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Salp swarm algorithm (SSA) is an innovative contribution to smart swarm algorithms and has shown its utility in a wide range of
research domains. While it is an efficient algorithm, it is noted that SSA suffers from several issues, including weak exploitation,
convergence, and unstable exploitation and exploration. To overcome these, an improved SSA called as adaptive salp swarm
algorithm (ASSA) was proposed. Thresholding is among the most effective image segmentation methods in which the objective
function is described in relation of threshold values and their position in the histogram. Only if one threshold is assumed, a
segmented image of two groups is obtained. But on other side, several groups in the output image are generated with
multilevel thresholds. The methods proposed by authors previously were traditional measures to identify objective functions.
However, the basic challenge with thresholding methods is defining the threshold numbers that the individual must choose. In
this paper, ASSA, along with type II fuzzy entropy, is proposed. The technique presented is examined in context with
multilevel image thresholding, specifically with ASSA. For this reason, the proposed method is tested using various images
simultaneously with histograms. For evaluating the performance efficiency of the proposed method, the results are compared,
and robustness is tested with the efficiency of the proposed method to multilevel segmentation of image; numerous images are
utilized arbitrarily from datasets.

1. Introduction

Nature-inspired methods are applied in most engineering
research problems because of their linear nature, easy imple-
mentation, and randomization dependent on population.
They are mainly classified into two major types: swarm intel-
ligence (SI) and evolutionary algorithms (EAs). EAs are
methods that work on optimization of the research problem,
e.g., differential evolution (DE) [1], genetic algorithm (GA)
[2], and ant lion optimizer (ALO) [3]. SI is dependent on
the swarming nature of various species, e.g., dragonfly algo-

rithm (DA) [4], firefly algorithm (FA) [5], gray wolf optimi-
zation (GWO), bat algorithm (BA) [6, 7], and particle
swarm optimization (PSO) [8-10].

Segmentation is aimed at distinguishing several essential
parts that define objects. Segmentation, a challenging step in
image processing, plays a key role in detecting objects and
pattern recognition [11]. It is necessary to develop an image
segmentation algorithm that does not require human
intervention and minimal computational resources. The
solution to the problem previously proposed relies on C
and K-means clustering algorithms [12, 13]. But the cluster
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number computation was its key drawback, along with the
fact that the system’s computing complexity increased
exponentially.

Furthermore, histogram-based thresholding has pro-
vided the solution to the image segmentation, where the
number of thresholds (th) and histograms would be used
together with objective function. The two broadly employed
objective functions proposed presently are the Kapur criteria
for entropy [14] and Otsu class variance [15]. The above-
stated methods are useful but also increase the computa-
tional cost when used with multilevel thresholding. Various
methods of optimization have been used by researchers from
a while to solve this problem.

Some drawbacks of Kanpur entropy were overcome in fire-
fly optimization algorithm (FOA) This approach recreates the
behavior of fireflies and bioluminescent interaction processes
in nature [5]. Horng also proposed the use of honey bee mating
optimization (HBO) in multilevel image thresholds with
Kapur’s entropy (KE) [16]. The problem of class variance func-
tion and the optimization of the entropy criterion in multilevel
thresholding was overcome by the bacterial foraging algorithm
(BFA) [17, 18] and harmony search optimization system
(HSO) [19], but Tuba and Brajevic preferred the use of FOA
[11] and cuckoo search (CS) [6]. The CS system and Kapur
entropy segmentation of satellite images were used. Otsu’s
approach was tested with the firefly algorithm (FA) [20] for
multilevel image thresholds. Tuba and Alihodzic [21] used a
bat algorithm (BA) with Otsu and Kapur in multilevel image
thresholds. Effective results were obtained when the Tsallis,
Kapur, and Otsu methods were optimized using the modified
artificial bee colony system for multilevel thresholding images
[21]. Subsequently, multilevel picture thresholding was used
for the gray wolf optimization process (GWO); an objective
function was dependent on Otsu’s class variance method [22]
and Kapur’s entropy. Animal migration optimization (AMA)
and social spider (SSA) algorithm were used to optimize class
variance for thresholding multilevel images using Otsu class
variance methods and Kapur entropy [23, 24]. Interdepen-
dence has been reduced using an adaptive balance optimizer
(AEO) with a multilevel threshold [25]. Additional segmenta-
tion of images was carried out using the exchange market
optimization (EMO) approach with a minimum cross-
entropy threshold [26]. Elaziz et al. [27] used a hyperheuristic
approach to threshold multilevel images by optimizing class
variance to address the drawback of a metaheuristic method.
While optimization approaches used so far have been effective
with the user-defined threshold value, we have not achieved a
completely programmed segmentation method.

