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Abstract

Background: The group testing method has been proposed for the detection and estimation of genetically modified plants
(adventitious presence of unwanted transgenic plants, AP). For binary response variables (presence or absence), group
testing is efficient when the prevalence is low, so that estimation, detection, and sample size methods have been developed
under the binomial model. However, when the event is rare (low prevalence ,0.1), and testing occurs sequentially, inverse
(negative) binomial pooled sampling may be preferred.

Methodology/Principal Findings: This research proposes three sample size procedures (two computational and one
analytic) for estimating prevalence using group testing under inverse (negative) binomial sampling. These methods provide
the required number of positive pools (rm), given a pool size (k), for estimating the proportion of AP plants using the
Dorfman model and inverse (negative) binomial sampling. We give real and simulated examples to show how to apply
these methods and the proposed sample-size formula. The Monte Carlo method was used to study the coverage and level
of assurance achieved by the proposed sample sizes. An R program to create other scenarios is given in Appendix S2.

Conclusions: The three methods ensure precision in the estimated proportion of AP because they guarantee that the width
(W) of the confidence interval (CI) will be equal to, or narrower than, the desired width (v), with a probability of c. With the
Monte Carlo study we found that the computational Wald procedure (method 2) produces the more precise sample size (with
coverage and assurance levels very close to nominal values) and that the samples size based on the Clopper-Pearson CI
(method 1) is conservative (overestimates the sample size); the analytic Wald sample size method we developed (method 3)
sometimes underestimated the optimum number of pools.
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Introduction

To detect the presence of a rare event, thousands of individuals

need to be tested, and the cost of such testing usually exceeds the

available budget and staff. The pooling methodology (Dorfman

method) was first proposed to save a significant amount of money

when detecting soldiers with syphilis [1]. Significant cost savings

were achieved by first testing a sample created by mixing blood

from several people. If the sample tested positive, the blood from

each individual in that pool would be retested; if the sample tested

negative, all individuals in that pool were declared free of the

disease [1]. Currently the Dorfman method is used for detecting

and estimating the proportion of positive individuals in fields such

as medicine [2,3,4,5], agriculture [6], telecommunications [7], and

science fiction [8]. Most applications for detecting and estimating a

proportion are developed using binomial sampling; however,

Pritchard and Tebbs [9] have suggested that inverse (negative)

binomial pooled sampling may be preferred when prevalence p is

known to be small, when sampling and testing occur sequentially,

or when positive pool results require immediate analysis—for

example, in the case of many rare diseases. Unlike binomial

sampling, in this model the number of positive pools to be

observed is fixed a priori, and testing is complete when the rth

positive pool is reached [10].

George and Elston [11] recommended using geometric

sampling when the probability of an event is small; they gave

confidence intervals for the prevalence based on individual testing.

Also, according to Haldane [12], using a binomial distribution

may not provide an unbiased and precise estimate of p when p is

small (pƒ0:1). Lui [13] extended George and Elston’s work [11]

on the confidence interval (CI) by considering negative binomial

sampling and showed that as the required number of successes

increased, the width of the CI decreased. However, this extension

was also under individual testing. Using negative binomial group

testing sampling, Katholi [14] derived point and interval

estimators of p, obtained by both classical and Bayesian methods,

and investigated their statistical properties.

Recently Pritchard and Tebbs [9] used maximum likelihood as

a basis for developing three point and interval estimators for p

under inverse pooled sampling; they compared its performance
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with Katholi’s [14] proposed point and interval estimators.

Pritchard and Tebbs [10] extended their work to Bayesian point

and interval estimation of the prevalence under negative binomial

group testing. They used different distributions to incorporate

prior knowledge of disease incidence and different loss functions,

and derived closed-form expressions for posterior distributions and

point and credible interval estimators [10]. However, until now

sample size procedures under inverse (negative) binomial sampling

for group testing have not been proposed.

In practice, pooling is a simple process; for example, if 40,000

plants are collected from the field, they could be tested one at a

time for detecting unwanted transgenic plants (AP). If each test

takes 15 minutes and costs US$12, then this project will take

10,000 hours and cost US$480,000. A shorter approach would be

to smash 10 plants together and test this pooled sample [15]. This

approach would take 1000 hours and cost US$48,000. Even

greater savings are achieved with larger pool sizes. However,

because the maximum likelihood estimator (MLE) of p under

binomial [16] and negative binomial [9,10] group testing is biased

to the right, then, on average, the MLE of p overestimates the true

prevalence for any pool size (assuming a perfect diagnostic test);

however, this bias is usually small when p is small (p,0.1) [17]. In

addition, if the diagnostic test is imperfect, a high rate of false

positives is very likely. Thus, there are benefits and risks attached

to the use of pooling methodology [15]. For this reason, it is

important to choose the pool size with care in order to guarantee

precision in the estimation process.

Under binomial group testing, some authors have proposed

methods for determining the required sample size (number of

required pools) to guarantee a certain level of power and/or

precision [18,19,20,21]. Yamamura and Hino [18] and Hernán-

dez-Suárez et al. [19] developed sample size methods in terms

of power considerations. This approach is consistent with the

emphasis on hypothesis testing for inference, with results reported

in terms of p-values. Montesinos-López et al. [20,21] developed

sample size procedures under the accuracy in parameter estimation

(AIPE) framework that guarantee narrow confidence intervals for

estimating the parameter. The use of this approach is increasing,

not only because the CIs ensure that the magnitude of the effect

can be better assessed, but also because the effect in question can

be readily identified by the reader. Furthermore, CIs also convey

information about how precisely the magnitude of the effect can

be ascertained from the data at hand [22]. Another advantage of

the AIPE approach is that it treats the estimates (from pilot studies

or literature review) used to determine the required sample size as

random to guarantee that the desired CI width for estimating the

parameter of interest is achieved, as originally planned [23].

However, under binomial group testing sampling when the

prevalence is low, the calculated sample size sometimes does not

contain any pools with the trait of interest (i.e., failure to detect and

estimate AP). For this reason, inverse (negative) binomial sampling is a

good alternative because each sample will contain the desired number

of rare units and also the sample size is not a fixed quantity [12,9,10].

In binomial group testing, the number of required pools is treated as a

fixed quantity, whereas under inverse (negative) binomial group

testing, the pools are drawn one by one until the sample contains

exactly r positive pools (here the number of positive pools is fixed).

