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Abstract

The Ste20-like kinase, SLK, has diverse cellular functions. SLK mediates organ develop-

ment, cell cycle progression, cytoskeletal remodeling, cytokinesis, and cell survival.

Expression and activity of SLK are enhanced in renal ischemia-reperfusion injury, and over-

expression of SLK was shown to induce apoptosis in cultured glomerular epithelial cells

(GECs) and renal tubular cells, as well as GEC/podocyte injury in vivo. The SLK protein con-

sists of a N-terminal catalytic domain and an extensive C-terminal domain, which contains

coiled-coils. The present study addresses the regulation of SLK activity. Controlled dimer-

ization of the SLK catalytic domain enhanced autophosphorylation of SLK at T183 and

S189, which are located in the activation segment. The full-length ectopically- and endoge-

nously-expressed SLK was also autophosphorylated at T183 and S189. Using ezrin as a

model SLK substrate (to address exogenous kinase activity), we demonstrate that dimer-

ized SLK 1–373 or full-length SLK can effectively induce activation-specific phosphorylation

of ezrin. Mutations in SLK, including T183A, S189A or T193A reduced T183 or S189 autop-

hosphorylation, and showed a greater reduction in ezrin phosphorylation. Mutations in the

coiled-coil region of full-length SLK that impair dimerization, in particular I848G, significantly

reduced ezrin phosphorylation and tended to reduce autophosphorylation of SLK at T183.

In experimental membranous nephropathy in rats, proteinuria and GEC/podocyte injury

were associated with increased glomerular SLK activity and ezrin phosphorylation. In con-

clusion, dimerization via coiled-coils and phosphorylation of T183, S189 and T193 play

key roles in the activation and signaling of SLK, and provide targets for novel therapeutic

approaches.

Introduction

The Ste20-like serine/threonine protein kinase, SLK, is a member of the group five germinal

center kinase family [1–3]. By analogy to other members of this family, SLK is, at least in part,

a mitogen-activated protein kinase kinase kinase kinase (MAP4K). As reviewed recently [1],
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the physiological roles of SLK appear to be diverse, but remain incompletely understood.

Global deletion of wild type (WT) SLK and replacement with an inefficiently expressed SLK

mutant protein in mice resulted in severe developmental defects in the placenta and multiple

tissues at embryonic day 12, leading to a lethal phenotype at day 14 [4], attesting to an impor-

tant role of SLK in development. In cells, SLK can regulate apoptosis and cytokinesis [1,5,6].

In kidney, expression and activity of SLK were enhanced in ischemia-reperfusion injury in rats

[7]. Overexpression of SLK was shown to induce apoptosis in cultured glomerular epithelial

cells (GECs) and renal tubular cells [7], and to induce GEC/podocyte injury and proteinuria in

vivo [8]. At a basal level of expression, SLK may play a role in cell cycle progression, based on

the observation that SLK co-localizes with α-tubulin, particularly during metaphase re-assem-

bly of the mitotic spindle [9]. Other effects of SLK in cells include dissolution of actin stress

fibers and redistribution to the cell periphery, and loss of cell adhesion [1,10]. Several cytoskel-

etal proteins have been identified as substrates of SLK, including RhoA [11], ezrin [12,13], pax-

illin [14], and the p150Glued dynactin subunit [15,16]. By modulating the cytoskeleton, SLK

may control cell motility. The latter has been addressed mainly in fibroblasts, and it involves

localization of SLK to the leading edge of cells, and is at least in part mediated by LIM only

protein 4, as well as Src-family kinases [17,18]. Moreover, in keeping with these cytoskeletal

actions, SLK-dependent phosphorylation of ezrin (a protein that interacts with filamentous

actin and the plasma membrane), enabled localization of ezrin to the apical membrane of epi-

thelial cells and regulated assembly of microvilli [12].

SLK is expressed in numerous tissues, including muscle, neuronal cells and kidney of the

developing embryo [1,4,5,19]. In the adult kidney, SLK is expressed in tubular and glomerular

epithelial cells [7]. As stated above, SLK expression and activity are increased during recovery

from ischemia-reperfusion injury, which may recapitulate aspects of kidney development. In

renal cells in culture, ischemia-reperfusion activated endogenous SLK resulting in signaling

via p38 mitogen-activated protein kinase and enhanced apoptosis [20].

The regulation of SLK activity is complex, and may include mRNA stabilization, protein

homodimerization, phosphorylation, and protein-protein interactions [21–25]. Under resting

conditions, the activation segment of a protein kinase is typically unstructured [26]. Phosphor-

ylation of the activation segment by upstream kinase(s) stabilizes the kinase in a catalytically

competent conformation, which enhances catalytic activity and interaction with substrate(s),

thereby allowing the downstream propagation of a signal [23,24,26,27]. Kinase activation can

be facilitated by increasing the local concentration of the kinase relative to its substrate, e.g. by

homodimerization [26,27]. Certain kinases can undergo autoactivation through activation seg-

ment self-phosphorylation [27,28]. In such kinases, the catalytic domain of one dimerization

partner can phosphorylate the activation domain of the other partner, followed by reciprocal

phosphorylation. The consensus phosphorylation sequence in the activation segment typically

does not correspond to the substrate consensus sequence. Ultimately, there is activation of two

kinase molecules, which then phosphorylate downstream targets [27,28].