When multilevel thresholding, a separate method is used
along with peak detection, which relies on the information
in the histogram, so the objective function where the cluster
center is the peak value of the histogram and the valley is the
upper and lower limit of the cluster determined by the
intensity level of the histogram, it can be said that the pixel
intensity between successive valleys is taken as a cluster in
the picture [28, 29]. Methods for detecting peaks in the
histogram were proposed by Tsai, where Gaussian kernel
smoothing was used to eliminate variable peaks and valleys
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[30], which are the best methods for finding two peaks not
fail to detect more than two peaks in the image.

In this article, a novel technique of ASSA along with
thresholding methods is proposed for image segmentation,
which is an area of research with high accuracy in segmenta-
tion. It is practically validated by testing the accuracy of out-
puts and computational time taken by many other existing,
state-of-the-art algorithms like GA [2], PSO [8], FPA [5],
BA [6, 7], CS [9], DE [1], and MPA [10].

The main contributions of this paper are as follows:

(1) The use of ASSA for optimum multilevel thresholding
with TII-FE: experiment results indicate that ASSA
produces better results than PFA-, DE-, PPA-, PSO-,
MPA-, and HPFPPA-D-dependent techniques

(2) The computation of multilevel thresholding is signif-
icantly reduced by using ASSA-based TII-FE

The paper is planned as follows: a detailed introduction
of thresholding in multilevel images is discussed in Section
2. The fundamentals of ASSA are described in Section 3.
Results are detailed in Section 4. At last, in Section 5, the
conclusion and future scope of the work is discussed.

2. Thresholding in Multilevel Images

Optimal thresholding techniques [11] are employed in
image processing to determine thresholds, so the clusters
formed on histograms follow the target objectives. The prob-

ability of i the gray level is

h.

pi:MxN’ (1)

where the range of gray level is {0,1,2,3,4,5 -+ -+ «++ -+
-+ .L =1}, M x N is the image dimension, and A; is the no.
of pixels with gray level i, 0<i< (L -1).

Let m be the no. of thresholds present; then, t,,t,, 5,1,
y e e e ..t,, and if we break it in m classes, then

COZ{O’ ...... 'tl_l}’
Clz{tv ...... .tz—l},
C2 = {tz’ ...... .t3 _ 1}, (2)
C3={t3, ...... .t4—1},
Cm = {tm’ ...... L— 1}‘

Optimal thresholds are achieved by increasing the objective
function that is based on specified parameters of thresholds.
The most widely applied optimum thresholding techniques
are Otsu’s and Kapur’s methods [14, 15]. The objective func-
tion in bilevel thresholding is selected as per Kapur’s approach:

J(ty)=H, +H;, (3)
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where where
t-1
p p
H,=- Z iy 2
i=0 “’0 wO

i=0
o (4)
H, Pi gy P ,
=, @1 @
-1

H,&H, are partial entropies of histogram.

t, is the gray level, which increases objective function in
Equation (3).

Now, by Otsu’s method, it is defined

J(t) =0 +0y, (5)
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Now, by Otsu’s method as in Equation (5), it is defined
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Therefore, wyu, + w, ¢, =y and wy +w; =1 and y; is _ N b
. . Hm - Z .
the mean intensity. i=t,, ¥m
Thresholding for multilevel images can be increased by 9)
Kapur’s entropy; m-dimensional optimization problem is
optimal  [11] in  which  m-optimal thresholds .
(379 278 295 FERTTRITIREE .t,) are examined by increasing The value of thresholds s £, <f, <t <fy, -+ - - <t

objective function:

in both methods.

2.1. Multilevel Thresholding with Fuzzy Type II Sets. The

](tptzats)tp ......... ..tm)=H0+H1+H2+H3+H4+ ......... +H

segmentation obtained by multilevel thresholding methods
works by grouping pixels based on intensity values to facili-

(7)) tate image analysis. The segmentation criteria can be divided
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TaBLE 1: Basic functions of SSA and ASSA.

Basic functions SSA ASSA

Initialization of population Rand. no. Decreasing adaptive population
Exploitation Standard Standard

Exploration Standard Combination of CS [6] and GWO [7]
Parameters for controlling Rand. no. LD w.r.t. iterations

P
Determine the input —|  Pre-processing Setting up desired
parameters
@ Select the best
¥ solution
TYPE Il FUZZY
ENTROPY
Return the best
solution
Stop if
criteria ASSA |
Yes N
meet?
No

FIGURE 1: Step-by-step working of the proposed method.

TABLE 2: Parameter settings.

