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Abstract

The central carbon/lactate utilization pathway in the model sulfate-reducing bacterium,

Desulfovibrio vulgaris Hildenborough, is encoded by the highly conserved operon

DVU3025-3033. Our earlier in vitro genome-wide study had suggested a network of four

two-component system regulators that target this large operon; however, how these four

regulators control this operon was not known. Here, we probe the regulation of the lactate

utilization operon with mutant strains and DNA-protein binding assays. We show that the

LurR response regulator is required for optimal growth and complete lactate utilization, and

that it activates the DVU3025-3033 lactate oxidation operon as well as DVU2451, a lactate

permease gene, in the presence of lactate. We show by electrophoretic mobility shift assays

that LurR binds to three sites in the upstream region of DVU3025, the first gene of the

operon. NrfR, a response regulator that is activated under nitrite stress, and LurR share sim-

ilar binding site motifs and bind the same sites upstream of DVU3025. The DVU3025 pro-

moter also has a binding site motif (Pho box) that is bound by PhoB, a two-component

response regulator activated under phosphate limitation. The lactate utilization operon, the

regulator LurR, and LurR binding sites are conserved across the order Desulfovibrionales

whereas possible modulation of the lactate utilization genes by additional regulators such as

NrfR and PhoB appears to be limited to D. vulgaris.

Introduction

Sulfate-reducing bacteria such as Desulfovibrio play an important role in anaerobic microbial

communities in groundwater sediments and reduce toxic heavy metals such as chromium (VI)

and uranium (VI) in nuclear waste-contaminated sites [1,2]. These bacteria use organic com-

pounds such as lactate, ethanol, and pyruvate as electron donors for the reduction of sulfate

[3]. Addition of lactate compounds to contaminated wells can stimulate growth of the anaero-

bic microbial community and promote heavy metal reduction [4]. Desulfovibrio vulgaris
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Hildenborough, a model sulfate-reducer, can grow using lactate as the sole carbon source and

electron donor (Fig 1A); D. vulgaris oxidizes lactate to acetate [5]. However, very little is

known about the regulation of lactate utilization in these organisms.

The D. vulgaris lactate utilization operon DVU3025-3033 consists of all the genes encoding

the pathway for oxidation of lactate to acetate (Fig 1B). These genes are highly expressed dur-

ing growth on defined medium containing lactate-sulfate [11] and are conserved across several

Desulfovibrio genomes and closely related sulfate-reducers (Fig 1B). The operon contains the

only copies of the essential por, pta and ack genes; transposon mutant libraries in D. vulgaris
Hildenborough, D. alaskensis G20 or D. vulgaris Miyazaki carry no insertions in these three

genes [12–14]. However, the lactate permease, D- and L- lactate dehydrogenase genes exist in

multiple copies and are not essential. Recently, D. vulgaris mutants in the dld-II and lldFG
genes were characterized to show that they encode functional D- and L-lactate dehydrogenases

respectively [6].

We previously reported a regulatory network that centered on this lactate utilization operon

DVU3025-3033 [9]. An in vitro DNA Affinity Purification chip (DAP-chip) assay suggested

that four response regulators (RRs) directly target the DVU3025-3033 promoter: three sigma54

(σ54)-dependent RRs (LurR, NrfR, and DVU0539), and an OmpR family RR, PhoB (Fig 1C).

The DVU3025-3033 operon is regulated by both σ70- and σ54-dependent promoters [6, 11].

LurR, and its predicted cognate sensor kinase, LurS, are encoded directly upstream of the

DVU3025-3033 operon. LurR also targets two additional putative lactate permeases

(DVU2451 and DVU3284) [9]. Based on lurSR’s proximity and its conservation across related

genomes, we hypothesized that the LurSR two-component system was likely to serve as the pri-

mary regulator for this operon. We also predicted and validated three binding site motifs for

LurR (at -389, -350 and -250 bp from the por start codon) [9]. NrfR is the response regulator of

the nitrite-stress NrfSR two-component system; it activates the nitrite reductase nrfHA genes

during nitrite stress [15]. PhoB is part of the PhoBR two-component system, predicted to be

involved in the phosphate starvation response. A predicted PhoB binding site is located

upstream of por. The conditions that activate the fourth regulator DVU0539 are unknown.