Based on the previous findings, the purpose of the present study

is to develop methods for determining sample size (number of

positive pools) under inverse (negative) binomial group testing with

the objective of increasing accuracy in the estimation of the

population proportion. This research proposes methods for

determining the required number of positive pools, with the aim

of estimating the proportion of AP (p) using inverse (negative)

binomial group testing with a perfect test and fixed pool size (k)

that will assure a narrow CI. Accuracy in the estimation of p is

achieved because CI width is considered stochastic and thus

treated as a random variable. The methods used for achieving the

objectives of the present research are: point and interval estimation

for the population proportion, delta method, and central limit

theorem. We provide an R program that reproduces the results

presented in this study and makes it easy for the researcher to

create other scenarios.

Materials and Methods

Suppose that Yi~yi represents the number of pools tested until

the first positive pool is detected and Y1,Y2, . . . , Yr are observed

to obtain the rth positive pool. Therefore, Yi has a geometric

distribution. Therefore, the overall number of pools that are tested

to find r positive pools is equal to T~
Pr

i~1 Yi. In what follows,

we shall denote the size of the pools collected as k and assume

equal pool size; the prevalence of infection is denoted by p, the

number of pools tested to find one positive pool is Yi~yi, and the

number of times this experiment is carried out is denoted by r. It is

important to mention that in this paper we consider that: (i) the

sample size is the value of r that represents the number of positive

pools required to stop the sampling and testing process, and (ii) the

overall number of pools tested is the value of T~
Pr

i~1 Yi. If the

prevalence of infection is p, then the probability that a pool of size

k tests positive is P~1{(1{p)k
� �

. Therefore, the sufficient sta-

tistics T~
Pr

i~1 Yi follows a negative binomial distribution (nib)

with waiting parameter r and success probability P~1{(1{p)k

[9,10,14]. According to Pritchard and Tebbs [9,10] and Katholi

[14], the maximum likelihood estimate (MLE) of p using inverse

(negative) binomial group testing is

p̂p~1{ 1{
r

T

� �1=k

ð1Þ

where k is the pool size and r is the fixed required number of positive

pools. This MLE of p for inverse (negative) binomial group testing with

groups of equal size assumes a perfect diagnostic test. On the other

hand, the variance of p̂p according to Pritchard and Tebbs [9,10] and

Katholi [14] is given by V (p̂p)~
1{(1{p)k
� �2

rk2(1{p)k{2
~

P2(1{P)(2=k){1

rk2
.

According to Pritchard and Tebbs [9], the corresponding Wald CI is

as follows:

pL~p̂p{Z1{a=2

ffiffiffiffiffiffiffiffiffiffi
V̂V (p̂p)

q

pU~p̂pzZ1{a=2

ffiffiffiffiffiffiffiffiffiffi
V̂V (p̂p)

q ð2Þ

where Z1{a=2 is the 1{a=2 quantile of the standard normal

distribution, and p̂p is the MLE estimated from Eq. (1). This

approximation of the CI is easy to calculate and allows deriving

closed-form sample size formulas. However, when r is small, the

normal approximation for MLE is doubtful; in such cases, the Wald-

type CI often produces negative endpoints. In addition, the coverage

probability of the CIs constructed by Wald-type CIs is often smaller

than 100(1{a)%.

Derivation of the sample size formula for detecting
transgenic plants

The quantity Z1{a=2

ffiffiffiffiffiffiffiffiffiffi
V̂V (p̂p)

q
(added and subtracted from the

observed proportion, p̂p) in Eq. (2) is defined as W/2 (where W is
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PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e32250



the full width of the CI; W or W/2 can be set a priori by the

researcher depending on the desired precision). The observed CI

width for any realization of a confidence interval (from Eq. 2) can

be expressed as:

W~2Z1{a=2

(1{(1{p̂p))kffiffi
r
p

k(1{p̂p)k=2{1
~2Z1{a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂P2(1{P̂P)(2=k){1

rk2

s
ð3Þ

Let v be the desired CI width; then the basic AIPE approach seeks to

find the minimum sample size so that the expected CI width is

sufficiently narrow [24,25]. In other words, the AIPE approach seeks

the minimal sample size so that E(W )ƒv. The problem is that the

expected CI width is an unknown quantity, although it can be

approximated. As P̂P~1=�TTr, where �TTr~
Pr

i~1 Yi=r, the observed

width, W, is a function of h(�TTr)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{1=�TTrð Þ2=k{1

1=�TTrð Þ2

k2

s
. Since

the distribution of h(�TTr) is unknown, it is not possible to obtain an

analytic solution for E(W ). An alternative is to use the delta method

to derive the asymptotic distribution of h( �TTr). From Result 1 in

Appendix S1, we have that

h(�TTr)~h
1

P̂P

	 

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{P̂P
� �2=k{1

P̂P2

k2

s
*
:

N h
1

P

	 

, h0

1

P

	 
	 
2

s2
r

" #

where h
1

P

	 

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Pð Þ2=k{1

P2

k2

s
, h’

1

P

	 

~

1

k

(1{P)2(1=k{1)P3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Pð Þ2=k{1

P2

q 2zk

2k
P{1

	 

=0

for P=
2k

2zk
. Therefore, the expected value of W is

E(W )~E 2Z1{a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{P̂P
� �2=k{1

P̂P2

rk2

s0
@

1
A&2Z1{a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Pð Þ2=k{1

P2

rk2

s
.

Now if we set the E(W ) to the desired width of the CI, v:

v~2Z1{a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Pð Þ2=k{1

P2

rk2

s
ð4Þ

Solving for r, Eq. (4) yields the following formulation:

rp~
4Z2

1{a=2 1{(1{p)k
� �2

v2k2(1{p)k{2
~

4Z2
1{a=2P2(1{P)(2=k){1

v2k2
ð5Þ

Note that if k~1, Eq. (5) reduces to the formula derived by Lui [13]

rp~
4Z2

1{a=2p2(1{p)

v2

" #
. However, Eq. (5) requires the population

value of p, which is unknown and in practice is replaced by an

estimation of the true proportion. Eq. (5) finds the required sample

size for achieving an expected CI width, E(W ), that is sufficiently

narrow for estimating the proportion of AP using pools; however,

this does not guarantee that for any particular CI, the observed

expected CI width, E(W ), will be sufficiently narrow, because the

expectation only approximates the mean CI width. Kelley and

Rausch [25] state that this issue is similar to the case where a mean is

estimated from a normal distribution; although the sample mean is

an unbiased estimator of the population mean, the sample mean will

almost certainly be smaller or larger than the population value. This

is because the sample mean is a continuous random variable, as is

the CI width, due to the fact that both are based on random data.

Thus, approximately half of the time, the computed confidence

interval will be wider than the desired (specified) width [25].

Since Eq. (3) uses an estimate of p, the CI width (W) is a random

variable that will fluctuate from sample to sample. This implies

that, using rp from Eq. (5), less than 50% of the sampling

distribution of W will be smaller than v (see the third column in

Table 1). To demonstrate this, we need to calculate the probability

of obtaining a CI width that is smaller than the specified value (v).