Algorithm Parameters

PSO NP=10xD; D=2xPR=2%[3,5,7); Gpax = 50; W0, =0.9, W, = 0.4, Acl = Ac2 =2
DE NP=10xD; D=2xPR=2x[3,5,7); Gyoe = 50; F=0.5

PPA NP=10xD; D=2xPR=2x3,5,7]; G, = 50; N.. =7

PFA NP=10xD; D=2xPR=2x%3,5,7]; G,y =50; 0 =5

HPFPPA-D NP =10xD; D=2xPR=2%[3,5,7); Gy = 50; Ny =7; 6= 5

ASSA NP=10xD; D=2xPR=2x3,5,7]; G, = 50

max

Here, NP is the population size, D is the dimension of problem, G,

into two types: parametric and nonparametric. In compari-
son to nonparametric parameters, metric methodologies
are considered to produce more computational weight. As
a result, nonparametric techniques are often preferred due
to their intensity and simplicity, maximum entropy, and
the most well-known between-class variance.

Researchers paid close attention to entropy-based data
utilized to separate the image’s histogram. To start with,
the data hypothesis allowed us to apply Shannon’s entropy
to the thresholding problem [31]. Regarding this trend,
several different methodologies, such as Tsallis entropy
[32], Renyi’s entropy [33], cross-entropy [34], and finally a
fuzzy entropy-based approximation [35], were suggested.
Segments are used to remove artifacts from images.

is the number of iteration, N, is the maximum number of runners, o is the standard
deviation, bp is the breeders’ probability, and PR are different threshold levels.

Moreover, when many edges are used, most entropy-
based criteria will suffer from the negative effects of high
complexity. Tao et al. [36] introduced a fuzzy entropy-
based method to improve Zhao’s [37] work. An image is
thresholded using histogram segments with specified fuzzy
membership values; these segments are used to eliminate
objects in an image.

2.1.1. Different Fuzzy Type II Sets. Type I fuzzy, with finite
set X = (x;, x5, =+ -+ ,X,), is defined in
A={xpu,(x)xeX,0<pu,(x) <1}, (10)

where p1, is the membership function.
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TaBLE 3: Thresholds achieved after applying the ASSAs and competitive algorithms to segment the set of benchmark images using TTI-FE.

Im PR ASSA HPFPPA-D PSO PFA DE PPA

3 29 104 224 33 66 137 34 144 235 35104 193 35100 185 36 86 152
45 86 135 167 247 34100135174 233 36 78 114 181 235 35100136 174232 39 78 115 158 209 35 105 151 191 236
41004 7 19 6298 124 157 41 84 115 146 178 2046 71 91 135 43 78 112 143 176 42 86 101 133 155 35 83 106 134 156

202 210 178 211 187 188
237 233 217 234 234 228
38 118 195 47 113 198 74 138 199 49 116 199 57 106 181 48 108 194
3673 118 142 212 51 93 139 184 220 36 73 136 187 222 54 96 141 187 221 51 93 137 185222 64 109 136 171 213
176035 ; 245281117183 4990 117 145 170 40 78 114 136 171 43 80 105 132 163 47 79 106 133 157 51 100 116 143 180
206 195 207 192 184 200
215 224 231 224 219 223
24 116 236 68 134 195 68 136 196 70 138 197 67 138 199 103 168 209
2372 154 201 229 21 76 128 162 216 2575 108 142 213 21 76 137 166 211 27 78 131 169 215 33 83 135 177 208
225017 ; 203790115127 224478 112 147 20 84 129 146 165 21 43 81 118 153 21 41 79 115139 29 79 107 143 186
184 182 192 190 163 209
218 219 233 223 204 236
46 100 142 84 164 217 84 161 214 84 164 217 85 165 216 90 161 210
28 84 135 167 225 47102158 183218 43 82 111 155 216 50 105 162 195225 44 100 144 166 218 61 110 161 199 229
241004 44 68 98 127 156 46 7591 113 157 43 97 143 170 199 50 80 109 138 163 47 87 109 121 138
7 12284279 132173 186 197 216 189 171
196 219 227 232 220 212
88 118 217 76 132 194 77 157 217 74 128 192 76 133 194 66 110 186
44 93 135169 219 56 93 133 173 214 56 119 165198 231 54 90 119 156 210 58 98 136 175 215 45 86 133 169 221
385028 . 56 86 117 135 162 54 88 114 139 167 42 66 99 139 172 53 86 112 137 166 53 86 112 133 160 42 72 117 160 182
202 196 203 193 188 206
226 226 231 225 222 224
54 132 204 52 97 175 51 128 205 46 121 204 51 95 170 50 111 181
56 104 148 204 246 49 91 133 176 214 41 97 120 159 217 49 91 138 182 217 50 90 135 182 215 30 68 88 136 210
388016 7 46 84 104 128 149 47 87 116 147 173 48 95 117 139 168 47 88 113 142 170 43 81 110 141 170 37 78 123 147 178
198 196 190 193 193 203
220 224 221 224 222 233
36 162 194 4197 175 36 96 180 4197 175 40 98 174 53 108 167