Here, we construct a deletion mutant in the lurR gene and analyze the role of LurR on growth,

lactate consumption, and expression of the lactate utilization genes. We determine how LurR,

NrfR, and PhoB bind the upstream region of DVU3025, and we discuss these findings.

Results

LurR is an activator and is required for optimal growth on lactate

Although a transposon insertion was not obtained in lurR during the construction of a trans-

poson mutant library [12], we were successful in constructing a targeted deletion of lurR (a

bar-coded deletion of DVU3023, BCD1228). We compared the ΔlurR mutant with the D. vul-
garis parent strain, JW710 (hereafter called WT), during growth with either lactate or pyruvate

as carbon and electron donor, and sulfate as the electron acceptor. The ΔlurR strain displayed

a longer lag phase during growth on lactate, and lower final cell densities (Fig 2A). The ΔlurR
showed a lag in lactate consumption that corresponded to its longer lag phase (Fig 2B). The

mutant also stopped consuming lactate when the cells entered stationary phase (Fig 2B).

Consequently, the mutant produced less acetate and more slowly than WT. The incomplete

utilization of lactate could explain the lower final cell densities seen in the mutant. When we

complemented the deletion (strain JW9388), the differences in growth lag and lactate con-

sumption disappeared (Fig 2A and 2B). When the strains were grown on pyruvate as carbon

and energy source, there were no differences in growth, pyruvate utilization, or acetate pro-

duction among the three strains (Fig 2C and 2D).
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Next, we examined the expression of por and ack genes in the ΔlurR mutant relative to the

wild-type strain by RT-qPCR. Deletion of lurR reduced (~ 2-fold) the expression of por and

ack, when the strains were grown on lactate (Fig 3). WT and ΔlurR expressed por and ack

Fig 1. Lactate utilization operon in Desulfovibrio. A. Lactate is transported inside the cell by a lactate permease

(DVU3026, llp). D- (DVU3027-3028, dld-II) and L-lactate dehydrogenases (DVU3032-3033, lldGH) oxidize lactate to

pyruvate [6]. Pyruvate is then oxidatively decarboxylated to acetyl-CoA via a pyruvate ferredoxin oxidoreductase

(DVU3025, por) [7,8]. Acetyl-CoA is then oxidized to acetate in two steps by phosphotransacetylase (pta) and acetate

kinase (ack) enzymes [8]. The operon also contains pta-N gene (DVU3031) encoding the N-terminal domain of

phosphotransacetylase, whose function is unknown. B. The DVU3025-3033 lactate utilization operon and the

associated lurSR two- component system are conserved across Desulfovibrio and related species (also see S1 Table).

Gene numbers are indicated above the gene. Genes are color coded according to the key. Gut isolates such as D. piger
have a highly reduced operon and lack lurSR. C. DAP-chip revealed a regulatory network where four response

regulators–LurR, NrfR, PhoB, and DVU0539 –target the DVU3025-3033 genes (colored circles–see key) [9]. Other

gene targets are shown in grey circles, and arrows indicate regulatory interactions between an RR and its target.

Figure generated using Cytoscape [10].

https://doi.org/10.1371/journal.pone.0214960.g001
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similarly when grown on pyruvate (Fig 3). LurR also targets two putative lactate permease

genes DVU2451 and DVU3284 [9]. Deletion of lurR strongly affected the expression of

DVU2451, reducing it by ~33-fold when grown on lactate, and by ~ 4.5-fold when grown on

pyruvate (Fig 3). Thus, our data show that LurR activates DVU3025-3033 and DVU2451, and

this activation seems to be primarily in response to lactate. When we reintroduced the lurR
gene into the ΔlurR strain (JW9388), expression of por, ack, and DVU2451 on lactate-sulfate

were restored to WT levels. However, for unknown reasons, the complementation decreased

the expression of por and ack genes during growth on pyruvate where the lurR deletion itself

had no effect. Transcript levels of the second lactate permease gene, DVU3284, were

unchanged in ΔlurR on both lactate and pyruvate medium.

