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ABSTRACT

Objective: The study sought to develop and evaluate neural natural language processing (NLP) packages for

the syntactic analysis and named entity recognition of biomedical and clinical English text.

Materials and Methods: We implement and train biomedical and clinical English NLP pipelines by extending

the widely used Stanza library originally designed for general NLP tasks. Our models are trained with a mix of

public datasets such as the CRAFT treebank as well as with a private corpus of radiology reports annotated with

5 radiology-domain entities. The resulting pipelines are fully based on neural networks, and are able to perform

tokenization, part-of-speech tagging, lemmatization, dependency parsing, and named entity recognition for

both biomedical and clinical text. We compare our systems against popular open-source NLP libraries such as

CoreNLP and scispaCy, state-of-the-art models such as the BioBERT models, and winning systems from the

BioNLP CRAFT shared task.

Results: For syntactic analysis, our systems achieve much better performance compared with the released scis-

paCy models and CoreNLP models retrained on the same treebanks, and are on par with the winning system

from the CRAFT shared task. For NER, our systems substantially outperform scispaCy, and are better or on par

with the state-of-the-art performance from BioBERT, while being much more computationally efficient.

Conclusions: We introduce biomedical and clinical NLP packages built for the Stanza library. These packages of-

fer performance that is similar to the state of the art, and are also optimized for ease of use. To facilitate re-

search, we make all our models publicly available. We also provide an online demonstration (http://stanza.run/

bio).
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INTRODUCTION

A large portion of biomedical knowledge and clinical communication

is encoded in free-text biomedical literature or clinical notes.1,2 The

biomedical and clinical natural language processing (NLP) communi-

ties have made substantial efforts to unlock this knowledge, by build-

ing systems that are able to extract information,3,4 answer questions,5,6

or understand conversations7 from biomedical and clinical text.

NLP toolkits that are able to understand the linguistic structure

of biomedical and clinical textand extract information from it are

often used as the first step of building such systems.8,9 Existing
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general-purpose NLP toolkits are optimized for high performance

and ease of use but are not easily adapted to the biomedical domain

with state-of-the-art performance. For example, the Stanford Cor-

eNLP library10 and the spaCy library (https://spacy.io/), despite be-

ing widely used by the NLP community, do not provide customized

models for biomedical language processing. The recent scispaCy

toolkit11 extends spaCy’s coverage to the biomedical domain, yet it

does not provide state-of-the-art performance on syntactic analysis

or entity recognition tasks, and does not offer models customized to

clinical text processing.

In addition to general-purpose NLP toolkits, several NLP toolkits

specialized for processing biomedical or clinical text are available. For

example, Mayo Clinic’s cTAKES (Clinical Text Analysis and Knowl-

edge Extraction System) provides a dictionary-based named-entity rec-

ognizer to find Unified Medical Language System Metathesaurus

terms12 in text, in addition to other NLP functionalities, such as tokeni-

zation, part of speech tagging, and parsing.13 Other similar packages in-

clude the Health Information Text Extraction (HITEx) library,14 the

MetaMap toolkit,15 and the CLAMP clinical NLP toolkit.16 These

packages often integrate sophisticated domain-specific features crafted

by experts, yet they fall short of integrating modern deep learning–based

models that offer much more accurate performance than traditional

rule-based or machine learning methods. Moreover, as Python becomes

a common language of choice in the biomedical data science commu-

nity,17 the lack of native Python support has significantly limited users’

ability to adopt these toolkits and integrate them with modern compu-

tational libraries such as the deep learning libraries.

The recently introduced Stanza NLP library18 offers state-of-the-art

syntactic analysis and NER functionality with native Python support.

Its fully neural pipeline design enables extension of its language process-

ing capabilities to the biomedical and clinical domain. In this study, we

present biomedical and clinical English model packages for the Stanza

library (Figure 1). These packages are built on top of Stanza’s neural

system, and offer syntactic analysis support for biomedical and clinical

text, including tokenization, lemmatization, part-of-speech (POS) tag-

ging, and dependency parsing, based on the Universal Dependencies v2

(UDv2) formalism,19 and highly accurate named entity recognition

(NER) capabilities covering a wide variety of domains.

These packages include 2 UD-compatible biomedical syntactic

analysis pipelines trained on the publicly available CRAFT20 and

GENIA8 treebanks, respectively; a UD-compatible clinical syntactic

analysis pipeline, trained with a silver-standard treebank created

from clinical notes in the MIMIC-III (Medical Information Mart for

Intensive Care-III) database21; 8 accurate biomedical NER models

augmented with contextualized representations, achieving near

state-of-the-art performance; and 2 clinical NER models, including

a newly introduced model specialized in recognizing entities in clini-

cal radiology reports.