This can be computed as:

P(Wƒv)~
X?
t~rp

I(wt,t)
t{1

rp{1

	 

1{(1{p)k
� �rp

(1{p)k
� �t{rp

where I(wt,t) is an indicator function showing whether or not the

actual CI width calculated using Eq. (3 ) is #v, p is the true

population proportion and rp is the sample size obtained using

equation (5). To avoid possible computer limitations, the above

probability can be approximated by the following:

P(Wƒv)~
Xt�
t~rp

I(wt,t)
t{1

rp{1

	 

1{(1{p)k
� �rp

(1{p)k
� �t{rpð6Þ

where t~rp, rpz1, rpz2, . . . , t�, and W is considered a random

variable because the exact value of p is not known and t� is the

value that satisfies P(Tƒt�)~0:9999; we use this value of t�

because in the R package summing to infinity is not possible.

Degree to which the sample size is underestimated using
Eq. 5

To show the degree to which rp is underestimated using Eq. (5),

we give an example (Table 1A) in which Eq. (6) is used to calculate

P(Wƒv), that is, the probability that W will be smaller than, or

equal to, the desired CI width (v) for a given value rp (number of

positive pools) obtained using Eq. (5). The numerical example in

Table 1 is given for several values of the population proportion (p)

for a CI of 95%, k~25, and for a desired width of v~0:007.

Table 1A presents the preliminary sample size rp computed with

Eq. (5), and three other increments computed as rm10~rpz10,

rm20~rpz20, and rm40~rpz40. For each sample size, the

probability that W is smaller than the specified value (v~0:007),

P(Wƒv), is calculated using Eq. (6). This is done to show that the

required number of positive pools for the proportion (rp, second

column in Table 1A) computed using Eq. (5) has a probability of

around 0.50 that Wƒv~0:007 (third column in Table 1A). For

example, when p~0:0125, the preliminary sample size (rp) is 49

and the probability of obtaining a Wƒv~0:007 is 0.4825564.

With p~0:02, rp~126, we can only be 49.235% certain that W

will be ƒv~0:007. When the number of pools increases by 10

(rm10, fourth column, Table 1A) or by 20 (rm20, sixth column,

Table 1A), the probability P(Wƒv~0:007) increases. For

example, when p~0:0125, there are rm20 = 69 units (pools) in

the sample with P(Wv0:007)~0:9091713; for rm40 = 89 pools

in the sample, the P(Wv0:007)~0:9962656. Thus, results of

Table 1A show that in order to ensure a high P(Wƒv~0:007), a

bigger sample size (number of positive pools) than the preliminary

one (rp) calculated using Eq. (5), is required. Also, we see in

Table 1A that 8 times out of 9 the preliminary sample size

(number of positive pools) resulting from using Eq. (5) produces a

P(Wƒv)v0:50, that is, 88.89% of the time P(Wƒv~0:007)

was lower than 50%.

For p~0:005, and a different combination of values of k and r

that produces 40,000 samples, Table 1B shows that for larger

Sample Size under Negative Binomial Group Testing
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values of r, the percentage of times that the MLE of p is larger than

the population proportion is lower. These results also show that

the level of underestimation of the required number of pools (rp)

caused by the use of Eq. (5) is important and is mainly due to the

fact that half of the time the population proportion p will be lower

than the estimated proportion p̂p (Table 1B); thus the obtained CI

width (W) will be larger than the specified v about more than half

of the time. However, the expected value of the computed W is the

value specified a priori (v), provided the correct value of the

population variance is used. Therefore, the use of Eq. (5) will

ensure that the desired width (v) for the CI will be obtained less

than 50% of the time, that is, P(Wƒv)v0:5. The values of the

Mean Square Error (MSE) for p~0:005 and different combina-

tions of k and r (Table 1C) indicate MSE increases for lower values

of r, however, no values of k seem to guarantee low bias.

Since Eq. (5) underestimates the required number of pools, in

the following section, we propose three new methods to estimate

the optimum sample size (two computational and one analytic).

Computational optimum sample size
estimation–methods 1 and 2

The optimal sample size is the smallest integer value (rm) such

that

P(Wƒv)~
Xt�

t~rm

I(wt,t)
t{1

rm{1

	 

1{(1{p)k
� �rm

(1{p)k
� �t{rm

§c ð7Þ

where rm will start with a minimal sample size, say r0~1, and

I(wt,t) is an indicator function showing whether or not the actual

CI width (W) is #v. The CI width will be calculated as

wt~pU{pL. We determined that method 1 is when an exact

100(1{a)% CI for p is used, and method 2 is when the CI is

computed using the Wald CI (Eq. 2) and Eq. (7), which we call the

computational Wald procedure.

The CI used for the exact method (method 1) is the Clopper-

Pearson CI, as explained in the following. When equal pool sizes k

Table 1. Underestimation of the sample size given by using Eq. (5) (Table 1A).

A p rp P(Wƒv) rm10 P(Wƒv) rm20 P(Wƒv) rm40 P(Wƒv)