Fig 2. Deletion in lurR affects growth and lactate consumption. A and C. Growth on lactate-sulfate (A) or pyruvate-

sulfate (C) monitored as OD600 readings for WT, ΔlurR and ΔlurR complemented. Data are average for three biological

replicates; error bars indicate standard deviation (For growth curves in log scale, please see S1 Fig). B and D. Lactate/

pyruvate consumption and acetate production monitored by HPLC during growth on lactate-sulfate (B) and pyruvate-

sulfate (D). Data are average for three biological replicates; error bars indicate standard deviation.

https://doi.org/10.1371/journal.pone.0214960.g002

Fig 3. LurR activates lactate utilization genes. Fold changes in expression of select genes were measured by RT-qPCR

during growth on lactate-sulfate (LS) or pyruvate-sulfate (PS) of ΔlurR and ΔlurR complemented strains relative to that

of WT. Expression was normalized to that of two reference genes, rpoD and rpoH. Data are the average from three

independent experiments, each with three biological replicates, and error indicates standard deviation.

https://doi.org/10.1371/journal.pone.0214960.g003
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Binding of LurR, NrfR and PhoB upstream of por
The upstream region of por has a predicted σ54-dependent promoter (-136 bp from start

codon), three binding site motifs for LurR (at -389, -350 and -250 bp from the start codon),

and one binding site for PhoB (at -183 bp from the start codon). Previously, we had validated

the 16 bp binding site motif for LurR using EMSAs with wild-type and substituted sites [9].

We had also validated the PhoB binding site upstream of the phoB gene [9], and the NrfR bind-

ing sites upstream of the nrfHA genes [15].

Here, we used truncated por promoter substrates containing 0, 1, 1.5 or 3 LurR binding

sites in EMSAs. LurR bound all substrates except the promoter fragments (IV and V) lacking

any binding motif (Fig 4). NrfR shifted the same fragments as LurR (Fig 4). PhoB shifted all

the fragments except for fragment V that does not have a PhoB binding site (Fig 4).

The consensus 16 bp NrfR binding site motif [15] is very similar to the consensus LurR

binding motif (Fig 5A). To test if NrfR recognizes the LurR binding site, we performed EMSAs

with NrfR and a short substrate containing the LurR binding site found upstream of por (Fig

5B). NrfR shifted this substrate. Neither LurR nor NrfR bound an altered substrate with substi-

tutions in the conserved bases, thus indicating that NrfR recognized the same site in the por
promoter as LurR (Fig 5B). To test if PhoB specifically recognizes the predicted site upstream

of por, we used a short oligomer DNA substrate containing this predicted PhoB binding site

upstream of por in an EMSA with purified His-tagged PhoB (Fig 5C). We observed that PhoB

shifted the DNA substrate, and this shift was eliminated when substitutions were made to the

conserved positions within the motif.

LurR, NrfR and PhoB did not require phosphorylation for in vitro DNA binding. Two-

component response regulators are activated by phosphorylation by the partner histidine

kinase in vivo, but in vitro DNA binding often occurs without activation [9, 16–19]. Since we

lacked purified cognate histidine kinases to phosphorylate the respective RRs, we tested the

addition of the small molecule phospho-donor acetyl phosphate in the binding reactions. We

did not observe any effect of acetyl-phosphate on DNA binding (not shown). It is also possible

Fig 4. Electrophoretic mobility shift assays with promoter deletions of por. The upstream region of the lactate

utilization operon contains a σ54-dependent promoter (orange box, ATTGGCACATTTCTTGTTA), a predicted binding

site for PhoB (green box, AGGTTACAGCATAGTTAC), and three 16 bp binding sites for LurR (red boxes,

ATCCGCTTTTTCAGAC, GTCCGCTTTTCAAGAC, and GTCCACTTTTTCAGAC). Five biotin-labeled DNA promoter

substrates (I to V) of decreasing lengths (426, 348, 283, 220 and 159 bp) were used in EMSAs with purified His-tagged

protein. Protein concentrations used were LurR—2.5, 1, 0.5 pmol; NrfR– 10 and 5 pmol; PhoB– 250 and 125 pmol.

https://doi.org/10.1371/journal.pone.0214960.g004
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that the RRs were purified with some phosphorylation since they were heterologously

expressed in Escherichia coli. A high amount of PhoB was required for the EMSA reaction, and

this may reflect the lack of sufficient activation.