We show through a variety of experiments that these packages

achieve performance that meets or surpasses state-of-the-art results. We

further show via examples and benchmarking that these packages are

easy to use and do not compromise speed, especially when GPU acceler-

ation is available. We hope that our packages will facilitate future re-

search to analyze and understand biomedical and clinical text.

MATERIALS AND METHODS

Syntactic analysis modules and implementations
Stanza’s syntactic analysis pipeline consists of modules for tokeniza-

tion, sentence segmentation, POS tagging, lemmatization, and

dependency parsing. All modules are implemented as neural net-

work models. We briefly introduce each component in turn and re-

fer readers to the Stanza system paper18 for details.

Tokenization and sentence splitting

The first step of text analysis is usually tokenization and sentence

segmentation. In Stanza, these 2 tasks are jointly modeled as a tag-

ging problem over character sequences, in which the model predicts

whether a given character is the end of a token, a sentence, or nei-

ther. This joint task is realized with a lightweight recurrent neural

network. We choose to combine these tasks because they are usually

context-sensitive and can benefit from joint inference to reduce am-

biguity.

POS tagging

Once the text is tokenized, Stanza predicts the POS tags for each

word in each sentence.

We adopt a bidirectional long short-term memory network

(BiLSTM) as the basic architecture to predict both the language-

specific POS (XPOS) tags and the universal POS (UPOS) tags.

We further adapt the biaffine scoring mechanism from the biaf-

fine neural parser22 to condition XPOS prediction on that of UPOS,

which improves the prediction consistency between XPOS and

UPOS tags.23

Lemmatization

In many practical downstream applications, it is useful to recover

the canonical form of a word by lemmatizing it (eg, recovering the

lemma form do from the word did) for better pattern matching.

Stanza’s lemmatizer is implemented as an ensemble of a dictionary-

based lemmatizer and a neural sequence-to-sequence lemmatizer

that operate on character sequences. An additional classifier is built

on the encoder output of the seq2seq model, to predict shortcut

operations such as lowercasing the input word or using an exact

copy of the input word as lemma. These shortcut operations im-

prove the robustness of the neural lemmatizer on long input charac-

ter sequences such as URLs by avoiding the unnecessary generation

of very long sequences.

Dependency parsing

To analyze the syntactic structure of each sentence, Stanza parses it

into the UD format,19 in which each word in a sentence is assigned a

syntactic head that is either another word in the sentence, or in the

case of the root word, an artificial root symbol. The dependency

parser in Stanza is a variant of the BiLSTM-based deep biaffine neu-

ral dependency parser22 that Qi et al23 have modified for improved

accuracy.

Biomedical syntactic analysis pipeline
We provide 2 separate syntactic analysis pipelines for biomedical

text by training Stanza’s neural syntactic pipeline on 2 publicly

available biomedical treebanks: the CRAFT treebank20 and the

GENIA treebank.8,24 The 2 treebanks differ in 2 main ways. First,

while GENIA is collected from PubMed abstracts related to

“human,” “blood cells,” and “transcription factors,” CRAFT is col-

lected from full-text articles related to the Mouse Genome Informat-

ics database. Second, while the CRAFT treebank tokenizes segments

of hyphenated words separately (eg, up-regulation tokenized into

up—regulation), the GENIA treebank treats hyphenated words as

single tokens.
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Because both treebanks provide only Penn Treebank annotations

in their original releases, to train our neural pipeline, we first con-

vert both of them into UDv219 format annotations, using the UD

converter25 in the Stanford CoreNLP library.10 To facilitate future

research we have made the converted files publicly available (https://

nlp.stanford.edu/projects/stanza/bio/).

Treebank combination

Because the tokenization in the CRAFT treebank is fully compatible

with that in the general UD English treebanks, in practice we found

it beneficial to combine the English Web Treebank (EWT)26 with

the CRAFT treebank for training the CRAFT syntactic analysis

pipeline. We show later via experiments that this treebank combina-

tion improves the robustness of the resulting pipeline on both gen-

eral and in-domain text.

Clinical syntactic analysis pipeline
Unlike the biomedical domain, no large annotated treebanks for

clinical text are publicly available.

