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Abstract: This review answers the question of why selenium is such an important trace element in
the human diet. Daily dietary intake of selenium and its content in various food products is discussed
in this paper, as well as the effects of its deficiency and excess in the body. Moreover, the biological
activity of selenium, which it performs mainly through selenoproteins, is discussed. These specific
proteins are responsible for thyroid hormone management, fertility, the aging process, and immunity,
but their key role is to maintain a redox balance in cells. Furthermore, taking into account world news
and the current SARS-CoV-2 virus pandemic, the impact of selenium on the course of COVID-19 is
also discussed. Another worldwide problem is the number of new cancer cases and cancer-related
mortality. Thus, the last part of the article discusses the impact of selenium on cancer risk based on
clinical trials (including NPC and SELECT), systematic reviews, and meta-analyses. Additionally,
this review discusses the possible mechanisms of selenium action that prevent cancer development.

Keywords: selenium; cancer; prevention; cancer chemoprevention; molecular mechanisms; micronu-
trients; essential nutrients; bioactive nutrients; nutrient sources; COVID-19

1. Introduction

In the 19th century, Swedish chemist Jöns Jakob Berzelius discovered selenium while
researching a method of obtaining sulfuric acid from pyrites containing iron sulfide [1].
Initially, it was regarded as a toxic element, and its role as an essential trace element in
the body was not established until 150 years after its discovery, in 1957 [2]. This was
determined by Klaus Schwartz and Calvin Foltz, who considered it a substance responsible
for preventing lesions in blood vessels, the liver, and/or muscles in rats and chickens. Since
then, its impact on the human body and the mechanisms involved have been thoroughly
studied. An important aspect was linking selenium deficiency, as well as its excess, with
disease occurrence and its impact on cancer development risk [3].

The aim of this review is to discuss the biological activity of selenium, i.e., its impact
on the proper functioning of the body through various selenoproteins, which perform
many important physiological roles [4]. They are responsible, among other things, for
immunity, fertility, the aging process, and the management of thyroid hormones, but first
and foremost their main function is maintaining a redox balance in cells, which also affects
the aforementioned functions [5–9]. Moreover, the article addresses the issue of appropriate
selenium intake in the diet and the effects of its deficiency and excess in the body, and, very
importantly, its association with cancer risk. The number of new cancer cases and cancer
mortality are a worldwide problem [10]. For this reason, possible prophylactic measures
are being sought to prevent cancer development and thus reduce the number of new cases
and deaths. The many studies associating cancer risk with selenium ingestion (and its
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levels in the body) indicate that this micronutrient may reduce this risk, which would be
indicative of its chemopreventive properties [4]. The possible mechanisms responsible for
this activity are also discussed in the last part of this review.

2. Dietary Intake of Selenium
2.1. Selenium in the Diet

Selenium (Se) occurs as a trace element in the human body, performing a number
of important biological functions, and is essential for life and health [11]. The main
natural source of Se is food, but Se content varies. This is determined by the geographical
location, soil quality in terms of Se concentration, and how much it is accumulated in
plants. The climate and the way the food is cultivated and bred, and how we prepare it
for consumption, are also important factors [3,12]. The richest sources of Se in the diet are
Se-yeast (Se-enriched yeast), nuts, cereals, organ meats, fish, and seafood [13]. Brazil nuts
(Bertholletia excelsa, family Lecythidaceae), a plant from the Amazon, have the highest
known Se content among non-Se-enriched food [14]. Table 1 gives the Se content in some
examples of food products in our diet.

Table 1. Examples of some food products and their selenium content.

Food Typical Se Content (µg/g Fresh Weight) References

Se-yeast 3000 [15]

Broccoli (Se-enriched) 62.3 [16]

Brazil nuts 0.85–6.86 [17]

Shellfish 0.36–1.33 [18]

Chicken 0.57 [19]

Beef 0.35–0.47 [20]

Lamb 0.4 [21]

Salmon 0.21–0.27 [22]

Eggs 0.17 [23]

Milk products 0.1–0.55 [17]

This microelement can exist in food in both chemical forms—as inorganic and organic
compounds [24]. Mostly, Se is found in the form of organic compounds as selenomethionine
(SeMet) and selenocysteine (Sec) in plant [25] and animal [26,27] tissues. However, the
form of Se intake can affect its bioavailability in the body. Studies show that organic
Se (e.g., SeMet) is more bioavailable than its inorganic compounds such as selenates or
selenites [27–29]. Interestingly, the bioavailability of this element in the body is also
modified by race. Richie et al. observed that in whites it is significantly higher than in
blacks [30]. Nevertheless, the most important thing is a healthy and balanced diet that
contains all the nutrients at the right levels. As far as Se and its recommended daily dose
are concerned, it depends on the local content of this element in the cropland, as this
affects its content in the food [31–33]. According to World Health Organization (WHO)
standards, the recommended daily dose of Se for adults is 55 µg/day [13,34,35], while the
maximum tolerable adult intake without side effects is set at 400 µg/day [13]. Of course,
the requirement for Se depends on age and gender [13], as shown in Table 2.
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Table 2. Recommended daily intakes of selenium for individuals in different age groups and genders.
The Adequate Intake (AI) is equivalent to the mean selenium intake of healthy, breastfed infants from
birth to 12 months of age, as established by the Food and Nutrition Board (FNB) [13].

Age Group Male (µg/d) Female (µg/d) Pregnancy (µg/d) Lactation (µg/d)

Birth to 6 mths 15 * 15 *

7 to 12 mths 20 * 20 *

9 to 13 yrs 40 40

14 to 18 yrs 55 55 60 70

19 to 30 yrs 55 55 60 70

31 to 50 yrs 55 55 60 70

50 to 71 yrs 55 55

Above 71 yrs 55 55
* Adequate Intake (AI).

