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Investigation on performance 
of particle swarm optimization 
(PSO) algorithm based fuzzy 
inference system (PSOFIS) 
in a combination of CFD modeling 
for prediction of fluid flow
Meisam Babanezhad1,2,3, Iman Behroyan4,5, Ali Taghvaie Nakhjiri6, Azam Marjani7,8*, 
Mashallah Rezakazemi9, Amir Heydarinasab6 & Saeed Shirazian10

Herein, a reactor of bubble column type with non-equilibrium thermal condition between air and 
water is mechanistically modeled and simulated by the CFD technique. Moreover, the combination of 
the adaptive network (AN) trainer with the fuzzy inference system (FIS) as the artificial intelligence 
method calling ANFIS has already shown potential in the optimization of CFD approach. Although the 
artificial intelligence method of particle swarm optimization (PSO) algorithm based fuzzy inference 
system (PSOFIS) has a good background for optimizing the other fields of research, there are not 
any investigations on the cooperation of this method with the CFD. The PSOFIS can reduce all the 
difficulties and simplify the investigation by elimination of the additional CFD simulations. In fact, 
after achieving the best intelligence, all the predictions can be done by the PSOFIS instead of the 
massive computational efforts needed for CFD modeling. The first aim of this study is to develop the 
PSOFIS for use in the CFD approach application. The second one is to make a comparison between the 
PSOFIS and ANFIS for the accurate prediction of the CFD results. In the present study, the CFD data 
are learned by the PSOFIS for prediction of the water velocity inside the bubble column. The values 
of input numbers, swarm sizes, and inertia weights are investigated for the best intelligence. Once 
the best intelligence is achieved, there is no need to mesh refinement in the CFD domain. The mesh 
density can be increased, and the newer predictions can be done in an easier way by the PSOFIS with 
much less computational efforts. For a strong verification, the results of the PSOFIS in the prediction 
of the liquid velocity are compared with those of the ANFIS. It was shown that for the same fuzzy 
set parameters, the PSOFIS predictions are closer to the CFD in comparison with the ANFIS. The 
regression number (R) of the PSOFIS (0.98) was a little more than that of the ANFIS (0.97). The PSOFIS 
showed a powerful potential in mesh density increment from 9477 to 774,468 and accurate predictions 
for the new nodes independent of the CFD modeling.
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Various sorts of reactors have been designed and exploited for multi-phase reactions, among which bubble 
column reactor types have attracted a huge deal of interest within the environmental, biopharmaceuticals, pet-
rochemical, wastewater treatment, etc.1–5. These versatile chemical/biochemical reactors could bring advantages 
as a result of decent heat and mass transfers, easy operation, and so  on6,7. There are numerous studies focusing on 
the gas–water systems for assessing hydrodynamic performance of these  reactors8,9 and it is of vital importance 
to create a simulation and assess the fluid flow parameters inside the bubble columns for better process under-
standing. Model-based process development approach can be utilized in this context for process intensification 
and improvements. The findings could considerably help the engineers and researchers in design, optimization, 
operation, etc.1,10.

Computational fluid dynamics (CFD)11 is a precise approach to study two-phase fluid flow in the bubble 
columns, and analyze the interactions between phases, i.e. gas and liquid. CFD simulations have been utilized 
in various  studies12–14 to assess these types of reactors containing water and air systems. Due to the presence of 
two phases inside the reactor and interaction between them, almost all studies considered the Eulerian CFD 
model and just the mass transfer in the reactor both internally and between  phases7,15–17. According to literature, 
there are no CFD studies considering non-equilibrium thermal conditions between air and water in a bubble 
column reactor. This case study is considered, for the first time, in the present paper. The temperature difference 
between air and water adds the energy governing equations to the CFD modeling to build the comprehensive 
simulation methodology. Considering the interphase heat transfer between gas and liquid makes CFD modeling 
of the reactor more complicated, and sophisticated methods are required.

Besides, according to the literature, artificial intelligence (AI) methods are helpful ways for enhancement of 
applications of the CFD  modeling18–22. A few studies have already reported the usage of ANFIS model with the 
CFD for the prediction of fluid flow characteristics in various  circumstances23–28. Although the PSOFIS method 
has been already investigated for the data optimizations in many engineering  aspects29–32, there are no investiga-
tions adopted the PSOFIS in cooperation with the CFD modeling. For example, Shi and  Eberhart29 reported the 
potential of the PSOFIS by benchmarking the experimental data. Hu et al.30 performed the PSOFIS to minimize 
the power loss in electricity distribution systems. We investigated the effects of parameters of the PSOFIS on 
the best intelligence in detail. Therefore, the AI method of particle swarm optimization (PSO) algorithm based 
fuzzy inference system (PSOFIS) is selected in this work to help the CFD modeling. In order to achieve the most 
accurate prediction of the algorithm, the values of input numbers, swarm sizes, and inertia weights are investi-
gated. The increase of the mesh density is also tested for the first time by the PSOFIS. An additional comparison 
is made between PSOFIS and ANFIS results regarding the accuracy of the methods.