Effect of NrfR and PhoB on gene expression

We examined por gene expression in response to nitrite stress in the wild-type and a nrfR
transposon insertion mutant by exposing mid-log cultures to 2.5 mM sodium nitrite for 30

minutes [15]. However, we did not observe significant differences in por gene expression (not

shown).

To observe a physiological effect of PhoB, we first confirmed experimentally using a phoB
transposon insertion mutant that PhoB activates the high-affinity phosphate transport genes

when D. vulgaris is subjected to phosphate limitation (S2 Fig). However, it proved challenging

to assign reliable changes in por gene expression by RT-qPCR in a phoB mutant. The phoB
mutant also had a growth defect (S2 Fig) that further hindered collection of adequate cell sam-

ples at comparable growth phases.

Conservation of DVU3025-3033 and lurSR
We examined 54 sequenced Desulfovibrio genomes available on the IMG (Integrated Microbial

Genomes [21]) website, and other closely related species in the orders Desulfovibrionales and

Fig 5. Validation of predicted binding sites. A. Comparison of NrfR and LurR binding motifs. Motif images were

generated using Weblogo [20]. B. NrfR shifts LurR motif. The top strands of the DNA substrates used are shown on

top (wt = wild-type; mut = modified). Bases in bold indicate the conserved motif positions, and bases in red indicate

the modified bases in the mutated substrate. Lanes 1–5: por wt motif; lanes 6–10: por mut motif. Lanes 1, 6 –DNA only;

lanes 2, 7–1 pmol of LurR; lanes 3, 8–0.5 pmol of LurR; lanes 4, 9–25 pmol of NrfR; and lanes 5, 10–10 pmol of NrfR.

C. The motif on top indicates the 18 bp consensus PhoB binding sequence [9]. Gel-shift assays with purified His-

tagged PhoB protein and the predicted PhoB binding site upstream of por. Lanes 1–3: WT substrate (conserved bases

are shown in bold); lanes 4–6: mutated substrate (underlined bases indicate substitutions made in the conserved

positions); lanes 1 and 4: No protein; lanes 2 and 5: 250 pmol PhoB; lanes 3 and 6: 125 pmol PhoB.

https://doi.org/10.1371/journal.pone.0214960.g005
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Desulfobacterales for the presence of orthologs of lurR and the lactate utilization operon (S1

Table). In most Desulfovibrio genomes, the lurSR genes are encoded proximal to the ortholo-

gous DVU3025-3033 operon (S1 Table). The lurSR genes are absent in the human micro-

biome- and rumen-associated Desulfovibrio isolates (6 sequenced genomes), and in three

environmental Desulfovibrio species (D. cuneatus, D. litoralis, and D. desulfuricans DSM 642).

Genomes lacking lurSR also lacked an organized lactate utilization operon. In the Desulfovi-
brionaceae family, the lurSR genes are also present in the five Pseudodesulfovibrio genomes, the

four Halodesulfovibrio genomes, and Desulfocurvus vexinensis, but are absent in the human-

associated Bilophila and Lawsonia species (S1 Table). The lurSR genes are also represented in

the Desulfomicrobiaceae (7/7 genomes), Desulfohalobiaceae (2/8 genomes) and Desulfonatro-
naceae (5/5 genomes) families. In the order Desulfobacterales, homologs of lurSR and the asso-

ciated lactate utilization operon were found in a few genomes (S1 Table).

We searched for the binding site motif upstream of the first gene in the lactate utilization

operons in the other lurR-encoding genomes. Most genomes queried had 1 to 4 binding site

motifs upstream of the first gene (por in most cases, or the lactate permease gene), with the major-

ity of the upstream regions having three binding sites as seen in D. vulgaris (S1 and S2 Tables).