Therefore, to build a syntactic analysis pipeline that generalizes

well to the clinical domain, we created a silver-standard treebank by

making use of the publicly available clinical notes in the MIMIC-III

database.21 The creation of this treebank is based on 2 main obser-

vations made via qualitative analysis over sampled clinical notes

from the MIMIC-III database. First, we find that Stanza’s neural

syntactic analysis pipeline trained on general English treebanks gen-

eralizes reasonably well to well-formatted text in the clinical do-

main. Second, the highly optimized rule-based tokenizer in the

Stanford CoreNLP library produces more accurate and consistent

tokenization and sentence segmentation on clinical text than the

neural tokenizer in Stanza trained on a single treebank. For example,

while the neural tokenizer trained on a general English treebank

tends to produce inconsistent sentence segmentations in the presence

of consecutive punctuation marks or spaces in a sentence, the Cor-

eNLP tokenizer handles these cases in a much more consistent and

accurate manner.

Based on these observations, we create a silver-standard MIMIC

treebank with the following procedure. First, we randomly sample

800 clinical notes of all types from the MIMIC-III database, and

stratify the notes into training/dev/test splits with 600/100/100 clini-

cal notes, respectively. These numbers are chosen to create a tree-

bank of similar size to the general English EWT treebank. Second,

we tokenize and sentence-segment the sampled notes with the de-

fault CoreNLP tokenizer. Third, we pretrain Stanza’s general En-

glish syntactic analysis pipeline on the EWT treebank, then run it on

the pretokenized notes, and produce syntactic annotations following

the UDv2 format. Fourth, to improve the robustness of the resulting

models trained on this treebank, similar to the CRAFT pipeline, we

concatenate the training split of the original EWT treebank with this

silver-standard MIMIC treebank. We show later via experiments

that this treebank combination again improves the robustness of the

resulting pipeline on syntactic analysis tasks. A diagram that illus-

trates this whole training procedure is shown in Figure 2.

NER models
Stanza’s NER component adopts the architecture of the contextual-

ized string representation-based sequence tagger.27 For each do-

main, we train a forward and a backward LSTM character-level

Figure 1. Overview of the biomedical and clinical English model packages in the Stanza NLP library. For syntactic analysis, an example output from the CRAFT

biomedical pipeline is shown; for named entity recognition, an example output from the i2b2 clinical model is shown.
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language model (CharLM) to supplement the word representation

in each sentence. At tagging time, we concatenate the representa-

tions from these CharLMs at each word position with a word em-

bedding, and feed the result into a standard 1-layer BiLSTM

sequence tagger with a conditional random field–based decoder.

The pretrained CharLMs provide rich domain-specific representa-

tions that notably improve the accuracy of the NER models.

Biomedical NER models

For the biomedical domain, we provide 8 individual NER models

trained on 8 publicly available biomedical NER datasets: Ana-

tEM,28 BC5CDR,29 BC4CHEMD,30 BioNLP13CG,31 JNLPBA,32

Linnaeus,33 NCBI-Disease,34 and S800.35 These models cover a

wide variety of entity types in domains ranging from anatomical

analysis to genetics and cellular biology. For training, we use prepro-

cessed versions of these datasets provided by Wang et al.36

Clinical NER models

Our clinical-domain NER system contains 2 individually trained

models. First, we provide a general-purpose NER model trained on

the 2010 i2b2/VA dataset37 that extracts problem, test, and treat-

ment entities from various types of clinical notes. Second, we also

provide a new radiology NER model, which extracts 5 types of enti-

ties from radiology reports: anatomy, observation, anatomy modi-

fier, observation modifier, and uncertainty. The training dataset of

this NER model consists of 150 chest computed tomography radiol-

ogy reports collected from 3 individual hospitals.38 Two radiologists

were trained to annotate the reports with 5 entity types with an esti-

mated Cohen’s kappa interannotator agreement of 0.75. For full

details of the entity types and corpora used in this dataset, we refer

the readers to Hassanpour and Langlotz.38

For all biomedical and clinical NER datasets used in our study,

we provide a detailed description of their supported entity types and

their statistics in Supplementary Appendix B.

CharLM training corpora

For the biomedical NER models, we pretrain both the forward and

backward CharLMs on the publicly available PubMed abstracts.

For computational efficiency, we sampled about half of the 2020

PubMed Baseline dump (ftp://ftp.ncbi.nlm.nih.gov/pubmed/base-

line) as our training corpus, which includes about 2.1 billion tokens.