Methodology
Geometry of the reactor. A cylindrical column is considered with a diameter of 29 cm and a length of 
2 m here for the computational tasks and understanding the process. In this reactor, the existing gas phase (air) 
is sent to the column of water from the bottom. Air velocity and air temperature are respectively 0.02 m/s and 
400 K, while the water temperature is 295 K.

CFD approach. The Eulerian–Eulerian two-phase model was utilized in this work with the two-equation 
standard k − ε turbulence model. In this fluid modeling approach, the following equations are derived for each 
phase inside the  reactor12:

• Continuity equation of phase k:

• Momentum equation of phase k:

The energy equation is used to calculate the interphase heat transfer between air and  water33.
Energy equation of phase k:

The momentum interphase interactions are the summation of the drag force and the turbulent dispersion 
defining as follows:

where k and Ctd are the water turbulent kinetic energy per unit of mass and turbulent dispersion coefficient, 
respectively. The value of 0.3 is considered for the turbulent dispersion coefficient based on the study  of22.
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The Schiller-Naumann34,35 drag coefficient (CD) is adopted for inter-phase interaction of the momentum 
equations, while for interphase heat transfer coefficient (h) between air bubble and water, the Ranz-Marshall36 
equation is used. It should be noted that the air is considered as incompressible fluid and the bubble shape is 
supposed to be spherical. So, the interphase area (aif) is given as follows:

In this study, the standard k − ε turbulence model was selected. The key mathematical models utilized in the 
present work taken from the  literature37–42:

Grid partition test and validation. F the grid independency test process, two mesh arrangements are 
employed for the simulation of the reactor: the former with 9477 nodes and the latter with 18,954 nodes. The 
CFD results have been compared in the case of the water and air velocities and the deviation was less than 0.04%. 
For less computational efforts, the first mesh density has been adopted in this study. For verification of the CFD 
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Figure 1.  Validation of present CFD study versus Yu and Kim experiment and numerical investigation of Basha 
et al.
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simulation, the results of gas hold-up predictions are compared with the experiment of Yu and  Kim43 and the 
numerical results of Basha et al.34 (Fig. 1).

Particle swarm optimization. Particle swarm optimization (PSO) is population-based algorithms that 
generate and use random variables. This algorithm has been spired by the collective behavior of animals like 
the group of birds or fishes. In this method the population of animals and the candidate solutions are known 
as swarm and particles,  respectively44. The PSO algorithm is based on the collective behavior of individuals in 
a community (Fig. 2). This means that there are a number of individuals, namely particles here, searching for 
the best place as a target or output variable for prediction in the community. Every particle has its own velocity, 
and it is done its own search iteratively for finding the best place. The best place is known as the solution or the 
prediction of the output variable. During the searching process of each individual particle, finding the new place 
is affected by two factors; the former is the best experience of the particle until that iteration; the latter is the best 
experience among all particles together.

The optimal location found for a particle is recorded and called pbest . The best position finding by the whole 
particles is called gbest. Taking pbest, gbest and each particle’s velocity, the update rule for their location is as 
 follows45–47:

where W represents the inertia weight showing the impact of the fr velocity vector (Vt) on the new vector, C1 and 
C2 denote the acceleration constants and rand() represents a random function in the range [0, 1] and xt denotes 
the present location of the pticle.

Table 1 summarizes the parameters of the PSO algorithms that are used in this study. The values of swarm size 
and inertia weight are adjusted in order the best intelligence to be achieved, while the inertia weight damping 
ratio, the personal and the global learning coefficients have been fixed in the model.

Fuzzy inference system (FIS). FIS is a fuzzy engine in terms of the concepts of fuzzy if–then rules, and 
fuzzy set theory. In this intelligence approach, if–then rules presented by Takagi and Sugeno are  run48. In this 
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,
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Figure 2.  Schematics of PSO algorithm.
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study x coordination, y coordination and z coordination are taken to attain liquid phase velocity as output. The 
kth rule function is:

The detailed procedure is reported  elsewhere17–19,48.
The fuzzy set parameters are described in Table 2. Totally, there are 9477 data that are created by the CFD 

simulation. 76% of the generated data are learned and the prediction is done after 400 iterations. The fuzzy 
C-means clustering is adopted as the cluster type. The type of membership function is Gaussian. The number of 
clusters, the rules, and the output membership function all is 30.