Discussion

In this study, we show that the LurR regulator strongly activates the lactate permease gene

DVU2451 and moderates the central carbon utilization operon DVU3025-3033 in the model

sulfate reducer D. vulgaris Hildenborough. Activation by LurR depends on the presence of lac-

tate, since deletion of lurR affected the expression of the lactate utilization operon during

growth on lactate-sulfate, but not on pyruvate-sulfate. The absence of lurR also affected the

expression of DVU2451 more strongly on lactate-sulfate than on pyruvate-sulfate (~8-fold dif-

ference). Even though the expression of DVU3025-3033 was reduced by only 2-fold in the

absence of lurR, growth and substrate uptake were affected–compared with the WT strain, the

lurR mutant had a longer lag phase accompanied by a lag in lactate uptake, and lower final cell

densities resulting from incomplete lactate utilization. There was no effect on growth or sub-

strate uptake when the strains were grown with pyruvate as the electron donor. Other studies

corroborate the key role of LurR in lactate consumption. Transposon insertions in the lurSR
genes of D. alaskensis G20 and D. vulgaris Miyazaki had fitness defects during growth on lac-

tate-sulfate [13, 14]. In the absence of sulfate as an electron acceptor, D. vulgaris can also grow

on lactate in syntrophic association with hydrogen-consuming methanogens. Regulation by

LurR may also have a bearing on the upregulation of the lactate utilization operon during

coculture with Methanococcus maripaludis [22]. High levels of expression of this operon may

be reflective of three genes in the operon–por, pta, and ack–being required for growth on pyru-

vate as well. D. vulgaris can also utilize molecular hydrogen and formate as electron sources

[3], and it is possible that lurSR has evolved to express the lactate utilization operon optimally

in response to electron and carbon sources. The expression of the lactate utilization operon

was altered during several stress conditions such as alkaline stress [23], salt stress [24], salt

adaptation [25], air exposure [26], heat shock [27], and peroxide stress [28], where transcrip-

tomics measurements are reported. Since the lactate utilization operon has binding sites for

multiple response regulators and two sigma factors, and possibly other transcription factors,

the regulation of this operon could be more than a simple activation by LurR alone.

To our knowledge, LurR is both the first two-component response regulator and the first

σ54-dependent regulator reported to activate lactate consumption. While we have not studied

the sensor kinase LurS, domain predictions show that it is a large hybrid kinase with two trans-

membrane regions, three PAS domains, the histidine kinase domains and a C-terminal

LurR regulates lactate utilization in D. vulgaris
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receiver domain. Reported regulators that modulate the lactate dehydrogenase and lactate per-

mease genes include FadR family transcription factors in E. coli [29], Corynebacterium gluta-
micum [30], Pseudomonas aeruginosa [31], and Bacillus subtilis [32], and LysR-type regulators

in Shewanella [33] and Vibrio species [34]. However, D. vulgaris has multiple lactate dehydro-

genases and permeases [6,35] that likely have their own regulation. For instance, DVU2875 is

a FadR family regulator LldR that is predicted to activate the L-lactate dehydrogenase and lac-

tate permease genes in the same operon (DVU2874-3) [36]. The L-lactate dehydrogenase

genes DVU1781-83 and DVU2784 are expressed at similar levels to DVU3032-3033. Expres-

sion of some of the alternate D- and L-lactate dehydrogenase genes were variably altered in

response to deletions of either dld-II or lldFG [6].

DAP-chip with LurR revealed DVU3284, a third putative lactate permease, also to be a tar-

get gene [9]. However, we did not observe changes in expression of this gene under our condi-

tions. This may be due to DVU3284’s role being pertinent in stationary phase growth [37].

The lack of an endogenous control gene in stationary phase made it challenging to test expres-

sion changes in this growth phase (the rpoH and rpoD transcripts used in the exponential

phase samples were differentially expressed during stationary phase). The other two permeases

DVU3026 and DVU2451 are highly expressed [11], and interestingly, DVU2451 is 88% identi-

cal to DVU3026, and in a DVU3026 deletion mutant, DVU2451 expression is increased [6];

thus, they are likely serving redundant roles. The DVU2451 gene is also under the control of a

sigma54-dependent promoter [9,11]. LurR has two binding sites at -401 (GTCTGCAATGTCG
GAC) and -310 (GTCCATTTTTTCAGAC) upstream of DVU2451 [9].