It is very important to maintain an adequate level of Se—both deficiency and excess
can be dangerous for human health. What is important is that this microelement has
a narrow range of safety [36–38], so one should ensure its optimal level in the body.
For biomarkers of selenium status in the body, measuring the activity of selenoproteins
such as glutathione peroxidase 3 (Gpx3) and selenoprotein P (SelP, Sepp1) in plasma
proves to be valuable because a decrease of their activity indicates directly a deficiency
of this trace element [39–41]. The optimal values of Se in plasma have been estimated at
90–120 µg/L (Figure 1), which is sufficient to saturate selenoproteins in this liquid blood
component [40]. The limit below which a deficiency of this element is found is set at
85 µg/L [5,42], while in Poland, its concentration in blood plasma is below this value
and is about 50–55 µg/L [43], which would suggest deficiencies in the inhabitants of this
country. It is worth emphasizing the fact that Cui et al. [44] observed that low serum Se
concentration is associated with a higher risk of prostate cancer. Additionally, there are
reports that Se also plays a key role in the prevention of other cancers [45], i.e., lung [46],
breast [47], bladder [48], gastric [49–51], thyroid [41,52,53], and esophageal [50,51], and at a
dose of 100 to 200 µg/day reduces genetic damage [1]. Furthermore, in 1994, a clinical trial
conducted by Kiremidjian-Schumacher et al. [54] concluded that sodium selenite (Na2SeO3)
supplementation at a dose of 200 µg/day for eight weeks significantly increased the activity
of T lymphocytes and NK cells.
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Figure 1. The range of normal (optimal) plasma selenium levels. Values above and below this range indicate selenium
toxicity or deficiency, respectively.

2.2. Absorption of Se and Its Transport in the Body

As mentioned earlier, Se is taken with the diet in the form of organic (SeMet and Sec)
and inorganic compounds (selenites, selenides) [55]. The absorption of these compounds
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mostly occurs in the duodenum and cecum, and their absorption mechanism depends on
the chemical form of ingested Se. Inorganic compounds are absorbed by simple diffusion
(selenites) or by secondary active transport, the so-called cotransport (selenides). In turn,
organic compounds (SeMet, Sec, methylselenocysteine (MSC)) are absorbed by active trans-
port in the same way as amino acids. For example, SeMet is absorbed via active transport
using a sodium-dependent pump similarly to amino acids such as methionine [56,57].

After absorption of selenite and other Se compounds into the bloodstream, their
rapid and selective uptake by red blood cells occurs. Subsequently, organic Se compounds
undergo a reaction involving γ- or β-lyase, and selenite is reduced by glutathione (GSH)
and glutathione reductase (GR). These reactions generate selenide, which is metabolized
by selenophosphate synthetase 2 to selenophosphate—in this form, Se is transported to the
liver [57,58]. After Se uptake by the liver, it is included in the synthesis of Sepp1 [55,58].
Sepp1 is the selenoprotein responsible for the transport of Se to peripheral tissues and
organs because it has many Sec residues [57,58]. Additionally, there are also reports that Se
can bind to low and very low density lipoproteins (LDL and VLDL) and α- and β-globulins
and can also be transported in this way [57].

2.3. Selenium Deficiency

The problem of Se deficiency affects about 0.5–1 billion people in the world due to
its insufficient consumption. This factor depends on the geographical area and correlates
with the low content of this microelement in the soil. Regions with low soil Se content,
include parts of the Congo, large parts of China, central Serbia, and, before 1984, Finland,
which currently uses Se-enriched fertilizers [59]. The best known endemic diseases caused
by Se deficiency, otherwise known as “geochemical diseases”, are Keshan and Kashin-
Beck. The first cases of Keshan disease (KD) were discovered over 80 years ago in Keshan
County (Heilongjiang Province, north-eastern China) [60]. The disease was characterized
by congestive cardiomyopathy and affected children aged 2–7 years and women of repro-
ductive age [61], whereas Kashin-Beck disease (KBD) occurs most frequently in Tibet [62]
and begins in childhood around age five [63,64]. KBD is characterized by osteoarthritis,
leading to the degradation of cartilage in the upper and lower limbs [63]. A too low level
of this microelement in the body is also responsible for infertility in men, impaired fetal
development [65], and increased risk of suffering from asthma (in the case of asthma, this is
associated with a reduction in antioxidant defense, among other things, and a decrease in
Gpx activity) [66]. There is also evidence that Se deficiency weakens the immune system [2]
or the proper functioning of the nervous system [67]. Conner et al. [68], in their clinical
study, observed that too-low Se levels in serum were associated with worse mood and
increased depressive symptoms in young adults. For many years, scientists have been
searching for answers as to whether Se affects the HIV viral load and AIDS progression. In
2019, a systematic review of RCTs was published, which concluded that Se has no effect on
suppressing or reducing the viral load of HIV, but that there is clinical evidence that it is
possible to prolong AIDS progression by supplementation with this element. Despite this,
no definitive conclusions can be drawn due to their heterogeneity [69].

2.4. Selenium Overdose

Se poisoning occurs very rarely and is the result of excessive supplementation or a diet
rich in products with a high content of this microelement. The consumption of “Coco de
Mono” (Lecythis ollaria) nuts, which accumulate huge amounts of Se (7–12 g Se/kg of dry
matter), caused acute Se poisoning in Venezuela [70]. The excess Se intake was associated
mainly with the geographical area, whose soils are characterized by its high content [71].
An example of such dependence is Enshi (Hubei Province, South China), where there is a
high content of Se in the soil—the inhabitants of this area had symptoms of the toxic effects
of Se on the body because they had a dietary intake of over 850 µg Se/day [13]. On the
other hand, it is also worth noting that taking lower doses of Se in the order of 300 µg/day
may have adverse effects on the body. In the Danish Prevention of Cancer by Intervention
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with Selenium (PRECISE) trial, it was observed that long-term intake of 300 µg Se/day in
the form of Se-enriched yeast increased mortality in the study population. For this reason,
such a high daily supplementation or intake of Se should be avoided [72].