3462120212248 316194127181 306292119181 326392121174 306296127 175 31 7497 128 179
2092 7 347078 112158 2447 6588 112 36 71 105 144 172 2552 67 85 112 21467296115 20 41 88 131 140

190 132 194 137 136 156
227 185 217 189 174 202
96 178 216 58 105 180 57 145 220 96 183 219 57 102 178 66 109 183

44 92 148 184 216 60 109 148 187 221 56 105 156 202 229 56 104 148 189223 55 99 144 188 222 48 95 141 185 221
14037 7 38 104 141 152 181 43 75103 131 161 5298 133 165 187 38 69 99 126 161 43 70 103 135 165 29 73 117 142 167

198 190 208 192 192 191
223 223 232 224 224 222
44 180 196 40 79 148 40 79 149 40 79 147 40 79 147 4194 179

336384118164 386399135170 3984119159203 3763100137 172 386298 135173 37 81 100 137 177
55067 7 28 53 84125169 4063 82112139 365577113161 4061 81 112139 37 59 82 107 146 40 69 102 123 146

187 167 191 170 180 168
237 200 206 205 200 201
106 167 210 78 139 197 65 130 197 80 142 199 80 139 197 92 150 209

169012
253659 80 143 55100137 180220 51 87 122 165216 5298 136 177 218 59103 143 187 222 63 117 152 175 219
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TaBLE 3: Continued.

Im PR ASSA HPFPPA-D PSO PFA DE PPA
38 64 102 130 164 40 74 105 137 165 43 90 114 128 162 41 74 100 132 168 40 74 103 129 160 39 66 88 112 170

192 197 190 197 195 209

219 229 223 227 226 232

For dealing with vulnerability, a number of membership
values are used in fuzzy type II sets rather than value as in

high

high ow ow
A= Ly (), W5 () 16 € X, 0 2 (), ™ () < 1,

(11)

where yiigh (x) and 42" (x) are the upper and lower member-
ship functions.

2.1.2. Image Segmentation with Fuzzy Type II. Thresholding
is the simplest method for segmenting an image. Threshold-
ing is as simple as using a threshold (th) value and adding it
to a histogram until an optimal condition is reached. Equa-
tion (12) describes the thresholding method using a histo-
gram.

I (r,c)if I (1, ¢) <th,,
thy_,if thy_| <Ig.(r,c) <th;,k=2,3,---.nt,
I (r,c)if I (1, ¢) > th,,

I(r,c)=

(12)

where I (7, c) is the segmented image with gray value, I, (7, ¢)
is the original image with gray value, and (7, ¢) is the position
of pixels.

3. Adaptive Salp Swarm Algorithm

3.1. Salp Swarm Algorithm. The SSA method is SI inspired
by navigation and foraging activity of salps present in oceans
[38]. Body configuration of salps is very closely linked to
jellyfish present in oceans and practices the same technique
to step forth and pump water across their bodies. SSA is ulti-
mately inspired by the swarming action of the salps under
which the swarm of the salps produces a chain of salps.
The leader salp is present in front, and the rest who follow
the leader are known as followers. The position of salps in
search space is determined by the presence of food source
S and leader’s position by

Yi=

J

{Sj+c1((ubj—lbj)cz+lbj)C3 >0, 13)

S; = ¢;((ub; = 1b;)c, +1b;)C; <0,

where Y} is the leader/first salp, S]- is the food source at jth
dimensions, ub; and lb; are the upper and lower boundary,
€1 €y Gy ven oo . are random values.

Balance between exploitation and exploration is main-
tained by ¢, coefficient parameter, as shown in

4i

¢ = 20®), (14)

where i is the current iteration, I is the no. of iterations, and
¢, and ¢, are uniformly distributed random value coefhicients
in [0, 1].

The next position in j™ dimension is determined by uti-
lizing these positions when moving in +ve&—veco.

Now, followers” updated position is shown in

1
k_ 2
Y= Eat + vy,

(15)

where k>2 and Y;‘ is the k™ follower position in the j

dimension.
v, = speed,
t = time, (16)
y
a= final )
Yo

If we put v, =0 in Equation (15), then

1
k _ k k-1
Y.——(Yj+Yj ) (17)

)

where k>2 and Y} is the k™ salp follower in the j dimen-
sion search area.
Some main disadvantages of SSA [39] are as follows:

(1) The computational cost of the method increases due
to usage of only one parameter of optimization.
Although it is said that only parameter ¢, is needed
for optimum function, but there are 3 parameters
¢1» ¢, and ¢; present and defined

(2) It has weak convergence and local optimization
problems that need to be modified to increase effi-
ciency and decrease computational cost

(3) SSA should be adaptive to reduce the user depend
parameter initialization and make it more effective
and self-adaptive

3.2. Adaptive Salp Swarm Algorithm. To overcome the
above-stated drawbacks of SSA, an ASSA was proposed.

Some major changes done to overcome drawbacks of
SSA [38, 39] are as follows:
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TaBLE 4: Parameters of TII-FE found by the proposed ECA and ASSA.