DAP-chip studies also suggest that three other regulators targeted the lactate utilization

operon. Here, we investigated the roles of two of these regulators–NrfR and PhoB. NrfR is also

a σ54-dependent regulator, and we showed here that NrfR and LurR have very similar consen-

sus binding sites, and that NrfR can bind to the LurR binding motif upstream of por. Thus,

any regulation of the lactate utilization operon by NrfR likely utilizes the same binding sites as

LurR. Although higher concentrations of NrfR were required to shift the por upstream DNA

as compared with LurR in our in vitro EMSAs, it is challenging to extrapolate these observa-

tions to in vivo protein stoichiometries. In an earlier genome-wide transcriptomics study on

nitrite stress in D. vulgaris, the lactate utilization genes increased by 1.5-2-fold in expression

with 2.5 mM nitrite stress added at mid-log and following 4 hours of this exposure [38]. We

examined gene expression changes after 30 min of nitrite exposure but did not observe any

expression changes in the por gene under nitrite stress. Interestingly, few genomes other than

D. vulgaris (including strains DP4 and Miyazaki) encode both lurSR and nrfSR genes. All the

available host gut-associated Desulfovibrionales genomes (including Bilophila and Lawsonia
strains) that lack lurSR carry the nrfSR genes [15]. Thus, possible regulation of lactate utiliza-

tion by NrfR could be unique to D. vulgaris.
We confirmed the role of PhoB in responding to phosphate limitation. We showed that

PhoB recognizes the predicted Pho box motif present upstream of the por gene. The location

of the pho box upstream of the promoter region suggests that PhoB would be an activator for

this operon (usually transcription factor binding sites for activators occur upstream of the pro-

moter while for repressors occur downstream of the promoter [39]). Since the lactate utiliza-

tion operon contains the ack and pta genes, it seems reasonable that the phosphate availability

also modulates the operon. The lurSR genes of D. alaskensis G20 play a role in survival after 15

days of phosphate starvation as seen by fitness assays with transposon mutant libraries [40].

However, similar to our observations with NrfR and compounded by the growth defect in the

phoB mutant, we could not get reliable expression changes of the por gene under phosphate-

limiting conditions. We were also unable to find PhoB binding motifs upstream of the lactate

utilization genes in lurR-encoding genomes other than the very similar D. vulgaris DP4.

LurR regulates lactate utilization in D. vulgaris
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Therefore, similar to NrfR, any possible regulation of the lactate utilization operon by PhoB

may be limited to D. vulgaris.
Our study highlights the utility of conducting genome-wide assays to query regulator-target

interactions. Studying one regulator-target gene interaction at a time may not have revealed

the complexity of regulation of critical operons such as the lactate utilization regulon. Our ini-

tial genome-wide DAP-chip experiments led us to investigate and discover the cross-talk

between the NrfR and LurR regulators. More recently, DAP has been combined with sequenc-

ing technologies to enable high-throughput elucidation of regulatory networks [19, 41]. Our

work here shows that activation of the lactate utilization operon by LurR is conserved across

the Desulfovibrionales but fine-tuning of the regulation of this operon in response to other sig-

nals/stresses may be unique to each species.

Materials and methods

D. vulgaris growth conditions

D. vulgaris was grown in defined media containing 8 mM MgCl2, 20 mM NH4Cl, 2.2 mM

K2PO4, 0.6 mM CaCl2, 30 mM Tris, 1 ml/liter of Thauers vitamins [42], 12.5 ml/liter of trace

element solution [43], 640 μl/ liter of resazurin (0.1% wt/vol), and supplemented with 50 mM

Na2SO4 and 60 mM sodium lactate (LS4D medium) or 40 mM Na2SO4 and 60 mM sodium

pyruvate (PS4D medium). The pH of the media was adjusted to 7.2 with 1 N HCl. Cultures

were grown at 30˚C in an anaerobic growth chamber (COY Laboratory Products, Grass Lake,

MI, USA) under an atmosphere of 85% N2/10% CO2/5%. For deletion and transposon

mutants, the media were supplemented with the antibiotic G418 (400 μg/ml) (Sigma Aldrich,

St. Louis, MO, USA); for JW9388, the complemented ΔlurR strain, the medium was supple-

mented with both G418 (400 μg/ml) and spectinomycin (100 μg/ml).