The toxicity of this element depends on many factors—its chemical form, ingested
dose, interactions with other dietary components, and the physiological condition of the
body [73]. As far as Se compounds are concerned, its inorganic forms exhibit higher
toxicity than when they are in the form of organic compounds. This is because inorganic
Se (selenides, selenites) has a prooxidant effect on thiols (GSH), producing free oxygen
radicals, while methylated forms (organic) are less toxic due to their easier excretion [19].
Symptoms of acute Se poisoning are rather non-specific and therefore may cause problems
in diagnosis. These include hypotension, rapid heartbeat (tachycardia), neurological
disorders, fever, dry cough, and pulmonary edema. In both cases of toxicity—acute and
chronic—anemia, gastrointestinal disorders, salivation, and blindness occur. In contrast,
chronic Se toxicity, otherwise known as selenosis, is characterized by nail fragility, hair
loss, skin lesions, joint pain, tooth decay, and a specific garlic odor in the exhaled breath
(presence of volatile compound—dimethyl selenide) [13,74,75]. Excessive doses of Se also
cause endocrine disorders in the synthesis of thyroid hormones, growth hormones (GH),
and insulin-like growth factors (IGF-1) [76]. It is also worth emphasizing the link between
Se and type 2 diabetes mellitus (T2DM). A meta-analysis of the observational studies
conducted by Kim et al. in 2019 [77] showed that increased Se intake increases the risk
of T2DM. Very importantly, this meta-analysis found that the odds of developing T2DM
in people with high Se levels are approximately twofold higher than the odds in people
with lower or optimal levels of this trace element. Se is not only found in the soil, water,
and food; poisoning with its compounds may also occur as a result of inhalation (e.g.,
highly toxic H2Se), so its maximum concentration in the air should be less than 0.2 mg/m3.
Symptoms of acute inhalation intoxication are chemical pneumonia, lung hemorrhage and
edema, and bronchiolitis, as well as extrapulmonary effects—nausea, headaches, and eye
irritation [15,78].

3. Biological Activity of Selenium
3.1. Selenoproteins in the Human Body

Se is a micronutrient that plays many key roles in maintaining homeostasis in organ-
isms. It is worth emphasizing that Se as an element does not exhibit biological effects on
the human body—only its presence in enzymes and proteins (e.g., selenoproteins) deter-
mines its activity [79]. It is present in the form of selenocysteine in the active centers of
Se-dependent enzyme molecules, while proteins having at least one selenocysteine residue
in their structure are called selenoproteins. Selenocysteine (Sec) is classified as the 21st
protein amino acid, and its structure is similar to that of cysteine, with which it differs
only in the presence of an Se atom instead of a sulphur atom in its structure. The residues
of this amino acid are inserted into the proteins in the cotranslation process because it is
coded by the UGA codon, which usually means the codon “STOP” and terminates protein
synthesis [80–83]. In the human genome, 25 genes that encode selenoproteins have been
discovered [81,84]. The products of expression of these genes are found in many tissues of
the body and perform various functions. Three main families of Se-containing enzymes
have been classified: glutathione peroxidases, thioredoxin reductases, and iodothyronine
deiodinases, and other single selenoproteins [45,55,81,83], as shown in Figure 2, which
also indicates their localization in the human body. Their expression is dependent on Se
concentration. Too low or too high levels of this element regulate the transcription of these
macromolecules but do not affect the rapidity of this process [2,83]. Differences in the ex-
pression of the genes of these selenoproteins are a consequence of modifications occurring
in mRNA translation or from increased degradation due to growing instability [2]. The
influence of Se on the proper functioning of the organism is described later in this section.



Nutrients 2021, 13, 1649 6 of 25

Nutrients 2021, 13, x FOR PEER REVIEW 6 of 26 
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3.1.1. Glutathione Peroxidases

Glutathione peroxidases (GPxs) are among the first discovered and described seleno-
proteins. In this family, eight isoforms (Gpx1–Gpx8) found in mammals are distinguished.
These isoforms are characterized by a different structure, localization in tissues, or substrate
specificity. Additionally, this family is divided into two subgroups—Se-dependent and
Se-independent enzymes. In the Se-dependent enzymes (GPx1–4 and GPx6), the selenocys-
teine residue is at the active site of the enzyme, whereas in the Se-independent enzymes
(GPx5, GPx7, and GPx8), instead of selenocysteine, there is cysteine [2,85,86]. Their main
function is to defend from cellular oxidative stress (reduction of peroxides, reactive oxygen,
and nitrogen species) [80], whereas more detailed functions of particular Gpx are presented
in Figure 3.
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There is a strong relationship between serum Se levels and cell redox balance—
consumption of this micronutrient has a direct proportional impact on the activity of
Se-dependent GPxs [82]. For the reduction of both H2O2 and organic peroxides (ROOH),
GSH is also required in addition to GPx. The reaction cycle produces hydroxyl derivatives
of peroxides, i.e., water or their corresponding alcohols, and oxidized glutathione (GSSG)
is reduced to GSH by NADPH/H+ and GR. The whole process of peroxides and GSSG
reduction can be written as follows [87]:

ROOH + 2 GSH GPx→ ROH + H2O + GSSG (1)

GSSG + NADPH + H+ GR→ 2 GSH + NADP+

Redox imbalance and oxidative stress occur when there is an excessive generation
of ROS and/or depletion of antioxidants in the cell. GSH belonging to the antioxidant
system plays a very important role as it donates reducing equivalents (H+) in reactions
catalyzed by GPxs. As a result of the transfer of H+ to ROS, these molecules become more
stable and less toxic (above reaction). If a substance with a pro-oxidant effect on thiols,
such as selenites, is present in the cell environment, GSH depletion occurs. This is caused
by the oxidation of the -SH groups of the GSH molecule, so that the donation of reducing
equivalents is impossible and oxidative stress occurs [90,91]. A very important role of GSH
is described for GPx4, as this enzyme protects cells from lipid peroxidation. The depletion
of GSH in the cell and thus the lack of reducing equivalents causes the formation of lipid
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peroxides and their accumulation in the cell membrane. As a result of this phenomenon,
non-apoptotic iron-dependent cell death called ferroptosis is induced [83,91].

In contrast, Se-independent GPxs, which have cysteine instead of selenocysteine in
the active site of the enzyme, have comparatively low peroxidase activity, therefore their
role as a potential GPx is debatable [85,92].