Im PR ASSA HPFPPA-D PSO PFA DE PPA
ui’l Cﬂ at’l Cn an Cn an C}‘l an CYl ai’l Crl
2879 30129 66 66 078 69 138 070 70 130 69 91
3 208 236 0 66 66 208 214 67 210 255 70138 248 130 240 28195 209
5 2778 63 94 068 67131 07779 7178 148 268 67132 07880 7878 676147 63133
133 156 137 178 132 138 138 210 152 209 132 139 139 209 149 149 167 167 154
41004 242 252 210 255 215 255 210 254 167 250 219 215 252
7 11 47 2778 08384 8184 04151 40 50 90 91 77881 7878 18586 8286 27197 6795
89 121 107 127 146 145 146 91 142 142 144 117 116 149 126 115 142
142 177 173 228 146 210 209 210 91 178 178 178 255 144 211 208 211 150 161 159 212 142174 170 201
229 245 210 255 178 212 255 212 255 211 244
3 12 114 64 122 8 86 86140 15137 132 139 255 890 90 142 8106 106 106 10 87 85128
193 198 140 255 143 142 255 106 255 134 254
5 31 61 4286 99393 9393 86585 6481186 12 95 95 96 10 93 9293 22 108 106 110
112 123 124 162 184 184 184 186 187 96 186 185187 93182 181 188 113 158 158
176035 190 234 185 255 189 255 187 254 188 255 184 184 242
7 1845 305992 98990 8990 16 65 6491136 87981 7880 1579 78 79 10 92 92 108
71 102 132 144 144 145 91 136 136 129 128 135 79132 132133 109 124 122 162
171 201 195211 145194 194 195 138 206 203 207 255 136 190 190 193 135181 179 187 166 194 193 209
213 218 195 253 207 194 254 188 250 209 236
2046 28186 1134 134134 136 1138 138 138 134 142 45167 160 169
3 231 242 134 255 136 135 136 255 138 255 134 143 255 170 248
5 20 64 26 80 043 42 108 0 49 49100 114 042 41109 06095 5495 762104 59103
126 190 183 212 108 147 147 176 101 115 169 110 165 164 166 166 166 172 174 165 180
225017 215 244 177 255 170 255 166 255 174 255 181 234
7 17 30 2345 14444 4344 041 40127129 04245 4243 24143 4041 3659 5592
70 114 111 117 112 112 112 128 130 162 117 117 119 114 114 115 127 118 159
120 175 134193 112181 181 182 162172 168 211 255 120 188 185191 115162 162163 175196 196 222
206 230 183 255 211 191 255 163 245 224 248
3 3290 60110 21146 146181 21149 146 172 255 21 146 146 181 22148 148 181 41150 138172
118 166 181 252 173 181 252 181 251 182 237
5 2065 36103 2272 71132 2165 64 98 117 2277 77 132 2268 66 132 3198 91 121
124 150 147 185 133183 183 183 105 134 175 132192 191 198 134153 153179 128 195 193 202
241004 213 238 184 251 177 255 198 251 184 252 206 251
7 82430 163255 2168 67 68 2171 7179 102 2266 64128 2378 77 81 26 72 67 101
61 97 68 127 127 127 80 103 123 130 158 156 181 81 138 137138 105115 113 127
127 169 137 177 128 185 183 186 124 194 19.01.99251 183 215 214216 139188 186 190 127 155 148 187
191 202 186 251 203 T 216 247 190 249 188 235
3 81115 95121 19132 132132 18136 135 177 255 19128 128128 18133 133133 31102 101 117
182 252 132 255 179 129 255 133 255 122 250
5 18 90 70 96 18 93 93 93 1896 94 141 188 19 89 88 90 19 96 96 99 2174 69 98
111 165 159173 93173 172173 141 188 207 90 148 148163 99174 173175 103 164 162 174
385028 201 238 173 255 207 255 165 254 175 255 190 252
7 5476 58 96 19 88 88 88 22 63 62 68 129 20 85 85 87 26 81 8091 196782 6576
115131 120 140 88139 139139 69 137 140 87137 136137 91133 132133 158 152 161
161 189 163 216 139195 195196 142 202 201 203 255 140 192 192 194 134187 186 188 162 205 202 206
220 233 197 254 206 195 254 189 254 209 239
34101 74163 97 97 4 87 87 95 95 2 105 98 117
3 198 210 79797 252 1.06,158 10,21,50,252 155 155,252 79596 244 121 240
388016 5 4398 69110 79091 90091 091 81103136 79093 9091 10 90 8990 56175 5574
138 204 158 205 176 174 176 104 138 179 182 182182 90182 179 182 107 101 165