For the clinical NER models, we pretrain the CharLMs on all types

of the MIMIC-III21 clinical notes. During preprocessing of these

notes, we exclude sentences in which at least 1 anonymization mask

is applied (eg, [**First Name8 (NamePattern2)**]), to prevent the

prevalence of such masks from polluting the representations learned

by the CharLMs. The final corpus for training the clinical CharLMs

includes about 0.4 billion tokens.

RESULTS

Syntactic analysis performance
We compare Stanza’s syntactic analysis performance mainly with

CoreNLP and scispaCy, and present the results in Table 1. We focus

on evaluating the end-to-end performance of all toolkits starting

from raw text. In this evaluation setup, a system takes raw text as in-

put, and each module makes predictions by taking outputs from its

previous modules. This setup is more challenging than using gold

tokenized text and other annotations as input to downstream mod-

ules, as used in a lot of previous evaluations. For quantitative evalu-

ation of the syntactic pipeline, we adopt the official evaluation

metrics used in the CoNLL 2018 Universal Dependencies Shared

Task. We include detailed descriptions of our metrics in Supplemen-

tary Appendix A, and refer the readers to the shared task official

website for in-depth introductions (https://universaldependencie-

s.org/conll18/evaluation.html).

For fair comparisons, for both CoreNLP and scispaCy, we pre-

sent their results by retraining their pipelines on the corresponding

treebanks using the official training scripts. scispaCy results are gen-

erated by retraining the scispacy-large models. For the MIMIC tree-

bank, we do not include a comparison with scispaCy, mainly

because we observed a severely degraded performance when apply-

ing it to tokenizing and sentence-segmenting clinical notes.

Notably, we find that Stanza’s neural pipeline generalizes well to

all treebanks we evaluate on, and achieves the best results for all

components on all treebanks.

Figure 2. Training diagram of the Stanza MIMIC clinical syntactic analysis models. Sampled MIMIC-III (Medical Information Mart for Intensive Care-III) clinical

notes are first tokenized and sentence-segmented with the CoreNLP tokenizer, and then syntactically annotated with the pretrained Stanza general English syn-

tactic models. The derived silver-standard treebank is then concatenated with the original English Web Treebank (EWT) treebank and used for training the Stanza

clinical syntactic models.
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POS and parsing with gold input

The much lower tokenization performance of scispaCy on the

CRAFT treebank is due to different tokenization rules adopted:

the tokenizer in scispaCy is originally developed for the GENIA

treebank and therefore segments hyphenated words differently

from the CRAFT treebank annotations (see Biomedical Pipeline),

leading to lower tokenization performance. To understand the un-

derlying syntactic analysis performance without this tokenization

difference, we run an individual evaluation on the CRAFT tree-

bank with gold tokenization results provided to the POS tagger

and parser at test time. We find that under this gold tokenization

setup, Stanza is able to achieve an XPOS F1 score of 98.40 and a

parsing labeled attachment score (LAS) score of 92.10, while Cor-

eNLP achieves 97.67 and 86.17, and scispaCy achieves 97.85 and

87.52 for XPOS and parsing LAS, respectively. Therefore, even

with gold tokenization input (and gold POS tags for the parser),

Stanza’s neural pipeline still leads to substantially better perfor-

mance for both POS tagging and UD parsing, with a notable gain

of 5.93 and 4.58 LAS compared with CoreNLP and scispaCy, re-

spectively. Our findings are in line with previous observations that

a neural biaffine architecture outperforms other models on bio-

medical syntactic analysis tasks.39

Comparisons with CRAFT shared tasks 2019 systems

We further compare our end-to-end syntactic analysis results with

the state-of-the-art system in the CRAFT Shared Tasks 2019,9 for

which CRAFT is also used as the evaluation treebank. For all sys-

tems, we also report results for the official morphology-aware LAS

(MLAS) and bi-lexical dependency score (BLEX) metrics, which,

apart from dependency predictions, also take POS tags and lemma

outputs into account.

Under this setting, we find that the CRAFT shared task 2019

baseline system, which uses a combination of the NLTK tokenizer40

and the SyntaxNet neural parser41 retrained with the CRAFT tree-

bank, achieves limited performance with LAS¼56.68 and

MLAS¼44.22 (no BLEX score due to missing lemma outputs),

while our syntactic pipeline trained on the CRAFT dataset achieves

a much better performance: LAS¼89.67, MLAS¼86.06, and

BLEX¼86.47. For comparisons, the shared task winning system42

reports similar performance, with LAS¼89.70, MLAS¼85.55, and

BLEX¼86.63. We note that the results from our system are not di-

rectly comparable to those from the shared task, owing to the differ-

ent dependency parsing formalisms used (i.e., while we use UDv2

parse trees, the shared task used a parsing formalism similar to the

older Stanford Dependencies formalism). Nevertheless, these results

suggest that the accuracy of our pipeline is on par with that of the

CRAFT shared task 2019 winning system, and substantially outper-

forms the shared task baseline system.