3.1.2. Thioredoxin Reductases

Thioredoxin reductase (TrxR) is a Se-dependent flavoenzyme and is responsible for
the reduction of oxidized thioredoxin (Trx) [93,94]. This enzyme, as a flavoprotein, is
likely susceptible to low concentrations of vitamin B2 (riboflavin), as is glutathione reduc-
tase (GR) [95]. Together with thioredoxin and NADPH/H+, it represents the so-called
thioredoxin-thioredoxin reductase system (electrons from NADPH are transferred by TrxR
to Trx) [93,94,96]. In 2017, Yang et al. [97] proved that Trx regulates the concentration of
selenoproteins (including Gpx1–4 and TrxR) in chickens by affecting the gene expression of
these proteins. In turn, the activity of TrxR affects the functioning of Trx [98], which indi-
cates that three components are responsible for regulating the expression of selenoproteins:
Se, TrxR, and thioredoxin [99,100]. As strong electrons donors, thioredoxins are reducers
for enzymes, e.g., ribonucleotide reductase during the synthesis of deoxyribonucleotides
or thioredoxin peroxidase, which is part of the antioxidant system [101]. The TrxRs family
includes three thioredoxin reductases, TrxR1, TrxR2, and TrxR3 [94,96], whose functions
are described in Figure 4.
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Furthermore, TrxR is responsible for the reduction of low molecular weight substrates
such as GSSG [106], lipid peroxides [107], H2O2 [107], vitamin K [108], and
L-dehydroascorbic acid [93].

3.1.3. Thyroid Gland and Iodothyronine Deiodinases

Compared to other parts of the human body, the thyroid gland is characterized by
a significant amount of Se per mass unit [7,109]. This micronutrient plays an important
role in the proper functioning of the thyroid gland. It can be found in iodothyronine
deiodinases (DIOs), which belong to oxidoreductases. This family includes three isoforms
of DIOs—DIO 1, 2, and 3, which are responsible for regulating the biological activity of
thyroid hormones [109–113]. As shown in Figure 2, they are present in both the fetus
and mature organism, controlling the correct course of cell metabolism, growth, and
development [112,114,115]. Detailed functions of individual DIOs are given in Figure 5.
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The deiodation process takes place in peripheral tissues, especially in the skeletal muscles,
liver, or kidneys, and may be disturbed by too low Se levels in plasma [111,112]. This leads
to iodine release disruption, affecting abnormal thyroid function, which plays an important
function in the regulation of thermogenesis and lipid metabolism [7,112]. Additionally, a
deficiency of both of these elements may lead to impairment of brain function in adults [116].
For this reason, the important role of both Se and iodine in the proper functioning of this
gland as well as the nervous system can be highlighted [7,109,113].
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3.1.4. Selenophosphate Synthetase 2

Selenophosphate synthetase 2 (SPS2), much like other representatives described in this
section of this review, belongs to the group of selenoproteins. This enzyme is important for
the existence and synthesis of selenoproteins [120]. SPS2 is responsible for the formation of
selenophosphate in the selenide, adenosine triphosphate (ATP), and H2O reaction, in which
it is a catalyst [120–122]. The product of this reaction (selenophosphate) plays the role of an
active Se donor [122], which is crucial during the biosynthesis of Sec. As mentioned earlier,
this essential amino acid is part of selenoproteins [121].

3.1.5. Other Selenoproteins

Besides enzymes from the GPxs, TrxRs, and DIOs families, as well as SPS2, other se-
lenoproteins also have Se in the form of Sec residues in their structure. They take important
participation in many life processes and are responsible for maintaining their balance in the
human body. The best known and characterized selenoprotein, apart from GPx and DIO,
is Sepp1, the first evidence of which appeared in the early 1970s [123,124]. SelP mainly
occurs in the liver, testes, and brain (Figure 2) and differs from other selenoproteins in that
it has 10 residues of Sec in its structure (nine Sec residues included in the short C-terminal
domain and one Sec residue in the N-terminal catalytic domain) compared to GPxs, which
has only one residue of Sec [125,126]. This group also includes selenoprotein R (SelR), also
known as methionine sulfoxide reductase B1 (MsrB1), which is the only one in the Msr
antioxidant family that contains Se—the other members are MsrA, MsrB2, and MsrB3 and
have cysteine instead of selenocysteine [127]. SelR and other human selenoproteins and
their functions in the body are shown in Figure 6.
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3.2. Effects of Se on Immune Response

We can observe that Se, which is a component of many selenoproteins, performs many
different functions in the body. This microelement is also involved in the regulation of the
immune system and immune response. It increases the phagocytic activity of macrophages
(increase in their cytotoxicity) and stimulates the production of antibodies (IgG and IgM
classes) by B lymphocytes. In a study carried out in 2010 by Hoffmann et al. [134] on
mice fed low, medium, and high doses of Se in food for eight weeks, it was shown that
an intake of 1.0 mg/kg (high dose) of Se increased the proliferation of Th lymphocytes
(helper) with a shift in the Th1/Th2 balance towards the Th1 subclass. The rise in the Th1
population increased CD40 ligand levels and the production of interferon γ (IFN-γ), which
is responsible for stimulating antibody production and strongly activating macrophages.
Moreover, an increase in interleukin 2 (IL-2) expression and greater activity of interleukin 2
(IL-2R) receptors with high affinity were observed.

Furthermore, Se affects the activity of natural killer (NK) cells and Tc lymphocytes
(cytotoxic). In a clinical study conducted by Kiremidjian-Schumacher et al. [54] on people
who supplemented Se (as sodium selenite) at a dose of 200 µg/day for eight weeks, an
increase in NK cell activity and cytotoxicity of Tc lymphocytes was observed, which the
researchers associated with an increase in IL-2R receptor expression. Another study by the
same research team (1996) [135] showed increased NK cytolysis in C57B1/6J male mice fed
food containing 2.0 mg/kg Se for eight weeks. This study also showed a significantly higher
amount of IL-2R/cells, which together with a concentration of 0.1 µM Se as sodium selenite
led to the transformation of resting NK cell populations into plastic-adherent lymphokine-
activated killer (A-LAK) cells and an increase in their proliferation, development, and lytic
activity. Moreover, in another study, in cattle (Nellore bulls) fed with feed enriched with
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2.5 mg Se and 500 IU vitamin E, an improvement in the cytolytic function of NK cells was
observed [136].