Results and discussion
Two-phase air–water flow inside a bubble column type chemical reactor is simulated via CFD method. The air 
is injected into the bubble column filling with  water49. For the first time in this study, the temperature of the air 
(127 °C) differs from the water (23 °C). As a result, there is not any thermal equilibrium between air and water. 
This requires the additional governing equation of energy for the CFD modeling. All governing equations (i.e. 
mass, momentum, energy, turbulence model) are considered in the Eulerian–Eulerian framework for the simula-
tion of process. This means the equations are solved for each phase separately and coupled with each other in the 
source terms. Therefore, solving two-phase CFD models, the 3D modeling, considering the effect of turbulent 
flow imposes massive computational efforts. The PSO algorithm-based fuzzy inference system (PSOFIS) was 
selected for the CFD modeling simplification.

Figure 3 illustrates the flowchart of the PSO algorithm designed for this study. PSOFIS learns the CFD data 
generated by the numerical simulations for the prediction of a specific variable as the output (target). In the pre-
sent study, liquid phase (i.e. water) velocity is the output value. The x, y, and z coordinates of the nodes’ location 
of the water are the inputs. 76% of the whole CFD data (i.e. 9477 data) is trained by the PSOFIS, while the 100% 
CFD data are used in testing. The regression is adopted as an index for reaching the best intelligence. Different 
input numbers (i.e. 1, 2, and 3), swarm sizes (i.e. 60, 80, 100, and 120), and inertia weights (i.e. 0.85, 0.9, 0.95, and 
1) are tested for achieving the best intelligence. Figure 4 shows the influence of input numbers on the regression 
number. As the number of input increases, the regression numbers go up for both training and testing. The best 
intelligence is achieved when the input number is equal to 3 (i.e. R = 0.98).

A similar sensitivity test is done for the effect of swarm sizes, and inertia weights when the input number is 
3. Figure 5 illustrates the PSOFIS learning processes with considering changes in swarm size when number of 
inputs is 3. According to this figure, by increasing swarm sizes from 60 to 100, the R value increases from 0.97 
to 0.98. However, the further increases of swarm size to 120, no significant changes are seen in the value of R.

Figure 6 depicts the PSOFIS learning processes with considering changes in inertia weight when swarm 
size is 100 and number of inputs is 3. Regarding this figure, rising inertia weights from 0.85 to 1, the R value 

(14)wk = µxk(X)µyk(Y)µzk(Z).

Table 1.  Particle swarm optimization algorithm parameters.

PSO algorithm parameters

Swarm size 60, 80, 100, 120

Inertia weight (0–1) 0.85, 0.9, 0.95, 1

Inertia weight damping ratio 0.99

Personal learning coefficient (0–2) 1

Global learning coefficient (0–2) 2

Table 2.  Fuzzy inference system parameters.

Fuzzy inference system parameters

Percentage of data for training (P) 76%

Number of data 9477

Iteration 400

Data clustering method FCM clustering

Membership function (MF) Gaussmf

Number of cluster (NC) 30

Number of rules and output MFs 30
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Figure 3.  Schematics of combination of PSO algorithm and fuzzy inference system.

Figure 4.  PSOFIS learning processes with considering changes in number of inputs.
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increases from 0.97 to 0.98. Hence, the best intelligence can be obtained for the input number of 3, swarm size 
of 100, and inertia weight of 1.

For more validation, the integration of the adaptive network with the fuzzy inference system, calling ANFIS, 
is employed for learning the CFD outcomes for simulating of the water velocity inside the  reactor49. The results 
of the PSOFIS are compared with the ANFIS. It should be noted that for the similar setup condition, all the 

Figure 5.  PSOFIS learning processes with considering changes in swarm size when number of inputs is 3.

Figure 6.  PSOFIS learning processes with considering changes in inertia weight when swarm size is 100 and 
number of inputs is 3.
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Figure 7.  Comparison of the best result of PSOFIS and ANFIS methods.