0.005 8 0.4602923 18 0.9439192 28 0.9985824 48 0.9999997

0.0075 18 0.4937528 28 0.8677739 38 0.9860621 58 0.9999798

0.01 31 0.4764102 41 0.792025 51 0.9491423 71 0.9993324

0.0125 49 0.4825564 59 0.7531049 69 0.9091713 89 0.9962656

0.015 70 0.4831282 80 0.6966756 90 0.867216 110 0.9873122

0.0175 96 0.49556 106 0.6823066 116 0.83486 136 0.9736274

0.02 126 0.4923463 136 0.6682315 146 0.8073307 166 0.9575451

0.0225 159 0.4885201 169 0.6302238 179 0.7655083 199 0.9288043

0.025 198 0.5028085 208 0.631837 218 0.7583371 238 0.9121938

B k r = 5 r = 15 r = 25 r = 35 r = 45 r = 55 r = 65 r = 75

5 0.562 0.535 0.528 0.523 0.520 0.519 0.518 0.515

15 0.566 0.539 0.529 0.524 0.522 0.518 0.517 0.516

25 0.561 0.536 0.529 0.524 0.523 0.513 0.512 0.513

35 0.573 0.539 0.528 0.520 0.518 0.515 0.514 0.516

45 0.550 0.537 0.522 0.524 0.516 0.521 0.512 0.517

55 0.549 0.543 0.522 0.527 0.516 0.521 0.514 0.517

65 0.533 0.520 0.515 0.514 0.512 0.512 0.514 0.513

75 0.530 0.520 0.518 0.521 0.517 0.518 0.517 0.520

85 0.568 0.548 0.542 0.514 0.514 0.517 0.519 0.522

C k r = 5 r = 15 r = 25 r = 35 r = 45 r = 55 r = 65 r = 75

5 1.4E-05 2.3E-06 1.2E-06 8.2E-07 6.2E-07 5.0E-07 4.1E-07 3.5E-07

15 2.4E-05 2.4E-06 1.2E-06 8.2E-07 6.3E-07 4.9E-07 4.1E-07 3.5E-07

25 3.4E-05 2.3E-06 1.2E-06 8.2E-07 6.2E-07 4.9E-07 4.1E-07 3.6E-07

35 1.4E-04 2.3E-06 1.2E-06 8.2E-07 6.1E-07 5.0E-07 4.2E-07 3.5E-07

45 3.1E-04 2.4E-06 1.2E-06 8.3E-07 6.2E-07 5.0E-07 4.1E-07 3.6E-07

55 8.9E-04 2.4E-06 1.2E-06 8.4E-07 6.2E-07 5.0E-07 4.2E-07 3.6E-07

65 1.6E-03 2.4E-06 1.2E-06 8.2E-07 6.2E-07 5.0E-07 4.2E-07 3.6E-07

75 2.7E-03 2.4E-06 1.3E-06 8.3E-07 6.3E-07 5.1E-07 4.2E-07 3.6E-07

85 5.1E-03 2.4E-06 1.3E-06 8.3E-07 6.4E-07 5.1E-07 4.2E-07 3.6E-07

Table 1A. Preliminary sample size (rp , number of required positive pools) for estimating the population proportion, computed with Eq. (5) and three sample size increments
(rm10~rpz10, rm20~rpz20, and rm40~rpz40) with their corresponding probability that the confidence interval width (W ) is smaller than the specified value (v~0:007),
P(Wƒv) computed with Eq. (6). For a 95% CI and k~25, v~0:007 is the desired CI width. P(Wvv) is the probability that (W) is smaller than the specified value
(v~0:007) calculated using Eq. (6). Table 1B. Proportion of times the MLE of p is greater than the population proportion p~0:005 for different combinations of values of k

and r that produce simulated 40, 000 samples. Table 1C. Mean Square Error for 40, 000 simulated samples with p~0:005 and different values of k and r.
doi:10.1371/journal.pone.0032250.t001
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are used, T*nib(rm,P), where P~1{(1{p)k. Using the relation-

ship between the negative binomial distribution and the incomplete

beta function, Lui [13] derived an exact interval for P. The lower and

upper confidence limits are PL~B1{a=2, rm, t{rmz1
and PU~Ba=2, rm, t{rm

,

respectively, where t~
Pr

i~1 yi and Ba, a, b denotes the a quantile

of the two-parameter beta distribution [9]. Thus an exact

100(1{a)% CI for p can be obtained by suitably transforming

the endpoints of the P interval, i.e., pU~1{ 1{Ba=2, rm, t{rm

� �1=k

and pL~1{ 1{B1{a=2, rm, t{rmz1

� �1=k
[9]. Also, this interval for p

can be formed using the relationship between the negative binomial

and F distribution, in this case PL~ 1z tz1
rm

F1{a=2, 2(tz1), 2rm

h i{1

and PU~

rm

t
Fa=2, 2rm, 2t

1z
rm

t
Fa=2, 2rm , 2t

, where Fa, a, b denotes the upper a

quantile of the two-parameter F distribution. Again, an exact

100(1{a)% CI for p is pU~1{ 1{

rm

t
Fa=2, 2rm , 2t

1z
rm

t
Fa=2, 2rm , 2t

0
B@

1
CA

1=k

and

pL~1{ 1{ 1z
tz1

rm

F1{a=2, 2(tz1), 2rm

� �{1
 !1=k

[26]. This last

version of the Clopper-Pearson CI has the advantage that the

exact CI for p can be calculated by hand using standard F

tables.

In methods 1 and 2, we start with a minimal sample size,

say r0, and increase the initial number of pools (rm) by one

unit, recalculating Eq. (7) each time, until the desired degree of

certainty (c) is achieved; this will produce a modified number

of pools (rm) that assures, with a probability §c, that the W will

be no wider than v. In other words, rm ensures that the

researcher will have approximately 100c percent certainty that

the computed CI will have the desired width or smaller. For

example, if the researcher requires 90% confidence that the

obtained W will be no larger than the desired width (v), (1{c)

would be defined as 0.10, and there would be only a 10% chance

that the CI width, around p̂p, would be larger than specified (v)

[24,27].

Contrary to Eq. (5) above, the computational sample size

proposed by Eq.(7) with methods 1 and 2 considers p̂p as a random

variable and gives a non-closed-form solution for computing a

minimum sample size (rm) that guarantees that W is smaller than,

or equal to, v with a probability of at least c. In the following

section, we propose a closed-form analytic method for determining

the optimal sample size (number of positive pools required) that

uses a single formula which assures the estimation of a narrow

confidence interval.

Analytic optimum sample size estimation–method 3
The CI width using the Wald interval for p is

W~2Z1{a=2

ffiffiffiffiffiffiffiffiffiffi
V̂V(p̂p)

q
, and W must be smaller than a specified

value (v) with probability (c). Therefore, the optimal sample size is

defined as being the smallest integer value (rm) such that

P(Wƒv)~P 2Z1{a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{P̂P
� �2=k{1

P̂P2

rmk2

s
ƒv

2
4

3
5§c ð8Þ

From Result 2 in Appendix S1, for fixed v, the number of

required positive pools with method 3 is given by

rm~

h
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where c represents the desired degree of certainty (required

probability) of achieving a CI width (W) for p that is no wider than

the desired value (v). Zc is the c quantile of the standard normal

distribution. P~1{ 1{pð Þk is the probability of a positive pool.

Note that if c~0:5, Zc~0 (because the 50% quantile of a

standard normal distribution is required), then Eq. (9) reduces to

Eq. (5), that is, the formula determines the required number of

pools assuming that the proportion of the population p is known

and fixed; this means, as already anticipated, that the required

width W will be achieved only 50% of the time approximately. On

the other hand, if k~1, Eq. (9) reduces to

r~
Z1{a=2

v

	 
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2(1{p)

p
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2(1{p)z

2v 1:5p4{p3j jZc

Z1{a=2p2

s" #2

ð10Þ

which is appropriate for determining the sample size without

grouping (without making pools) (individual testing because k = 1)

and guarantees that W will be smaller than, or equal to, v with a

probability c. In other words, only (1{c) of the time will W be

larger than the desired CI width, v.