Se may also affect the immune system during viral and bacterial infections [137].
A systematic review of clinical trials carried out by Muzembo et al. in 2019 [69] shows
that this trace element may delay the progression of HIV to full-blown AIDS, but it does
not inhibit/reduce the viral load of the virus. Besides, in the case of hepatitis B and C
viruses, this microelement exhibits hepatoprotective properties [138] and also inhibits the
progression of influenza and polio infection [139].

It is now assumed that Se and its levels in serum may have an impact on the number
of SARS-CoV-2 infections and the course of COVID-19 [139,140], which is associated
with a reduced expression of selenoproteins [140]. It is postulated that SARS-CoV-2,
like other viruses causing respiratory infections, may affect the cell redox balance as
well as being responsible for ER stress and the development of an inflammatory process
against which Se and selenoproteins protect [141]. In this case, GPx1, which interacts
with the viral Mpro (Nsp5) protease required for replication, is very important [142]. In
addition, too low Se concentrations shift the balance between prostaglandin I2 (PGI2)
and thromboxane A2 (TXA2) towards TXA2 in rats [143], resulting in increased blood
coagulation and vasoconstriction [144]. These findings may explain the development of
venous thromboembolism in COVID-19 patients with suboptimal Se levels [144]. In a
study carried out by Moghaddam et al. (p < 0.001) [145], it was observed that survivors
of COVID-19 had significantly higher Se status, but this cannot be considered the cause
of the disease and the severity of its course due to the observational nature of the study.
Meanwhile, results from a study by Majeed et al. [146] showed that healthy participants had
higher serum Se levels (79.1 + 10.9 ng/mL) compared to people suffering from COVID-19
(69.2 + 8.7 ng/mL). Very important results are shown in an analysis by Zhang et al. [147],
who assessed the correlation between the COVID-19 recovery rate and hair Se concentration.
The analysis included multiple regions of China with different Se content in the soil. Higher
recovery rates were observed in areas with high soil Se content—Enshi (Hubei Province,
South China) compared to Heilongjiang Province (northeastern China, a place where
the KD was discovered), which is characterized by low Se status. In addition, higher
mortality rates were observed in areas with existing Se deficiency. Referring to these
data, it can be concluded that the probability of recovery from COVID-19 was dependent
on Se concentration and increased with its levels. For this reason, it is recommended to
supplement Se and other micronutrients, i.e., zinc and vitamins D, E, and C, which affect
the body’s immunity [139,148,149].

Furthermore, among recent reports, it seems interesting that sodium selenite (SS),
which is a simple inorganic compound, can inhibit the entry of the SARS-CoV-2 virus into
healthy cells. Its probable mechanism of action involves a pro-oxidative effect on thiol
groups present in the protein disulfide isomerase (PDI) found in the virus, blocking its
ability to cross cell membranes and abrogate infectivity [150]. Due to these properties, SS
has the potential to be used in the eradication of the SARS-CoV-2 virus, but more research
is needed on this topic, especially regarding the safety and doses used in humans that show
this desirable activity.

3.3. Effects of Se on the Reproductive System and Other Body Functions

Much has been said about the role of Se in the fertility and reproduction of humans
and animals. A deficiency of this trace element results in poorer quality sperm. Mor-
bat et al. [151] observed that in 12 infertile men, who were given 50 µg Se/day for three
months, sperm quality had improved in terms of number, viability, motility, and spermato-
zoa morphology. The same conclusions were reached in randomized controlled clinical
trials (RCTs) performed in Scotland, Tunisia, and Iran. This is due to an Se deficiency and
resulting low GPx4 status, leading to a redox imbalance in the cells and the formation
of large amounts of ROS (reactive oxygen species), which damage the spermatozoa [65].
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Additionally, Se is essential for the biosynthesis of testosterone, which also affects the
quality of sperm, and this relationship is directly proportional [6,152].

In the case of women, Se is very important for embryo implantation and pregnancy
maintenance. Observational studies in the United Kingdom and Turkey have shown that
women who had miscarried in the first trimester of pregnancy had a significantly lower
serum Se status. It is suspected that the loss of pregnancy was due to too low Gpx and too
little antioxidant protection of DNA and biomembranes [6,65]. Additionally, Se deficiency
may be associated with pregnancy complications or may be harmful to the fetus. These
adverse effects manifest themselves in the form of damage to the immune and/or nervous
system of the developing fetus, and too low Se level at the beginning of pregnancy can
predict low birth weight of the baby [6]. Unfortunately, there is not much research on
women and their fertility, and this data is very sparse.

The last important function of Se is its role in the aging process of the body, including
the skin. This element delays skin aging [153,154] and protects this organ from photoaging
caused by UVA radiation [154]. Its increased concentration in the body affects higher levels
of selenoproteins, which have antioxidant and anti-inflammatory effects, preventing the
aging process [9,155]. Additionally, Se prevents tissue flabbiness, improving their flexibility,
and also reducing the intensity of menopause symptoms [1].

4. Selenium and Cancer Chemoprevention
4.1. Clinical Trials and Other Types Of Studies on the Chemopreventive Effects of Selenium

The problem of cancer affects the whole world. Year after year, more and more new can-
cer cases are reported. The most common types of cancer in the population are lung, breast,
colorectal, and prostate cancer, of which lung cancer has caused the most deaths [10,156].
For many years, just these types of cancer were the main subject of studies on the rela-
tionship between Se intake and the frequency of their incidence [4,5,45,46,48,49,51,81,128].
Many studies, both on animals and humans, have shown that low Se status (resulting from
its low intake) correlates with a higher risk of developing cancer [50,55]. In these studies,
an anticancer effect of Se, i.e., an inverse relationship between its consumption and cancer
incidence, was observed when this element was taken in supranutritional doses in a range
of 250–300 µg/day [1,4].