240 253 177 250 181 252 183 251 182 248 170 250
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TaBLE 4: Continued.
Im PR ASSA HPFPPA-D PSO PFA DE PPA
a?’l Cﬂ af’l Cn an Cn an C}‘l an CYl a?’l CYl
30 80 6288 78787 8687 39495 9395139 98690 889 78085 7881 571108 6985
98 113 110 143 145 144 149 139 139 136 135 147 136 135 145 139 137 155
147 195 151201 150 196 196 196 147 189 189 190 252 149 192 191 193 148 192 191193 156 201 199 204
210 230 198 249 190 196 252 197 247 215 250
3 12134 59190 082 82 111 077 72 115 241 082 82 0 80 79 115 13 97 93 118
184 204 111 238 118 111 111,239 116 231 119 214
5 30 52 3872 06161 6161 06165 6062118 16263 6263 16165 5962 45996 578998
111 204 130 220 127 126 127 119 119 121 120 121 126 126 127 101 154
2092 245 251 127 235 120 241 122 226 129 221 155 202
7 36575 657681 04747 474782 07172 7171138 05152 505282 04549 424795 63550 3446
82 142 82 93 93 139 149 8288 88136 9696 96 127 125 134
146 178 170 202 131 132 150 194 134 136 135 145 144 167
295 229 132 133 237 195 194 194 239 137 138 137 240 136 136 212 167 237
3 64 150 128205 11105 105105 8106 106 183 255 10 182 182183 11102 102102 27108 105109
212 219 105 255 184 183 255 102 254 115 251
5 4074 48110 11109 109109 8104 104 106 201 11 103 101105 1298 97 100 15 86 81 104
126 180 170 188 109 186 110 201 189 189 101 188 187 188 114 178 168 192
14037 205 227 186 187 187 255 202 202 255 190 189 255 190 254 195 247
7 3380 43128 11 74 7475 1194 92101164 1164 64 73 17 68 68 72 13 49 45 96
138 150 144 154 76 131 130 131 102 165 165 74123 123129 73134 133136 100 134 133 149
170 194 192203 131190 190 190 165 208 208 208 255 130 191 191 192 138191 191192 152191 182191
215 232 191 255 209 193 254 193 255 203 240
3 24176 64 184 1373 66 84 1375 67 82 215 1373 66 84 1374 66 83 19 63 62 125
191 201 84 211 83 85 209 84 210 143 214
5 2462 426589 1462 62 63 1464 63104132 1362 61 64 16 61 6062 117491 6387
78 110 126 63 135 135135 105132 186 64 137 135137 64135 131135 119 108 155
55067 133 195 135 205 186 220 139 204 135 211 159 195
7 1843 386394 1663 63 63 19 52 52 58 95 19 61 61 61 1559 5859 126984 6769
74 89 162 64 101 100122 5995 131 61 100 100124 59105 104 109 121 119 125
166 176 173 199 124 154 153 180 132 190 190 191 220 125152 152188 112180 179180 136158 155177
223 251 181 219 191 189 220 180 219 188 214
3 87126 126186 17139 139139 8122 122 138 255 18 141 141142 20139 139139 42142 141157
196 225 139 255 139 142 255 139 255 162 255
5 2432 274074 9100 100100 1587 87 87 154 8 96 9599 14 103 103 103 28 100 97 134
45 80 81 100 175 174 89 155 175 100 173 172 181 103 183 138 167 165 183
169012 95 192 185 185 255 176 255 181 255 185 188 188 255 185 255
7 15 50 6178 87276 7176 1174 74106122 97276 7276 87376 7274 246469 5467
82119 122 141 135 134 139 106 122 133 125 123 139 129 129 129 110 107 114
160 179 168 205 139 191 191 202 133 190 190 190 255 141 196 195197 129192 191198 134208 206 210
192 247 202 255 190 198 255 198 254 210 254

(i) For appropriate exploitation and exploration in SSA,
a division depend concept was introduced in ASSA

(ii) The major advantage is the inclusion of the loga-
rithmic distributed (LD) parameter ¢, in SSA. Ran-
domized LD-dependent parameter is useful in
shifting it towards the exploitation stage

(iii) Balance b/w exploitation and exploration is

improved by changing ¢, in SSA to LD, which is
useful in shifting it towards the exploitation stage