Also note that when c~0:5, Eq. (10) [individual inverse

(negative) binomial sample size] reduces to the formula proposed

by Lui [13] under individual inverse (negative) binomial sampling,

r~
4Z2

1{a=2p2(1{p)

v2
when the stochastic nature of the CI width is

not considered. It is important to point out that Eq. (7) and the

proposed formulas Eq. (9) and (10) determine a minimum sample

size (rm) that guarantees that W will be smaller than, or equal to, v
with a probability of at least c. In contrast to Eq. (5), Eqs. (7), (9),

and (10) account for the stochastic nature of the random variable p̂p

via the desired degree of certainty (c). It should be pointed out that

rp is what we call the sample size obtained from Eq. (5) or from Eq.

(9) or (7) using c~0:5, and rm is the sample size obtained with Eq.

(9) or (7) when cw0:5. For this reason, the level of assurance would

be c§0:5. When using Equations (9) or (7), we suggest three ways

of specifying the value of p: (1) perform a pilot study, (2) use the

value of p reported in the literature of similar studies, and (3) use

the upper bound for p that was reported. The upper bound should

be chosen carefully to avoid estimators with high bias and high

MSE; also, the upper bound needs to be used when the study was

performed under group testing and when the value of r is not small

[9]. In addition, if the value of p reported in the literature was not

obtained using group testing (but rather individual testing), then

using an upper bound for sample size determination is not

recommended. On the other hand, it is important to point out that

the sample size from Equation (5) or from Equation (7) or (9) when

using c~0:5 will be called preliminary sample size in order to
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distinguish it from the sample size obtained from Equations (7) or

(9) when level cw0:5.

Results

Sample sizes are shown for k values of 40 (Table 2), p values

ranging from 0.005 to 0.025, and v values from 0.007 to 0.010 by

0.001 for each method. Within this table, we delineated three sub-

tables with the modified number of pools (rm) and c values of 0.50,

0.80, and 0.90, each for a CI coverage of 95%. Each condition is

crossed with all other conditions in a factorial manner; thus there

are a total of 108 different cases for planning an appropriate

sample size for each proposed method. To examine the results

shown in Table 2, a simulation study was performed to examine

the coverage and assurances of the samples as compared with the

nominal coverage and assurances [Table 3 for the analytic

procedure (method 3); Table 4 for the computational Wald

procedure (method 2), and Table 5 for the exact Clopper-Pearson

procedure (method 1)].

Comparing the proposed analytic formula with two exact
computational procedures using group size k = 40

Although the Clopper-Pearson CI is conservative, it is regarded

as the gold standard reference method. First the sample size of

methods 2 (computational Wald procedure) and 3 (analytic

formula Eq. 9) are compared with the sample size resulting from

using the exact Clopper-Pearson CI (method 1). For example,

when c~0:5 and 0.8, the analytic method (method 3; Eq. 9)

underestimates the sample size from 1 to 10 pools (Table 2), while

the computational Wald procedure (method 2) underestimates the

sample size from 1 to 9 pools with regard to the Clopper-Pearson

(method 1) sample size. When c~0:9, the underestimation is from

Table 2. Sample size (required number of positive pools) for the three methodsb.

Analytic formula (method 3) Clopper-Pearson (method 1) Computational Wald (method 2)

v v v

p 0.007 0.008 0.009 0.010 0.007 0.008 0.009 0.010 0.007 0.008 0.009 0.010

rp (assurance c~0:5) rp(assurance c~0:5) rp(assurance c~0:5)

0.005 8 6 5 4 9 7 6 5 9 7 6 5

0.0075 18 14 11 9 19 15 12 10 19 15 12 10

0.01 31 24 19 15 34 26 21 17 33 25 20 17

0.0125 49 38 30 24 52 41 33 27 50 39 31 25

0.015 72 55 43 35 75 59 46 38 73 56 45 36

0.0175 98 75 59 48 103 80 63 52 100 76 61 50

0.02 130 99 78 64 136 105 84 68 131 101 80 65

0.0225 166 127 101 81 174 134 106 86 168 128 101 82

0.025 208 159 126 102 218 167 133 109 209 160 126 104

rm(assurance c~0:80) rm (assurance c~0:80) rm(assurance c~0:80)

0.005 12 10 8 7 14 12 10 9 14 12 10 8

0.0075 24 19 16 13 26 22 18 15 26 21 17 15

0.01 40 32 26 22 44 35 29 24 43 33 28 24

0.0125 61 48 39 32 65 52 43 35 63 50 40 34

0.015 86 67 54 45 91 71 59 49 88 69 56 47

0.0175 115 90 72 60 121 96 77 65 118 93 75 62

0.02 149 116 94 77 156 123 100 82 151 118 96 80

0.0225 189 147 118 97 198 154 126 104 190 150 120 99

0.025 234 182 146 120 244 191 154 128 237 185 148 122

rm(assurance c~0:90) rm(assurance c~0:90) rm(assurance c~0:90)

0.005 14 11 9 8 17 14 12 11 17 14 12 11

0.0075 27 22 18 15 31 25 21 18 30 25 21 18

0.01 45 36 29 25 49 39 33 29 48 38 32 27

0.0125 67 53 43 36 71 57 48 40 70 56 46 39

0.015 93 73 59 50 98 79 65 55 96 76 62 53

0.0175 123 97 79 65 130 104 85 71 127 101 82 69

0.02 159 125 101 84 167 134 109 91 163 128 105 87

0.0225 200 157 127 105 211 166 136 113 203 160 131 110

0.025 247 193 156 129 260 205 167 138 250 197 159 132

bFor a CI of 95%, k~40, four desired widths (v~0:007, 0:008, 0:009, 0:010) and three values of c (0.5, 0.8, and 0.90). The value of p is the population proportion, rp is the
preliminary number of required positive pools, rm is the modified required number of positive pools, and c is the assurance for the desired degree of certainty of
achieving a CI for p that is no wider than the desired CI width (v).
doi:10.1371/journal.pone.0032250.t002
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3 to 13 pools using the analytic method (method 3; Eq. 9) and from

1 to 10 pools using the computational Wald procedure (method 2).

It is important to point out that the level of underestimation

increases for bigger values of the proportion (p); when the

proportion is less than 0.01, the underestimation can be

considered negligible because it is less than 5 pools and decreases

for smaller values of p.

On the other hand, comparing the analytic method (method 3;

Eq. 9) with the computational Wald procedure (method 2), the

analytic method (method 3; Eq. 9) produces at most 5 pools less

than the exact Wald procedure (Table 2), which shows that the

difference between these two methods is not important. For the

analytic method (method 3; Eq. 9), the level of underestimation

can be considered irrelevant when pƒ0:01 and of little relevance

when pw0:01, given that the Clopper-Pearson method (method 1)

produces a considerable overestimation due to the use of a

conservative CI procedure.