Figure 8.  Pattern of liquid phase velocity in different methods.
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fuzzy set parameters of the ANFIS are the same as the PSOFIS (referring to Table 2). According to Fig. 7, the R 
value of the PSOFIS (0.98) is a little more than that of the ANFIS (0.97). Figure 8 illustrates the pattern of the 
liquid phase velocity in both methods of ANFIS and PSOFIS. Magnifying the graphs, it is seen that the PSOFIS 
predictions follow the CFD results with more compatibility in comparison with the ANFIS. 

The FIS structure based on PSO learning process is shown in Fig. 9 in a schematic way. The membership 
function is Gaussian as shown in input boxes on the right. The number of clusters in for each input, the number 
of rules in the hidden layer, and the number of membership functions for output are 30. The type of cluster is 
fuzzy semi clustering.

Figures 10a–c illustrate the comparison between the CFD and the PSOFIS predictions of water velocity in 
each input. As seen, there is no conflict between the results of both methods. Since the results are for the time 
of 30 s, as to be expected, the water velocity is higher at lower heights of the column (i.e. z = 0.1 and 0.2 m) and 
the velocity is damped to reach zero at higher heights (i.e. z = 0.9 m).

After reaching the best intelligence, the water velocity can be found for more nodes in the column domain 
without mesh refinement in the CFD domain. In fact, the mesh refinement can be done in the PSOFIS with 
much less computational efforts. Figure 11 illustrates the increase of the mesh density from 9477 to 774,468 
nodes using the PSOFIS method.

The results of the PSOFIS predictions of the water velocity are depicted in Fig. 12. The new predictions of 
the PSOFIS method are in agreement again with the CFD results. Moreover, additional predictions of the water 
velocity in more nodes are seen in Fig. 12a–c.

Conclusions
The two-phase flow of air–water inside a bubble column reactor with a non-equilibrium thermal condition 
between air and water was simulated by the CFD method. The hot air with a temperature of 127 °C was injected 
into the water column with a temperature of 23 °C. The Eulerian two-phase CFD model was implemented for 
turbulent flow inside the bubble column. The artificial intelligence algorithm and in specific the particle swarm 
optimization (PSO) algorithm-based fuzzy inference system (PSOFIS) was employed to help such complicated 
CFD modeling. A lot of computational cost, effort, and time are saved by the reduction of the number of CFD 
simulations. Once the best intelligence is achieved, no need for simulation anymore.

The PSOFIS was used to predict the water velocity at x, y, and z nodes positions in the column. The regres-
sion number was considered as an index for the best intelligence. The proper values of input numbers, swarm 

Figure 9.  FIS structure using PSO algorithm as trainer in learning process.
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Figure 10.  (a) Validation of PSOFIS learning process after achieving the highest PSOFIS intelligence based on 
first input. (b) Validation of PSOFIS learning process after achieving the highest PSOFIS intelligence based on 
second input. (c) Validation of PSOFIS learning process after achieving the highest PSOFIS intelligence based 
on third input.
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sizes, and inertia weights were investigated for the best intelligence. For more validation, the integration of the 
adaptive network with the fuzzy inference system (ANFIS) was used for learning the CFD data. The results of 
the PSOFIS were compared with the ANFIS for the same fuzzy set parameters.

At the best intelligence of the PSOFIS, the water velocity was found for additional nodes without mesh 
refinement in the CFD domain. In fact, the mesh refinement could be done in the PSOFIS with much less com-
putational efforts.

The results of this study are summarized as follows:

• The best intelligence is found for the input number of 3, swarm size of 100, and inertia weight of 1 where the 
regression number is around 0.98.

• The PSOFIS predictions follow the CFD results with more compatibility in comparison with the ANFIS. The 
regression number (R) of the PSOFIS (0.98) was more than that of the ANFIS (0.97).

Figure 11.  Remeshed domain from 9477 to 774,468.
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Figure 12.  (a) Liquid phase velocity prediction of PSOFIS in 774,468 nodes based on first input. (b) Liquid 
phase velocity prediction of PSOFIS in 774,468 nodes based on second input. (c) Liquid phase velocity 
prediction of PSOFIS in 774,468 nodes based on third input.
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• Comparison between the CFD and the PSOFIS predictions of water velocity shows no conflict between the 
results of both methods.

• The prediction of the water velocity shows a logic trend by increasing the height of the column. As expected, 
the water velocity is higher at lower heights of column (i.e. z = 0.1 and 0.2 m) and the velocity is damped to 
reach zero at higher heights (i.e. z = 0.9 m).

• Increasing mesh density of the bubble column from 9477 to 774,468 by the PSOFIS method, the new predic-
tion of the PSOFIS method covers all the CFD results with additional predictions of the water velocity in 
more nodes in the domain.
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