Construction of D. vulgaris BCD1228 (ΔlurR) and JW9388 (ΔlurR complemented)

strains. The deletion strain BCD1228 (deleted for DVU3023) was constructed similarly as

other deletion strains of D. vulgaris Hildenborough [44]. Briefly, strain JW710 was grown in

20 ml of MOYLS4 [45] overnight. Then, 30 ml of MOYLPS4S3 (30 mM lactate, 30 mM pyru-

vate, 20 mM sulfate and 10 mM sulfite) was added to the culture and allowed to grow for 3–5

hours. Cells were harvested and transformed by electroporation with pBCD-DVU3023, a plas-

mid that does not replicate in D. vulgaris containing a construction that causes a marker

exchange deletion of DVU3023 (ΔDVU3023::PKmR Kmr-upp). Transformed cells were allowed

to recover overnight in MOYLPS4S3 and were then plated in MOYLPS4S3 containing the

aminoglycoside G418 (400 μg/ml). Putative transformants were screened for appropriate anti-

biotic phenotypes (sensitive to 100 μg spectinomycin/ml, confirming the loss of the plasmid

sequences, and resistant to G418, confirming retention of Kmr). Cell lysates from isolates that

passed the initial screen were used as template in a PCR reaction with primers (S3 Table) span-

ning both sides of the gene targeted for deletion to ensure that the correct double-homologous

recombination event occurred (S3 Fig). The expected upstream product of 1057 bp from prim-

ers 1 and 2 and the downstream product of 1747 bp from primers 3 and 4 were observed, and

these products were sequenced to confirm retention of the wild-type sequences flanking the

deleted gene.

The complementation strain JW9388 was constructed by reintroduction of the deleted gene

on a plasmid unable to replicate in D. vulgaris, pMO9380, through antibiotic selection of a dou-

ble-homologous recombination event. The plasmid was constructed by the Sequence- Ligation-

Independent Cloning (SLIC) method [46] with PCR products obtained with the primers (IDT,

Coralville, IA) found in S3 Table and the Herculase II DNA polymerase (Stratagene, La Jolla,

CA). The plasmid contained DVU3023 and the spectinomycin-resistant gene flanked by the
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upstream and downstream regions. It was electroporated into strain BCD1228 by previously

described methods [45]. Transformed cells were recovered, plated and screened as previously

described except that isolates resistant to spectinomycin were selected for further confirmation.

Putative complementation isolates were confirmed by Southern blot analysis by digesting geno-

mic DNA with EagI (New England Biolabs, Ipswich, MA) and probing with the labeled

upstream PCR fragment (Prime-It RmT Random Labeling Kit, Stratagene, La Jolla, CA).

Determination of lactate, pyruvate, and acetate. WT, ΔlurR, and ΔlurR complemented

strains were grown on LS4D or PS4D in 40 ml cultures at 30˚C. At specific time points, aliquots

were withdrawn for OD600 measurements on a spectrophotometer, and another 800 μl of the cul-

ture was withdrawn and stored at -20˚C. For HPLC analysis, the samples were thawed, cells were

spun down, and the supernatant was centrifuged through a 10 kDa microspin filter at 14500 x g for

5 min. Samples were analyzed by an Agilent 1100 Series HPLC system (Agilent Technologies,

Santa Clara, CA) equipped with an Aminex HPX-87H ion-exclusion column (300 x 7.8-mm; Bio-

Rad Laboratories Inc., Hercules, CA) 9 μ with guard at 50˚C with an injection volume of 5 μl, and

a flow rate of 0.6 ml/min with 4 mM H2SO4 as solvent. Na-lactate, Na-pyruvate, and Na-acetate

standards were used to determine unknown concentrations.

RNA extraction. Three independent experiments on different days were set up where

WT, ΔlurR, and ΔlurR complemented strains were each grown in triplicate 40-ml cultures of

LS4D or PS4D and 1.5 ml aliquot of cells were harvested at mid-log phase (OD600 ~0.3), frozen

in liquid nitrogen and stored at -80˚C. RNA was extracted from the pellets with Agilent Total

RNA mini kit following the manufacturer’s protocol (Agilent Technologies, Santa Clara, CA).