Suppose a researcher is interested in estimating p for AP

maize in the region of Oaxaca, Mexico, where AP maize was

reported to be found. With this information and after doing a

literature review, it is considered that p = 0.01, with a CI of 95%,

and k = 40, and it is assumed that the final CIW is

Wt~(pU{pL)ƒv~0:008. The application of the proposed

methods leads to the required number of preliminary pools of

rp~24, 26, and 25, each of size k = 40, using the analytic (method

3; Eq. 9), Clopper-Pearson (method 1; Eq.7), and computational

Wald methods (method 2; Eq.7), respectively. These sample sizes

are contained in the first sub-table of Table 2 (rp with c&0:5,

where k = 40, p = 0.01, and v~0:008).

Realizing that rp~24, 26, and 25 will lead to a sufficiently

narrow CI only about 50% of the time, the researcher

incorporates an assurance of c = 0.90, which implies that the

width of the 95% CI will be larger than the required width (i.e.,

0.008) no more than 10% of the time. From the third sub-table

of Table 2 (rm with c~0:90), it can be seen that the modified

sample size procedure yields the necessary number of pools

rm~36, 39, and 38 for the analytic method (method 3), Clopper-

Pearson method (method 1), and computational Wald procedure

Table 3. Simulation study of the coverage and assurance for method 3 (analytic formula)c.

v v

P 0.007 0.008 0.009 0.010 0.007 0.008 0.009 0.010

-------Coverage (1{a~0:95)-------- ----------Assurance (c~0:5)-----------

0.0050 0.9550 0.9553 0.9590 0.9534 0.4670 0.4323 0.4764 0.4543

0.0075 0.9530 0.9585 0.9534 0.9573 0.4917 0.4782 0.4863 0.4613

0.0100 0.9512 0.9546 0.9508 0.9555 0.4573 0.4713 0.4669 0.4546

0.0125 0.9508 0.9518 0.9551 0.9522 0.4601 0.4973 0.4920 0.4787

0.0150 0.9497 0.9475 0.9527 0.9541 0.4886 0.4731 0.4485 0.4614

0.0175 0.9513 0.9506 0.9533 0.9533 0.4821 0.4696 0.4826 0.4895

0.0200 0.9525 0.9516 0.9539 0.9523 0.4867 0.4835 0.4893 0.4826

0.0225 0.9483 0.9527 0.9458 0.9539 0.4949 0.4878 0.5046 0.4850

0.0250 0.9527 0.9514 0.9481 0.9472 0.5019 0.4907 0.4992 0.4725

------Coverage (1{a~0:95)------- ---------Assurance (c~0:80)-----------

0.0050 0.9521 0.9542 0.9546 0.9581 0.7314 0.7523 0.7352 0.7334

0.0075 0.9546 0.9571 0.9549 0.9542 0.7367 0.7324 0.7626 0.7191

0.0100 0.9509 0.9515 0.9534 0.9548 0.7603 0.7573 0.7538 0.7743

0.0125 0.9489 0.9557 0.9495 0.9494 0.7725 0.7594 0.7622 0.7653

0.0150 0.9511 0.9488 0.9525 0.9520 0.7819 0.7704 0.7536 0.7839

0.0175 0.9521 0.9538 0.9499 0.9511 0.7760 0.7781 0.7630 0.7678

0.0200 0.9484 0.9495 0.9507 0.9493 0.7780 0.7692 0.7740 0.7522

0.0225 0.9491 0.9514 0.9541 0.9495 0.7848 0.7636 0.7766 0.7656

-------Coverage (1{a~0:95)------- ---------Assurance (c~0:90)-----------

0.0050 0.9535 0.9524 0.9551 0.9546 0.8300 0.8007 0.7798 0.8127

0.0075 0.9504 0.9534 0.9527 0.9532 0.8434 0.8537 0.8385 0.8301

0.0100 0.9502 0.9503 0.9521 0.9508 0.8741 0.8686 0.8384 0.8583

0.0125 0.9534 0.9495 0.9539 0.9552 0.8689 0.8672 0.8483 0.8580

0.0150 0.9476 0.9545 0.9510 0.9501 0.8670 0.8722 0.8646 0.8677

0.0175 0.9515 0.9538 0.9543 0.9521 0.8757 0.8682 0.8633 0.8570

0.0200 0.9490 0.9484 0.9487 0.9549 0.8781 0.8723 0.8764 0.8644

0.0225 0.9490 0.9500 0.9520 0.9544 0.8766 0.8767 0.8850 0.8744

0.0250 0.9522 0.9488 0.9543 0.9492 0.8803 0.8671 0.8784 0.8698

cThese coverages and these levels of assurance are for sample sizes obtained with the analytic formula (method 3) presented in Table 2, for a CI of 95%, k~40, four
desired widths (v~0:007, 0:008, 0:009, 0:010), and three values of assurance (c~0:5, 080, and 0:90):
doi:10.1371/journal.pone.0032250.t003
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(method 2), respectively. Using these sample sizes (36, 39, and 38)

will provide 90% assurance that the CI obtained for p will be no

wider than 0.008 units. This sample size is contained in the third

sub-table of Table 2 (rm with c&0:90, where k = 40, p = 0.01, and

v~0:008).

An example using the proposed formula (method 3)
In this subsection, we will illustrate the use of the developed

formula (Eq. 9) called method 3. Assume that a researcher is

interested in estimating p and she/he hypothesizes that

p = 0.02, and wants a CI of 95%, pool size k = 40, and a

desired error equal to Wx~(pU{pL)ƒv~0:008, with an

assurance level of 99% (c~0:99). First, it is necessary to cal-

culate P~1{(1{p)k~1{(1{0:02)40~0:5542996, h
1
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{0:01793628:Z1{0:05=2~1:96 because the CI is 95%, Z0:99~2:33
because it is assumed that the assurance level is 99% (c~0:99),
v~0:008, k~40. Therefore,
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With Eq. (9), the optimum number of positive pools is calculated

with a 99% probability that the CI width will be smaller than

Table 4. Simulation study of coverage and assurance for method 2d.