Effects of using combined treebanks

To evaluate the effect of using combined treebanks, we train Stan-

za’s biomedical and clinical syntactic analysis pipeline on each indi-

vidual treebank as well as the combined treebanks and evaluate

their performance on the test set of each individual treebank. We

present the results in Table 2. We find that by combining the bio-

medical or clinical treebanks with the general English EWT tree-

bank, the resulting model not only is able to preserve its high

performance on processing general-domain text, but also achieves

marginally better in-domain performance compared with using the

biomedical and clinical treebanks alone. For example, while the

pipeline trained on the EWT treebank alone is only able to achieve

an LAS scoreof 68.99 on the CRAFT test set, the pipeline trained on

the combined dataset achieves the overall best LAS score of 89.57

on the CRAFT test set, with only a drop in LAS of 1.2 on the EWT

test set. These results suggest that compared with using the in-

domain treebank alone, using the combined treebanks improves the

robustness of Stanza’s pipeline on both in-domain and general En-

glish text.

NER performance
We mainly compare Stanza’s NER performance to BioBERT, which

achieves state-of-the-art performance on most of the datasets tested,

and scispaCy in Table 3. For both toolkits, we compare with their

official reported results.4,11 We find that on most datasets tested,

Stanza’s NER performance is on par with or superior to the strong

performance achieved by BioBERT, despite using considerably more

compact models. A substantial difference is observed on the

BC4CHEMD and NCBI-Disease datasets, where BioBERT leads by

2.71 and 2.22 in F1, respectively, and on the S800 dataset, in which

Stanza leads by 2.29 in F1 score. Compared with scispaCy, Stanza

achieves substantially higher performance on all datasets tested. On

the newly introduced Radiology dataset, Stanza achieves an overall

F1 score of 84.80 micro-averaged over 5 entity types.

In addition to BioBERT, we also compare Stanza’s performance

with SciBERT,43 which achieves F1 scores of 90.01, 77.28, and

88.57 on the BC5CDR, JNLPBA, and NCBI-Disease datasets, re-

spectively, and ClinicalBERT,44 which achieves an F1 score of 86.4

on the i2b2 dataset. We find that Stanza’s performance is on par

with or better than the strong performance offered by SciBERT and

ClinicalBERT, too.

Effects of pretrained character LMs

To understand the effect of using the domain-specific pretrained

CharLMs in NER models, on each dataset we also trained a baseline

NER model in which the pretrained LM is replaced by a randomly

initialized character-level BiLSTM, which is fine-tuned with other

components during training. We compare Stanza’s full NER perfor-

mance with this baseline model in Table 4. We find that by pretrain-

Table 1. Neural syntactic analysis pipeline performance

Treebank System Tokens Sents. UPOS XPOS Lemmas UAS LAS

CRAFT Stanza 99.66 99.16 98.18 97.95 98.92 91.09 89.67

CoreNLP 98.80 98.45 93.65 96.56 97.99 83.59 81.81

scispaCy 91.49 97.47 83.81 89.67 89.39 79.08 77.74

GENIA Stanza 99.81 99.78 98.81 98.76 99.58 91.01 89.48

CoreNLP 98.22 97.20 93.40 96.98 97.97 84.75 83.16

scispaCy 98.88 97.18 89.84 97.55 97.02 88.15 86.57

MIMIC Stanza 99.18 97.11 95.64 95.25 97.37 85.44 82.81

CoreNLP 100.00 100.00 94.08 94.53 95.84 78.92 74.94

All results are F1 scores produced by the 2018 UD Shared Task official

evaluation script. All CoreNLP (v4.0.0) and scispaCy (v0.2.5) results are

from models retrained on the corresponding treebanks. UPOS results for scis-

paCy are generated by manually converting XPOS predictions to UPOS tags

with the conversion script provided by spaCy. For scispaCy results, the scis-

pacy-large models are used. Note that the MIMIC results are based on silver-

standard training and evaluation data as described previously.

