefore, caution should be applied in

directly translating these results to healthy human hearts. However understanding the rela-

tionship between DNA integrity and cardiomyocyte proliferation in VSD hearts is beneficial

in understanding the regulatory network of heart regeneration.

This study also examined oxidative DNA damage in human heart, which did not linearly

increase with age but instead reached a peak before decreasing to original levels. This result was

consistent with Murray et al. [21], but contrary to Puente et al. [7], which could be explained in

two possible ways. First, oxidative DNA damage does not reduce cardiomyocyte proliferation

during postnatal heart development, while increased oxygen free radical production may pro-

mote cardiomyocyte proliferation via ERK1/2 and c-Myc-dependent activation of cyclin D2

transcription [21–22]. Interestingly, both Mollova et al. and Bergmann et al. demonstrated that

human cardiomyocyte proliferation continues throughout the first 10 years of human develop-

ment [23–24]. Oxidative DNA damage alone cannot explain this phenomenon. The second

explanation may be that oxidative DNA damage in human heart is different from mice. For

example, there are junction molecules, such as TWINKLE helicase, that emerge in human

heart mtDNA during postnatal development and these molecules are absent in mouse hearts,

concomitant with an increased demand for oxidative metabolism [25]. Pohjoismäki et al.

demonstrated that overexpression of TWINKLE helicase in mice was able to protect cardio-

myocytes from genotoxic stress caused by reactive oxygen species [25]. These results indicate

that TWINKLE maintains mtDNA integrity to promote cardiomyocyte survival, suggesting

that the human heart is more tolerant to reactive oxygen species than mouse heart. The data

from this study demonstrated that oxidative DNA damage in human cardiomyocytes reaches

a peak at 7–12 mo, followed by a surprising decrease to original levels, indicating that DNA

damage repair in human cardiomyocytes is more efficacious than in rodents.

Although human cardiomyocytes are more tolerant to reactive oxygen species and may

have greater oxidative repair capacity [25], the loss of cell cycling activity is similar to mouse

cardiomyocytes [6, 16], which could be due to two possible explanations: 1) Oxidative DNA

damage after birth causes permanent cell cycle arrest and subsequent recovery cannot reverse

this process, and 2) Oxidative DNA damage only contributes to one component of cell cycle

arrest. At birth, under increased hemodynamic stress, neonatal cardiomyocytes undergo cyto-

skeletal architecture reorganization in order to adjust to postnatal physical stresses. Subsequent

cytoskeletal reorganization of cardiomyocytes could impact centrosomal integrity and hamper

proliferation [19]. Supporting these findings, mouse models have been used to demonstrate

that proliferating cardiomyocytes are the same as striated muscle-disassembled cardiomyo-

cytes [2]. Thus, in order to meet postnatal circulation demands, rodent cardiomyocytes transi-

tion from mononucleated forms to predominantly binucleated during the first week of life.

However, the percentage of mononucleated cardiomyocytes in humans is ~ 65% throughout

life [16], which differs from the transition in mice, indicating that the cytoskeletal architecture

theory of mice cannot be directly applied to humans.

In summary, this is the first study to demonstrate a relationship between age and oxidative

DNA damage in human cardiomyocytes. The results suggested that oxidative DNA damage in

human cardiomyocytes is insufficient to fully explain the decreased proliferation activity in the

postnatal period, which could be due to both the well-organized architecture of cardiomyocytes
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and their nuclear integrity. Heart failure therapy remains challenging and requires more inten-

sive investigation, especially in human models.
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