v v

p 0.007 0.008 0.009 0.010 0.007 0.008 0.009 0.010

-------Coverage (1{a~0:95)-------- ----------Assurance (c~0:5)-----------

0.0050 0.9544 0.9580 0.9538 0.9581 0.5393 0.5431 0.5653 0.5498

0.0075 0.9548 0.9523 0.9533 0.9595 0.5388 0.5329 0.5576 0.5337

0.0100 0.9524 0.9502 0.9574 0.9536 0.5397 0.5012 0.5028 0.5383

0.0125 0.9499 0.9508 0.9518 0.9557 0.5040 0.5134 0.5079 0.5015

0.0150 0.9505 0.9522 0.9520 0.9507 0.5216 0.5116 0.5384 0.5107

0.0175 0.9489 0.9497 0.9489 0.9479 0.5149 0.5069 0.5165 0.5317

0.0200 0.9522 0.9485 0.9494 0.9509 0.5133 0.5112 0.5139 0.5113

0.0225 0.9514 0.9519 0.9457 0.9548 0.5072 0.5076 0.5048 0.5151

0.0250 0.9520 0.9512 0.9465 0.9516 0.5086 0.5115 0.5051 0.5179

------Coverage (1{a~0:95)-------- ---------Assurance (c~0:80)-----------

0.0050 0.9543 0.9528 0.9532 0.9566 0.8286 0.8531 0.8413 0.8109

0.0075 0.9554 0.9523 0.9551 0.9516 0.8206 0.8051 0.8029 0.8293

0.0100 0.9516 0.9524 0.9560 0.9545 0.8296 0.8019 0.8206 0.8415

0.0125 0.9476 0.9473 0.9508 0.9529 0.8092 0.8226 0.8016 0.8167

0.0150 0.9477 0.9517 0.9511 0.9526 0.8077 0.8028 0.8161 0.8128

0.0175 0.9504 0.9503 0.9502 0.9466 0.8108 0.8170 0.8063 0.8180

0.0200 0.9508 0.9514 0.9504 0.9504 0.8089 0.8050 0.8180 0.8146

0.0225 0.9498 0.9500 0.9460 0.9527 0.7995 0.8131 0.8092 0.8034

-------Coverage (1{a~0:95)-------- ---------Assurance (c~0:90)-----------

0.0050 0.9492 0.9525 0.9527 0.9537 0.9223 0.9104 0.9223 0.9294

0.0075 0.9504 0.9529 0.9526 0.9548 0.9050 0.9165 0.9242 0.9103

0.0100 0.9505 0.9520 0.9518 0.9493 0.9130 0.9054 0.9106 0.9056

0.0125 0.9524 0.9533 0.9512 0.9513 0.9113 0.9093 0.9039 0.9158

0.0150 0.9484 0.9498 0.9492 0.9551 0.8985 0.8999 0.9016 0.9088

0.0175 0.9486 0.9486 0.9510 0.9478 0.9070 0.9023 0.9090 0.9061

0.0200 0.9518 0.9482 0.9495 0.9567 0.9019 0.9011 0.9074 0.9067

0.0225 0.9494 0.9534 0.9509 0.9472 0.8969 0.9041 0.9064 0.9089

0.0250 0.9492 0.9511 0.9533 0.9530 0.9056 0.8986 0.9036 0.9019

dThese coverages and these levels of assurance are for sample sizes obtained with the computational Wald procedure (method 2) presented in Table 2, for a CI of 95%,
k~40 four desired widths (v~0:007, 0:008, 0:009, 0:010), and three values of assurance (c~0:5, 080, and 0:90):
doi:10.1371/journal.pone.0032250.t004
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0.008, the desired error. Note that for calculating rm~144, the

double precision format was used; otherwise, a slight overestima-

tion would have occurred. It should be pointed out that if c~0:5,

the value of Zc~0 and the required number of pools reduces to

Eq. (5), that is, 99 pools.

Appendix S2 provides information for implementing the

proposed methods and for obtaining sufficiently narrow CIs for

any combination of k, p, v, c, and a using the R package [28]. The

R package computes the sample size using the proposed formula,

Eq. (9), and the two proposed computational sample size methods.

Coverage and assurance levels–simulation study
In this subsection we will examine whether the three sample size

procedures [analytic (method 3), computational Wald (method 2)

and exact Clopper-Pearson (method 1)] achieve: (1) the coverage

probabilities of the nominal (1-a)100% CI used to calculate the

CIs, and (2) the nominal levels of assurance, because this sample

size formula (Eq. 9) and the two computational methods were

derived under the AIPE approach.

For each sample size (number of positive pools, (rp or rm) from

each combination of p, v, r, c, k reported in Table 2 and obtained

from Equations (7) or (9), we took 40,000 random samples of size

r (Y1, . . . , Yr), where Yi*Geometric P~1{(1{p)k
� �

, to exam-

ine the coverage and assurance levels for each sample size (rp,rm).

First we obtained the corresponding CI from the 40,000 random

samples, and then we counted the proportion of CI that contains

the true value of p, and the proportion of CI that has a CI width

narrower than the desired CI width (v). In Table 3, we can see

that the coverage of the confidence intervals corresponding to the

sample sizes for the analytic method (method 3) obtained from

Table 2 is very similar to the nominal level (95%) and in most

cases is slightly greater than 95%. These results are not in

agreement with other studies that showed that the coverage of

small sample sizes using the Wald CI is poor. The Wald CI

performed very well here perhaps due to the relatively large

sample sizes and also because the parameter P~1{(1{p)k in the

cases studied here is around 0.5, which causes less skewing in

the distribution of T ; consequently, the normal approximation is

Table 5. Simulation study of coverage and assurance for method 1e.