Despite this, some studies contradict this fact [45,81]. Recent and current clinical trials
on the chemopreventive effect of Se in the most common cancers are shown in Table 3.
Because of these inconsistencies, the chemopreventive effect of Se is still ambiguous and
requires further, more detailed research to clarify this relationship. Of course, the fact
that many different Se compounds have been used in studies cannot be ignored. It is also
worth noting that the effect, and therefore the outcome, of the research may depend on the
chemical form of the Se compound (inorganic compound, e.g., sodium selenite or organic
compound, e.g., SeMet), the taken dose, the bioavailability of this element, the baseline
selenium status of the study population, the type of cancer, and even the stage of cancer
lesions [1,4,157].

Table 3. Recent and current clinical trials on selenium chemoprevention in breast, colorectal, lung, and prostate cancer. This
table was compiled from the information available at https://www.clinicaltrials.gov/ (accessed on 25 October 2020).

NCT Identification
Number Study Title Clinical Trial Status Type of Cancer Study Design References

NCT00555386 Soy, selenium, and breast
cancer risk Not applicable b Breast Cancer

Randomized,
double-blind (participant,

investigator),
placebo-controlled,
parallel assignment

[158]

NCT04014283

Prevention of female
cancers by optimization
of selenium levels in the

organism (SELINA)
Not applicable c,d Breast Cancer

Randomized, single-blind
(investigator),

placebo-controlled,
parallel assignment

[159]

https://www.clinicaltrials.gov/
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Table 3. Cont.

NCT Identification
Number Study Title Clinical Trial Status Type of Cancer Study Design References

NCT01611038

Chemoprevention of
breast and prostate

cancers in shift workers
by dietary

methylselenocysteine:
effects on circadian

rhythm and estrogen
receptor-B cycling

Not applicable b Breast and Prostate
Cancer

Randomized, triple-blind
(participant, investigator,

outcomes assessor),
placebo-controlled,
parallel assignment

[160]

NCT01211561 Colon cancer prevention
using selenium Unknown b,* Colorectal Cancer

Randomized,
double-blind (participant,

investigator),
placebo-controlled, single

group assignment

[161]

NCT00706121

S0000D: Effect of vitamin
E and/or selenium on

colorectal polyps in men
enrolled on SELECT trial

SWOG-S0000 (ACP)

Phase 3
completed b,+ Colorectal Cancer

Randomized,
quadruple-blind
(participant, care

provider, investigator,
outcomes assessor),
placebo-controlled,
parallel assignment

[162]

NCT01437826

Antioxidant supplement
and reduction of

metachronous adenomas
of the large bowel: a

double blind randomized
trial

Phase 3
terminated a Colorectal Cancer

Randomized,
double-blind (participant,

investigator),
placebo-controlled,
parallel assignment

[163]

NCT00008385

Selenium in preventing
tumor growth in patients
with previously resected

stage I non-small cell
lung cancer

Phase 3
completed a,+ Lung Cancer

Randomized, triple-blind
(participant, care

provider, investigator),
placebo-controlled,
parallel assignment

[164]

NCT00978718 Selenium in preventing
prostate cancer

Phase 3
Completed b Prostate Cancer

Randomized,
double-blind,

placebo-controlled
[165]

NCT00446901

Selenium and prostate
cancer: clinical trial on
availability to prostate

tissue and effects on gene
expression (SePros)

Not applicable b Prostate Cancer

Randomized,
quadruple-blind
(participant, care

provider, investigator,
outcomes assessor),
placebo-controlled,
parallel assignment

[166]

NCT00006392
S0000: Selenium and

vitamin E in preventing
prostate cancer (SELECT)

Phase 3
completed + Prostate, Cancer

Randomized,
quadruple-blind
(participant, care

provider, investigator,
outcomes assessor),
placebo-controlled,

factorial assignment

[167]

NCT00030901

S9917: Selenium in
preventing cancer in

patients with neoplasia of
the prostate

Phase 3
completed a,+ Prostate Cancer

Randomized, triple-blind
(participant, care

provider, investigator),
placebo-controlled,
parallel assignment

[168]

NCT00064194

Vitamin E, selenium, and
soy protein in preventing

cancer in patients with
high-grade prostate

neoplasia

Phase 3
completed b Prostate Cancer

Randomized, triple-blind
(participant, care

provider, investigator),
placebo-controlled

[169]

NCT01497431

Se-methyl-seleno-L-
cysteine or

selenomethionine in
preventing prostate

cancer in healthy
participants

Phase 1
completed b Prostate Cancer

Randomized,
double-blind (participant,

investigator),
placebo-controlled,
parallel assignment

[170]

a study started before the SELECT trial. b study started during the SELECT trial. c study started after results of the SELECT trial.
d recruitment to the target population is ongoing. + results of the study are available on ClinicalTrials.gov. * no verification of status
>2 years despite completion date has passed.
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Precisely due to the different research results in this area, many authors have con-
ducted meta-analyses, meta-regressions, and systematic reviews that summarize the results
of all the studies on the impact of Se on the risk of developing individual cancers. In the
case of breast cancer, the most frequently diagnosed cancer among women, there are three
meta-analyses available describing this association. Vincenti et al. [171], when they were
performing their meta-analysis, included eight studies and did not confirm correlation of
Se supplementation with reduced breast cancer risk. However, Cai et al. [45], who summa-
rized 14 studies, and Babaknejad et al. [47], who analyzed 16 articles, concluded that high
exposure and high serum Se concentration significantly reduced the risk of breast cancer
development, but its toenail concentration did not prove this relationship significantly. In
the case of toenail, the content of this element is measured by neutron activation analysis
(NAA), inductively coupled plasma spectrometry (ICP-MS, ICP-OES, ICP-AES), or atomic
absorption spectrometry (AAS) after preliminary preparation of the sample. These methods
are characterized by detection of the element only, e.g., Se and the result is usually given as
µg element/g of the toenail. Importantly, the content of this micronutrient in the toenail is
a biomarker of long-term Se exposure and thus can be successfully used in retrospective
studies. In this regard, the difference observed between high serum Se concentration and
its low content in toenail may indicate that supplementation was short-term (serum Se
levels increase rapidly, but slowly in toenail). Therefore, these two parameters should not
be compared if Se supplementation in the study was not long-term, as this may falsify the
conclusions [172].