Genomic DNA contamination was removed by digesting the RNA samples with Turbo DNA-

free DNase kit (Life Technologies, Grand Island, NY). The integrity of the RNA was examined

visually by agarose gel electrophoresis. RNA was quantified spectrophotometrically on the

Nanodrop ND-1000 (Thermo Fisher Scientific, Wilmington, DE).

RT-qPCR. 500 ng of RNA was reverse transcribed with the iScript RT mix (BioRad, Her-

cules, CA, USA). The resulting cDNA was diluted ten-fold and 2 μl was used as the template

for qPCR reactions. Primers for qPCR reactions were designed using Primer3 (http://bioinfo.

ut.ee/primer3/) and are in S3 Table. qPCR reactions were set up in triplicate, with each 20 μl

reaction containing 1X SsoAdvanced Universal Sybr Green Supermix (BioRad, Hercules, CA),

500 nM of each primer, and 2 μl of cDNA in 96-well plates (white, BioRad). Reactions were

cycled on a CFX96 Real-Time PCR Detection System (BioRad, Hercules, CA) as follows:

98˚C/2 min, and 40 cycles of 98˚C/10s, 60˚C/30 s. RNA integrity was assayed by calculating

the relative quantities of the por transcript produced by primers amplifying the 3’ vs. the 5’ end

of the gene (ratios close to 1 indicate intact RNA; all ratios were less than 1.2). Expression

changes were normalized to that of two σ70 reference genes–rpoH and rpoD.

Electrophoretic mobility shift assay. To determine the minimal promoter region of the

lactate utilization operon required for binding, DNA substrates were prepared by PCR amplifica-

tion with a common biotinylated reverse primer and different forward primers (See S3 Table for

primer sequences). DNA substrates to test binding site motif predictions were prepared by

annealing biotinylated oligonucleotides with their unlabeled complementary strands as described

previously [9]. LurR (~57 kDa), NrfR (~56 kDa) and PhoB (~30 kDa) proteins were purified with

a C-terminal V5-epitope and a 6X-His tag as described previously [9]. Each protein was mixed

with 100 fmol of biotinylated DNA substrate in 10 mM Tris HCl pH 7.5, 50 mM KCl, 5 mM

MgCl2, and with 1 μg/ml poly dI.dC in a total reaction volume of 20 μl and incubated at room

temperature for 20 min. Electrophoresis, blotting and chemiluminescent detection were per-

formed as described previously [9]. Final imaging of the blot was done using the Fluor Chem Q

system (Protein Simple, Santa Clara, CA, USA).
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S1 Fig. Growth curves from Fig 2 in log scale.
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S2 Fig. PhoB activates phosphate starvation response. A. Transposon insertion in phoB
results in a growth defect. Growth of WT and phoB::mini-Tn5, at 5 and 10% (vol/vol) inocu-

lum sizes on LS4D, monitored using OD600 measurements on a Bioscreen C instrument. The

growth defect of phoB::mini-Tn5 was more pronounced at lower starting cell densities. Data

are average of five replicates, and error bars indicate standard deviations. B. RT-qPCR mea-

surements of the fold change in expression of the phosphate transport gene pstS (DVU2477)

normalized to reference gene rpoH in WT and phoB::mini-Tn5 under phosphate-limiting rela-

tive to phosphate-replete conditions. The two strains were grown in LS4D modified to contain

0.1 mM K2PO4 and 2 mM KCl until mid-log phase. The cells were spun down gently (3000 x g

for10 min), and resuspended either in LS4D with 2 mM KCl and 0 mM K2PO4 (phosphate-

limiting) or with 2 mM K2PO4 (phosphate-replete) and allowed to grow for 1.5 h. Error bars

represent the range of fold change as calculated using the standard deviations in the ΔΔCT val-

ues (n = 3).
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S3 Fig. Barcoded deletion of DVU3023 (strain BCD1228). BC1 and BC2 indicate the two

barcodes. The grey bars indicate the upstream and downstream homology regions. The

DVU3023 gene has been replaced by the kanamycin resistance gene (KmR) and the upp gene.

Primers 1 and 4 are unique to this construct, outside of the homology regions. Primers 2 and 3

are common to all constructs.
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