v v

p 0.007 0.008 0.009 0.010 0.007 0.008 0.009 0.010

-------Coverage (1{a~0:95)-------- ----------Assurance (c~0:5)-----------

0.0050 0.9537 0.9564 0.9532 0.9566 0.5383 0.5426 0.5696 0.5513

0.0075 0.9555 0.9535 0.9543 0.9593 0.5404 0.5303 0.5564 0.5375

0.0100 0.9499 0.9547 0.9527 0.9537 0.5673 0.5402 0.5721 0.5426

0.0125 0.9540 0.9517 0.9513 0.9527 0.5607 0.5776 0.5795 0.5863

0.0150 0.9556 0.9493 0.9550 0.9500 0.5650 0.5945 0.5486 0.5651

0.0175 0.9529 0.9525 0.9554 0.9509 0.5660 0.5968 0.5521 0.5635

0.0200 0.9517 0.9506 0.9552 0.9505 0.5953 0.5836 0.5930 0.5740

0.0225 0.9527 0.9488 0.9516 0.9545 0.5940 0.6096 0.5919 0.5859

0.0250 0.9507 0.9491 0.9487 0.9523 0.6014 0.6093 0.6103 0.5903

------Coverage (1{a~0:95)-------- ---------Assurance (c~0:80)-----------

0.0050 0.9549 0.9518 0.9526 0.9551 0.8299 0.8509 0.8453 0.8478

0.0075 0.9538 0.9549 0.9529 0.9538 0.8182 0.8563 0.8384 0.8296

0.0100 0.9511 0.9502 0.9505 0.9551 0.8403 0.8336 0.8388 0.8369

0.0125 0.9511 0.9526 0.9547 0.9541 0.8422 0.8602 0.8517 0.8324

0.0150 0.9523 0.9517 0.9537 0.9521 0.8493 0.8456 0.8631 0.8429

0.0175 0.9489 0.9537 0.9471 0.9517 0.8444 0.8534 0.8478 0.8544

0.0200 0.9513 0.9537 0.9537 0.9510 0.8567 0.8593 0.8587 0.8530

0.0225 0.9494 0.9512 0.9512 0.9531 0.8525 0.8427 0.8692 0.8606

-------Coverage (1{a~0:95)-------- ---------Assurance (c~0:90)-----------

0.0050 0.9529 0.9543 0.9522 0.9509 0.9234 0.9112 0.9235 0.9280

0.0075 0.9521 0.9536 0.9507 0.9534 0.9235 0.9140 0.9237 0.9086

0.0100 0.9500 0.9516 0.9527 0.9522 0.9217 0.9107 0.9188 0.9350

0.0125 0.9492 0.9501 0.9547 0.9529 0.9165 0.9263 0.9269 0.9185

0.0150 0.9493 0.9533 0.9535 0.9494 0.9232 0.9284 0.9323 0.9385

0.0175 0.9492 0.9531 0.9505 0.9518 0.9249 0.9355 0.9321 0.9307

0.0200 0.9477 0.9512 0.9486 0.9520 0.9238 0.9402 0.9299 0.9336

0.0225 0.9530 0.9471 0.9478 0.9539 0.9346 0.9380 0.9340 0.9347

0.0250 0.9511 0.9492 0.9504 0.9516 0.9381 0.9371 0.9416 0.9316

eThese coverages and levels of assurance are for sample sizes obtained with the exact Clopper-Pearson (method 1) presented in Table 2, for a CI of 95%, k~40, four
desired widths (v~0:007, 0:008, 0:009, 0:010), and three values of assurance (c~0:5, 080, and 0:90):
doi:10.1371/journal.pone.0032250.t005
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better. Also, the coverage of the sample sizes in Table 4 [for the

computational Wald (method 2)] and in Table 5 [exact Clopper-

Pearson (method 1)] is in most cases slightly greater than the

nominal level (95%).

Concerning the level of assurance, we can see in Table 3 [for

the analytic procedure (method 3)] that for the three levels studied

(c~0:5, 0:8, 0:9) the obtained assurances are smaller than the

specified nominal values. The results for c~0:5 are consistent with

the results in Table 1, which indicates that sample sizes with no

assurance (c~0:5) guarantee a desired CI width around 50% of

the time and, in most cases, less than 50%. Also, when the

assurance is 80% or 90%, the achieved levels of assurance are

smaller than the nominal levels. For the computational Wald

procedure (Table 4), we can see that the assurance levels in most

cases are slightly greater than the specified nominal level

(c~0:5, 0:8, 0:9). Finally, for the exact Clopper-Pearson procedure

(Table 5), the levels of assurance reached are larger than the

nominal values in all cases, and we can say that there is an evident

overestimation of the specified nominal values (c~0:5, 0:8, 0:9).

Discussion

This paper presented three methods for determining the

optimal sample size for estimating the proportion of transgenic

plants in a population, assuming perfect sensitivity and specificity,

which must be taken into account when designing a study. The

proposed methods guarantee that the desired CI width (v) will be

achieved with a probability c, because they take into account the

stochastic nature of the confidence interval width. Of the three

methods presented, two are computational and one is analytic.

According to the Monte Carlo study, the computational Wald

procedure (method 2) is the best option because its corresponding

coverage and assurance levels are very close to the nominal

specified values. On the other hand, the exact Clopper-Pearson

procedure (method 1) is conservative (overestimates the required

sample size) because the coverage (in most cases) and assurance

levels (in all cases) are larger than the nominal values; the analytic

procedure (method 3) slightly underestimates the required sample

sizes because in most cases the observed levels of assurance are

smaller than the nominal values, even though in most cases the

coverage reached is slightly greater than the nominal level (95%).

The main advantage of the analytic procedure (method 3) is that

a simple formula (Eq. 9) was derived which, within a certain range

of k, p, and c, is very precise and produces similar results to the two

computational methods proposed. However, the proposed formula

underestimated the optimum number of positive pools, mainly for

c§0:90, for k.75 at p.0.01. However, if the number of pools

given by the formula (Eq. 9) of the analytic method increases to 6,

the resulting sample size will be very close to the computational

Wald CI, which produces, on average, 5 pools more than the

analytic procedure (method 3).

The three proposed methods are good approximations for

determining the optimal sample size under negative binomial group

testing, because they were derived using two types of confidence

intervals (Wald and Clopper-Pearson). Although the Clopper-

Pearson CI is considered the gold standard, its corresponding

sample size (method 1) is conservative (overestimates the sample

size) and it is not possible to compute it analytically. For this reason,

we recommend using the sample size resulting from the computa-

tional Wald procedure (method 2). A disadvantage of method 2 is

that it does not have an analytic solution.

These methods using group testing are an excellent option

under the assumption that AP concentration is low, pv0:1. Pool

size can be an important consideration, since from an economic

perspective, it is always better to have a large pool size and a

smaller number of pools than vice versa. However, pool size

should be chosen carefully to avoid a high rate of false negatives.

On the other hand, an important point to take into account when

using the negative binomial group testing sampling method is that

the sample size (rm) given by Equations (7) and (9) represents the

number of positive pools required to stop the sampling and testing

process. The sampling and testing process is performed pool by

pool using simple random sampling until we find the required

number of positive pools (rm). That is, sampling and testing will

stop when the number of positive pools, rm, is reached and we

need to record the observed data Y1, Y2, . . . , Yr, to get the

overall number of pools tested T~
Pr

i~1 Yi.

Note that the sample size formula developed by Montesinos-

López et al. [21] under binomial group testing looks similar to

those developed in this study; however, here we derived the three

procedures under inverse negative binomial group testing

sampling, that is, using negative binomial distribution. In the

method of Montesinos-López et al. [21], the required sample size

is a fixed quantity (gm: number of pools to study, which represents

the number of laboratory tests to be performed); under negative

binomial group testing, the number of positive pools (rm) is the

quantity that is fixed in advance, whereas the overall number of

pools tested is a random variable, because the sampling and testing

process stops when the rth positive pool is found. The methods

proposed here give the value of the required number of positive

pools (rm).

The R program (see Appendix S2) developed using the R

package [28] allows the user to quickly and simply plan the sample

size according to her/his requirements or needs using the three

proposed methods [the analytic (method 3), exact Clopper-

Pearson (method 1) and computational Wald methods (method

2)]. However, if the researcher does not have access to the R

program, the best practical solution is the analytic procedure using

Eq. (9).
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