Among sex-specific neoplasms, prostate cancer is one of the most commonly diag-
nosed (191,930 cases in 2020) [10]. In a randomized, double-blind, placebo-controlled trial
called the Nutritional Prevention of Cancer (NPC), which started in the 1980s, lasted almost
seven years (until 1991), and involved 1312 patients with a history of non-melanoma skin
cancer, an effect on the primary endpoint was not observed. However, after analyzing the
secondary endpoints, Clark et al. [173] showed that 200 µg/day of Se supplementation
in the form of Se-yeast reduced the risk of prostate, colorectal, and lung cancer. Thanks
to these conclusions, many authors have undertaken further and broader research on the
chemopreventive effects of this element against prostate cancer. One of the most anticipated
results of the research in this area was a large-scale study called the Selenium and Vitamin
E Cancer Prevention Trial (SELECT), launched in 2001. Almost 35,600 men were included
in this study, who were taking Se + vitamin E, Se placebo + vitamin E, Se + vitamin E
placebo, or placebo + placebo (200 µg/day SeMet, 400 IU vitamin E), depending on the
arm of the trial. However, the study was terminated prematurely due to the lack of a
visible chemopreventive effect of these antioxidants against prostate cancer. Besides, in
the case of the vitamin E arm, an increased risk of prostate cancer was reported. This
decision was made by the independent Data and Safety Monitoring Committee (DSMC),
the Southwest Oncology Group (SWOG), and the National Cancer Institute (NCI) [174].
However, the results of the SELECT trial are very often misinterpreted. Firstly, Se-enriched
yeast was used in the NPC while SeMet was supplemented in the SELECT. The fact is
that, despite using similar doses of Se, Se-enriched yeast can have variable amounts of
this amino acid as well as other selenoamino acids, e.g., MSC [175,176]. Secondly, the
effectiveness of supplemented Se is mainly dependent on its baseline blood levels. The
lack of reduction in cancer cases in the SELECT study does not indicate the lack of a
chemopreventive effect of Se but rather confirms the results of the NPC study. This is
because, in the NPC, only participants with Se levels <114 ng/mL showed a significant
reduction in prostate cancer risk, whereas in the SELECT trial participants had higher
baseline levels of this trace element (>135 ng/mL). This difference was related to the place
of residence of the individual participants. Participants in the NPC were from regions
with low Se status in the environment (eastern coast of the USA), whereas participants
in the SELECT lived in Canada and the USA, where the content of this element in the
soil is higher. This suggests that even the lowest baseline of Se levels in the SELECT trial
participants may be higher than those required for a chemopreventive effect, and therefore
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noticeable effects may be observed only in groups deficient in this micronutrient [177,178].
In addition, in the search for clear and unambiguous results, many authors have conducted
meta-analyses and systematic reviews combining all studies on Se and its effect on prostate
cancer development in men. Each of them showed that high concentrations of Se in serum,
plasma, or toenails were associated with a lower risk of prostate cancer [44,179–182].

The second most frequent cancer among both sexes is lung cancer, which caused the
most deaths [10]. In meta-analyses and systematic reviews concerning the development
of lung cancer compared to plasma/serum/toenail Se levels, the authors have shown a
positive chemopreventive effect of Se on this type of cancer [45,46,183,184]. Among the
most commonly reported cancers of both sexes, colorectal cancer ranks third place. It
was detected in 147,950 people in the United States only in 2020, of whom 69,650 (8%)
were women and 78,300 (9%) were men [10]. A meta-analysis of the Women’s Health
Initiative Observational Study and 14 previous studies (clinical trials and observational
studies) revealed that the relationship between Se concentration and colorectal cancer is
inverse and only relevant for men, while for women it was not demonstrated [185]. In
the Cochrane Systematic Review from 2018 [171], an analysis of databases of RCTs with
a total of 19,009 participants, did not prove the effect of Se on colorectal cancer risk. On
the other hand, during an analysis of 15 observational cohort studies (covering almost
2,400,000 patients), the authors of this review showed that high Se exposure reduced the
risk of colorectal cancer more among men than women. However, in their opinion, these
studies had major deficiencies/mistakes and were of poor quality, thus these results cannot
be taken as clear and reliable. In their paper, Cai et al. [45] contradicted the protective role
of Se in the development of colorectal cancer, whereas Ou et al. [186] proved it only in the
case of pre-malignant lesions, i.e., colorectal adenomas.

4.2. Molecular Mechanisms of the Chemopreventive Activity of Selenium

As has already been proven, Se plays a major role in the prevention of various cancers.
Nevertheless, so far the specific molecular and genetic mechanisms of its action have not
been fully known. This micronutrient has different multilevel effects and it is difficult to
determine the main one. As oxidative stress is one of the leading factors in the neoplastic
transformation of cells, it is recognized that the main mechanism responsible for the
protective properties of this trace element is antioxidative cell protection. The antioxidant
activity results in a reduction in the production of reactive oxygen species (ROS) and a
decrease in DNA and cell membrane damage caused by these free radicals [4,55]. It is
worth emphasizing the fact that the chemical form of the ingested Se compound is an
important factor that determines its effectiveness in preventing DNA damage in cells. As it
turns out, SeMet exhibits lower protection against DNA damage than Sec [187], but, as is
well known, Se maintains a redox balance in cells through the selenoproteins that contain
it in their active center in the form of Sec [4,51,55]. The selenoproteins whose expression or
polymorphisms could be linked to antioxidant protection or cancer development mainly
include Gpxs, TrxRs, and Sepp1 [55,81,82]. An increase in Gpx1 and TrxR activity, which
was associated with Se supplementation in the form of sodium selenite (30 nM) and SeMet
(10 µM) at non-cytotoxic doses, was observed as protection against UVA, or hydrogen
peroxide, induced genotoxicity. In addition, an increase in the DNA repair capacity was
found [132,188].

Polymorphisms concerning selenoprotein genes are also an important issue. For
example, polymorphisms within the TrxR2 gene may be associated with an increased risk
of developing aggressive prostate cancer, while differences in SelP and TrxR2 genes may
have an impact on Se concentrations in plasma. Moreover, an influence of selenoprotein
polymorphisms on the risk of breast (Gpx1, SelF, SelP) or colorectal (Gpx4, TrxR1, and
TrxR2, SelP, SelF, and SelS) cancer was also found, which could indicate their important
role in the etiology of these types of cancer [81].