(iv) The total no. of evaluation functions is reduced by

reducing population size. It reduces computational
complexity burden
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TaBLE 5: Mean of objective function values attained by the proposed ASSA method for segmentation of digital images using TII-FE.
Im PR ASSA HPFPPA-D PSO PFA DE PPA
3 17.3864 17.3863 17.2156 17.2782 17.2791 16.9104
41004 5 24.2117 242115 23.9600 24.1390 24.0352 22.8482
7 31.1427 31.1426 29.4424 30.9325 29.9948 28.8107
3 17.7601 17.7601 17.5834 17.7495 17.7489 17.6123
176035 5 25.2170 25.2168 24.4512 25.1378 25.1447 24.2853
7 31.3427 31.3426 30.5019 31.1211 30.8947 29.5311
3 18.0951 18.0951 18.0792 18.0926 18.0747 17.4896
225017 5 24.8891 24.8890 24.5326 24.8027 24.6752 23.7939
7 31.7468 31.7468 30.5922 31.5669 31.1628 29.1164
3 17.8438 17.8439 17.3242 17.8300 17.8167 16.8263
241004 5 24.3558 24.3560 23.1237 24.1762 24.0404 23.4730
7 30.5442 30.5444 29.6791 29.5852 30.0270 28.1811
3 18.4241 18.4240 18.1789 18.4032 18.4061 17.8249
385028 5 25.0346 25.0345 24.6457 24.9557 24.9560 23.7739
7 31.3952 31.3952 30.5094 31.1828 30.9945 29.1722
3 17.7144 17.7143 17.3642 17.5825 17.6860 17.1471
388016 5 25.0007 25.0004 23.5646 24.9431 24.8289 23.3324
7 31.1422 31.1422 30.5295 30.8938 30.5589 28.8578
3 17.2421 17.2419 17.0647 17.2309 17.2207 16.8108
2092 5 24.0936 24.0933 23.8854 23.9760 23.8218 22.3837
7 29.5949 29.5849 28.2241 29.3500 29.1886 27.3881
3 18.0703 18.0702 17.6458 17.8294 18.0524 17.2870
14037 5 25.4902 25.4897 24.9791 25.3580 25.2849 23.4466
7 31.5336 31.5335 30.9586 31.2953 31.1121 29.2095
3 16.8166 16.8165 16.6824 16.7545 16.7693 15.8787
55067 5 23.0714 23.0715 22.1780 229317 22.8726 21.4793
7 28.3676 28.3676 27.6598 28.1647 28.0640 26.3183
3 18.3465 18.3464 18.2438 18.3321 18.3382 18.0177
169012 5 25.1464 25.1463 24.9975 25.1118 25.1026 24.4865
7 31.4109 31.4109 31.0277 31.2431 31.2794 29.4929
The initialization of the algorithm starts in a fixed range ~ the performance and is presented as
and is presented in mathematical form as
t
xp=x;— A (C1 * Xnew —xi),
Xjj = Xminj + U(0, 1) X (xmin,j - xmax,j)’ (18) .
X, =x;— A, (Cz *Xnew ~ xi)’
where x; ; is the i™ solution for the j™ dimension. X3 =X = A3 (Cy - Xpeyy = X )5 (20)
1 _ X1t Xt X
i=[1,2,3,4, , 1, (19) new 3 ’
19 t+1 t t
]= [l, 2,3,4, -0 - . d] Xnew = Xpew T & X L(A) (xbest - xnew)’
Xmax,j a0d Xy, ; are the upper and lower limits. where x,.,, is the new solution, A, A,, A, and C,, C,, C; are

U(0, 1) is the uniform rand. no. in [0, 1].

Position in ASSA is updated by modifying exploitation
and exploration function of SSA, and it overall increases

derived from A=2a-r, —a and C2-r,, « and L(A) are uni-
formly and Levy distributed rand. no., and r, and r, are
rand. no. distribution in [0, 1].
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Step size dependent on Levy flight is

AL(A)sin (73) 1

T sl+a’

L(A) ~ (s> 5, >0), (21)

where s= (U/(|V|'/A)) U ~ N(0, 0?).

V~N(0, 1),
o [ T(+A) sin(mdr2) (22)
AL+ A)2° M1

AL is the gamma function.
A=1.5. (23)

Nis derived from Gaussian distribution with variance
=0? and mean = 0.

Basic functions of SSA and ASSA are shown in Table 1.
In the selection step, greedy selection (GS) is executed to
find the proposed solution optimum or not compared with
already proposed methods. For a minimization method with
fitness F(x!) with x}, the solution is mathematically denoted
as

X (24)

new

1 { Xnew if F(xnew)<F(xf)’

x} otherwise.

In controlling parameter balance b/w exploitation and
exploration is improved by changing ¢, in SSA to LD, which
is useful in shifting it towards the exploitation stage. In this
range, upper and lower ¢, &c,;, is [0.950.05] represented
as

10¢
€1 = Cmax T (Cmin - Cmax) x lOgIO <a + t—> > (25)

max

where ¢ is the weight of inertia, a is the rand. no. in [0, 1],
and t and t,,, are present and max. no. of iterations.