LAS: labeled attachment score; MIMIC: Medical Information Mart for In-

tensive Care; UAS: unlabeled attachment score; UPOS: universal part of

speech; XPOS: language part of speech.
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ing Stanza’s CharLMs on large corpora, we are able to achieve an

average gain of in F1 score of 2.91 and 1.94 on the biomedical and

clinical NER datasets, respectively.

Speed comparisons
We compare the speed of Stanza with CoreNLP and scispaCy on

syntactic analysis tasks, and with scispaCy and BioBERT on the

NER task (for BioBERT, we implemented our own code to run in-

ference on the test data, as an inference API is not provided in the

BioBERT official repository). We use the CRAFT test set, which

contains about 1.2 million raw characters, for benchmarking the

syntactic analysis pipeline, and the test split of the JNLPBA NER

dataset, which contains about 101k tokens, for benchmarking the

NER task. Apart from CPU speed, we also benchmark a toolkit’s

speed on GPU whenever GPU acceleration is available. Experiments

are run on a machine with 2 Intel Xeon Gold 5222 CPUs (14 cores

each). For GPU tests, we use a single NVIDIA Titan RTX card.

For each of the tasks, we focus on comparing the runtime of

each toolkit relative to scispaCy. We find that for syntactic analysis,

Stanza’s speed is on par with scispaCy when a GPU is used (1.42�
runtime), although it is much slower when only a CPU is available

(6.83� runtime vs scispaCy). Even in the CPU setting, Stanza’s bio-

medical syntactic analysis pipeline is still slightly faster than Cor-

eNLP, which uses 7.23� runtime compared with scispaCy. For

NER with GPU acceleration, Stanza’s biomedical models are mar-

ginally faster than scispaCy (0.95� runtime vs scispaCy) and are

considerably faster than BioBERT (4.59� runtime vs scispaCy).

When only CPU is available, Stanza’s biomedical models take much

longer time to process text than scispaCy (14.8� runtime) but re-

main much faster than BioBERT which uses 121� runtime com-

pared with scispaCy.

DISCUSSION

System usage
We provide a fully unified Python interface for using Stanza’s bio-

medical/clinical models and general NLP models. The biomedical

and clinical syntactic analysis pipelines can be specified with a pack-

age keyword. We demonstrate how to download the CRAFT bio-

medical package and run syntactic analysis for an example sentence

in Figure 3. For NER, Stanza’s biomedical and clinical models can

be specified with a processors keyword. We demonstrate how to

download the i2b2 clinical NER model along with the MIMIC clini-

cal pipeline, and run NER annotation over an example clinical text

in Figure 3. To easily integrate with external tokenization libraries,

Stanza’s biomedical and clinical pipelines also support annotating

text that is pretokenized and sentence-segmented. This can be easily

specified with a tokenize_pretokenized keyword when initializing

the pipelines.

We provide full details on how to use the biomedical and clinical

models via online documentation (https://stanfordnlp.github.io/

stanza/).

Table 2. Comparisons of using combined treebanks vs single tree-

banks for the biomedical and clinical syntactic analysis pipelines

Biomedical Syntactic Analysis Pipelines

EWT Test CRAFT Test

Training Corpus Token F1 LAS Token F1 LAS

EWT 99.01 83.59 96.09 68.99

CRAFT 93.67 60.42 99.66 89.58

Combined 98.99 82.37 99.66 89.67

Clinical Syntactic Analysis Pipelines

EWT Test MIMIC Test

Training Corpus Token F1 LAS Token F1 LAS

EWT 99.01 83.59 92.97 75.97

MIMIC 94.39 66.63 98.70 81.46

Combined 98.84 82.57 99.18 82.81

For the biomedical pipeline we show results for the English EWT treebank

and the CRAFT treebank; for the clinical pipeline we show results for the En-

glish EWT treebank and a silver-standard MIMIC treebank. For each test set,

tokenization F1 and LAS scores are shown for models trained with each tree-

bank alone and a combined treebank.

EWT: English Web Treebank; LAS: labeled attachment score; MIMIC:

Medical Information Mart for Intensive Care.

Figure 3. Example code for using the biomedical syntactic analysis and named entity recognition pipelines in Stanza.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 9 1897



CONCLUSION

We present the biomedical and clinical model packages in the Stanza

Python NLP toolkit. We show that Stanza’s biomedical and clinical

packages offer highly accurate syntactic analysis and named entity

recognition capabilities, while maintaining competitive speed with

existing toolkits, especially when GPU acceleration is available.

These packages are highly integrated with Stanza’s existing Python

NLP interface, and require no additional effort to use. We hope to

continuously maintain and expand these packages as new resources

become available.
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