In the case of the Gpxs family, studies have described their association with the
incidence of cancer. For instance, Gpx1 is responsible for preventing DNA mutation, and
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the disappearance of the heterozygous character of the Gpx1 gene (anti-oncogenic effect)
commonly occurs in the case of breast, colon, head, or neck cancer. Mutations in the
Gpx1 gene increased the risk of developing cancer, whereas overexpression of normal
selenoprotein showed a protective role [82,87]. Besides, it was proven that a reduction in
Gpx4 levels occurs in the case of breast and pancreatic cancer, so this selenoprotein could
be considered to have the same suppressive effect on tumors as Gpx1 [87]; for Gpx2, its
protective or pro-oncogenic role remains unresolved [132].

Except for Se’s antioxidant effect, it also increases the immune response of the body
and reduces inflammation [5,51,54,79]. This is possible thanks to the stimulation of cy-
totoxic T lymphocytes (Tc) and macrophages, NK cell proliferation, and differentiation
into cytotoxic effector cells and an increase of their activity, which has been thoroughly
described earlier in this review. Among the other chemopreventive mechanisms of Se, DNA
stabilization, the growth of p53 protein expression, suppression of protein kinase C (PKC),
interruption of the cell cycle, directing cells to the apoptosis pathway, changes in methy-
lation of the regulatory part of genes in DNA, histone modifications, interference with
one-carbon metabolism, modulation of cell multiplication, suppression of angiogenesis,
induction of enzymes participating in the second phase of xenobiotics biotransformation,
prevention of toxic effects of heavy metals on cells, and regulation of the expression of
estrogens as well as androgen hormones receptors stand out [4,51,189]. The cell cycle is
arrested by Se in the G1 phase in all cell types; moreover, the expression of genes, i.e., cyclin
A and D1, cell division cycle 25 A protein (Cdc25A), cyclin-dependent kinase 4 (CDK4),
proliferating cell nuclear antigen (PCNA), and transcription factor 2 (E2F) are inhibited. At
the same time, the gene expression of Arf protein (p19), CDK-interacting protein 1 (cyclin-
dependent kinase inhibitor 1, p21), p53 protein, glutathione S-transferase (GST), superoxide
dismutase (SOD), NAD(P)H dehydrogenase [quinone] 1 (NQO1), growth arrest and DNA-
damage-inducible protein (GADD153), as well as several caspases, are stimulated [190].
As is known, an increase in p53 protein expression leads to an arrest of the cell-cycle and
directing the cell to the apoptotic pathway, so this gene is important in controlling DNA
repair and regulating the life-cycle of cells. Moreover, its activity is regulated by Se levels
in plasma. In the case of cancer development, mutations in the gene encoding this protein
have been reported [191]. Additionally, it was proven that Se is also important in inhibiting
the development of cancer metastases, as it blocks the synthesis of the osteoponin responsi-
ble for this process [192]. A summary of the possible mechanisms of cancer prevention by
Se are presented in Figure 7.

It is also worth noting that Se can exert its chemopreventive effects not only through
selenoproteins but also with the direct involvement of Se metabolites. One such metabolite
is methylselenol, whose chemopreventive as well as anticancer effects have been demon-
strated in many publications [83,193,194]. This compound can be generated from both
inorganic (selenites, selenides) and organic compounds (natural: SeMet, MSC, and syn-
thetic origin, e.g., methylselenic acid, selenoesters) [83]. In the case of SeMet and MSC,
this compound is produced via the enzyme-liase activity (γ-liase in the case of SeMet,
β-lyase—MSC) [58,83,195]. In contrast, inorganic compounds are first metabolized to
selenide, which then undergoes methylation to form methylselenol [58,83,196,197]. It was
observed that this metabolite leads to cell cycle arrest in the G1 phase [198–200] and directs
cancer cells to the apoptotic pathway [193,194,196,201,202]. Among other effects of this
Se metabolite, suppression (inactivation) of PKC [193] and NF-κB [203], inhibition of cell
growth [193,200], regulation of gene expression [200], an increase in p53 protein expression,
and stimulation of DNA repair [204] were reported. Additionally, it was shown that this
compound suppresses angiogenesis and regulates the expression of sex hormone recep-
tors [194,197,199,205]. Because of the above, it can be concluded that the chemopreventive
effect of Se is associated with both the selenoproteins in which it is incorporated and the
metabolites containing this element. During the selection of Se compound for dietary inter-
vention, it is worth being guided by the properties resulting from its chemical form, as well
as other potential benefits associated with the mechanism of metabolites activity. However,
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it should be remembered that, in humans, γ-liase has a very low activity, therefore the
metabolism of SeMet to methylselenol is negligible [195].
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5. Conclusions

Selenium (Se) is an essential micronutrient that is responsible for the proper func-
tioning of the body, which is why its adequate daily intake is so important. Its impact on
redox balance, hormonal management, the immune system, and fertility mainly manifests
through selenoproteins such as GPxs, TrxRs, DIOs, or others, e.g., SelP, into which it is in-
corporated via the metabolism of Se-containing compounds ingested with food. However,
it should be remembered that this trace element is characterized by a narrow range between
proper levels and deficiency/overdose. In dietary doses, it performs an antioxidant activity
after incorporation into selenoproteins, while in supranutritional doses, it is a prooxidant,
exhibiting toxic effects on the body by ROS.

The worldwide statistics concerning cancer show fearful numbers of patients with
this disease. For this reason, possible prophylactic measures are being sought to prevent
cancer development and thus reduce the number of new cases and deaths. Se may be one
such preventive agent. The main mechanisms by which Se manifests its chemopreventive
activity include DNA repair/stabilization and inhibition of cancer progression. Although
most meta-analyses, meta-regressions, and systematic reviews conclude that Se can exert
a chemopreventive effect, it would be appropriate to conduct further extensive research
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in this field. This could provide data that would ultimately help to determine whether Se
exhibits chemopreventive activity and the exact mechanism of this phenomenon.
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