In population adaptation, the total no. of evaluation
functions is reduced by reducing population size. It reduces

computational complexity burden and is represented as

n

n(g+ 1) =round K%ﬁ‘) -FEs + nmaxj| ) (26)

where FEs is the max. no. of iterations and n,;, — n,,,, is the
min. and max. population size.

4. Result and Discussion

For simulations, MATLAB R2020a is installed on a worksta-
tion with an Intel i5-4210 CPU running at 1.70 GHz. The
ASSA technique is evaluated in conditions of image segmen-
tation, focusing on the thresholding with fuzzy II entropy.
Natural images with diverse histogram distributions are used
to test the suggested method. The proposed multilevel
thresholding utilizing ASSA is compared to other evolution-
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FIGURE 2: Segmented test images along with equivalent histogram
and convergence plots by ASSA combined with type II fuzzy
entropy for 3, 5, and 7 levels.

ary algorithms like PSO, PPA, PFA, DE [3-10], and
HPFPPA-D [32] on ten benchmark images with varied attri-
butes and complexities [40]. The complete step-by-step
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overview and working of the proposed model are repre-
sented in Figure 1.

Because evaluated algorithms contain stochastic opera-
tors, results must be studied in a statistical framework. The
results of all tests are presented in this work after 30 inde-
pendent runs, with parameter values for competing algo-
rithms listed in Table 2. Finally, the problem’s dimension
size is defined as 2 times total number of thresholds.

For each of the segmentation approaches, three criteria
have been used to determine their quality. The peak signal-
to-noise ratio (PSNR) compares the segmented and original
images for similarity. The PSNR is focused on the mean
squared error (MSE) of each pixel [41-42]. To compare
the segmented image structures, the structural similitude
index (SSIM) is used. The higher SSIM number, the better
the original image segmentation [43, 44].

The ASSA’s results for optimizing TII-FE for threshold-
ing are presented and analyzed in this section. Table 3
shows best ASSA-generated thresholds for various numbers
of thresholds on the benchmark images [45, 46]. The fuzzy
parameters of membership functions used for threshold
level estimation are described in Table 4. Tables 4 and 5
additionally include the best results produced using PSO,
HPFPPA-D, DE, PPA, and PFA for comparison. Table 6
lists the type II fuzzy entropy values achieved by each algo-
rithm so that performance parameters can be compared. In
most circumstances, the suggested ASSA outperforms
comparative techniques by obtaining solutions with higher
fitness values.

Figure 2 shows the results of ASSA-dependent segmen-
tation graphically. Every segmented image [47] includes a
histogram image and a threshold location. It is clear to
notice how the output improves as the number of thresholds
increases on resultant images. For evaluating the effective-
ness of evolutionary computing methods, the fitness value
is not the sole criteria. The convergence curve is frequently
evaluated and compared to other algorithms. Figure 2 also
shows the fitness evolution of the competitive approaches
for benchmark image set across 50 iterations. The graphs
show that the proposed strategy converges faster than other
alternatives in vast majority of situations.

Table 5 displays quality metric values to demonstrate the
superior quality of the images acquired with ASSA and TII-
FE than any other equivalent methodologies in the seg-
mented images. The ASSA performs better over its peers
for most of the experiments in terms of MSE metric, PSNR,
and SSIM. This means that there is less noise in threshold
images created in this work using the method outlined and
the structures which depict the images’ objects are appropri-
ately preserved.

A new approach of image threshold based on type II
entropy (TII-FE) and ASSA is presented in this paper. A num-
ber of benchmark images were used to test the performance of
the proposed ASSA-based threshold method. The threshold
approach is evaluated against competitive methods based on
image accuracy, convergence characteristics, and segmented
image quality. In terms of MSE, PSNR, and SSIM, the quality
of segmented image is measured. The results show that TII-FE
ASSA is an effective image thresholding approach.

Computational and Mathematical Methods in Medicine

5. Conclusion and Future Scope

This paper presents an image segmentation method of
thresholding using ASSA combined with type II fuzzy
entropy. ASSA’s fuzzy entropy type II results are more effi-
cient than PFA, PPA, DE, PSO, and HPFPPA-D. Optimal
image thresholding is accomplished by increasing the value
of entropy, which is a time-consuming process. As a result,
the proposed methodology is examined and studied using
several performance characteristics such as MSE, PSNR,
and SSIM. The results are compared to known approaches,
and the robustness and effectiveness of the proposed strategy
to multilevel picture segmentation are evaluated.

In the future, more precise segmentation of image with
less computational time can be achieved by improving the
method further and comparing the same with other state-
of-the-art algorithms MBO [48], IOA [49], and CASF [50],
which is needed in real-time applications.
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