The SLK protein consists of 1204–1235 amino acids, and contains a N-terminal catalytic

domain (amino acids 34–292) and large C-terminal domain, which contains coiled-coils

[5,29]. The C-terminal region of SLK can mediate homo- and heterodimerization [22,24].

Activation of SLK is also regulated by phosphorylation [5,6,20,23,27,30]. At least two potential

phosphorylation sites, T183 and S189, are found in the activation segment of SLK [23,27]. In

vitro, isolated SLK catalytic domains are able to form dimers, and induce phosphorylation of

T183 and S189. These phosphorylations are believed to result in the formation of a hydrogen

bond between K63 (the ATP binding site) and E79, thereby locking the SLK monomer into an

active conformation, which can bind substrate [23,27]. In a previous study, we introduced ser-

ine and threonine mutations in the activation segment of SLK [23]. Compared with SLK WT,
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the T183A, S189A and T183A/S189A SLK mutants showed reduced kinase activity in vitro.

Overexpression of WT SLK, but not the mutants, increased activation-specific phosphoryla-

tion of c-Jun N-terminal kinase and p38 kinase, as well as activating protein-1. We also showed

that regulated dimerization of the SLK catalytic domain enhanced kinase activity, and this

effect was abolished by mutating T183 and S189. The proapoptotic effect of overexpressed SLK

was also blocked by mutating T183 and S189 [23].

In the present study, we further characterize and advance our understanding of the mecha-

nisms of SLK activation. We demonstrate that dimerization of the catalytic domain enhanced

autophosphorylation and exogenous kinase activity, i.e. ezrin phosphorylation. Mutation of

the T183 and S189 phosphorylation sites reduced autophosphorylation and exogenous kinase

activity. Mutations in the coiled-coil domain significantly reduced ezrin phosphorylation and

tended to reduce autophosphorylation, implying that autophosphorylation can occur, at least

in part, intramolecularly, but dimerization is required for exogenous kinase activity.

Materials and methods

Materials

Tissue culture media and Lipofectamine 2000 were from Invitrogen-Life Technologies (Bur-

lington, ON) and Wisent (Saint-Jean-Baptiste, QC). DharmaFECT transfection reagent was

from GE Healthcare (Mississauga, ON). Electrophoresis reagents were from Bio-Rad Labora-

tories (Mississauga, ON), and GE Healthcare. Rabbit anti-actin antibody (A2066) and calycu-

lin A were purchased from Sigma-Aldrich Canada (Mississauga, ON). AP20187 was from

Clontech Laboratories (Mountain View, CA). Erlotinib was purchased from Cayman Chemi-

cal (Ann Arbor, MI). Mouse anti-hemaglutinin antigen epitope tag (HA; sc-7392) and mouse

anti-green fluorescent protein (GFP) antibodies were from Santa Cruz Biotechnology (sc-

9996, Santa Cruz, CA). Rabbit anti-RRXpS/T (anti-phospho-protein kinase A substrate; 9624),

which reacts with SLK phospho-S189 [23], rabbit anti-phospho-ezrin (T567)/radixin (T564)/

moesin (T558; pERM; 3141), and rabbit anti-ezrin (3145s) antibodies were from Cell Signaling

Technology (Danvers, MA). Rabbit anti-SLK and rabbit anti-SLK-phospho-T183 (pT183)

antibodies were characterized previously [7,20,23,24]. Plasmids encoding full-length HA-SLK

WT and full-length mutants, including T183A, S189A, T183A/S189A, I848G, L986G, and

L986G/I989G, as well as full length myc-SLK K63R were described previously [6,20,22–24], as

were plasmids HA-Fv-SLK 1–373 (WT), and mutants T183A/S189A, T193A, T183E, S189E,

K63R, and E79A [23]. GFP-ezrin cDNA was obtained from Addgene (pHJ421, plasmid 20680)

[31]. SLK siRNAs and the TriFECTa dicer-substrate RNAi transfection kit were obtained from

Integrated DNA Technologies (Coralville, IA); siRNAs were directed against the following rat

SLK target sequences: 5'-CAAGAGATAATTGAGAATAAAC, and 5'-AGCAACTTAAAGATC
AGTATTTCAT. The scrambled siRNA (control; 5'-CGUUAAUCGCGUAUAAUACGCGUAT)

does not recognize any sequences in human, mouse, or rat transcriptomes.

Cell culture and transfection

Experiments were carried out in rat GECs, COS-1 monkey kidney cells and mouse C2C12

myoblasts [24]. Rat GECs were characterized previously [32], and were cultured in K1 medium

(DMEM, Ham F-12, with 5% Nu-Serum and hormone mixture) [7,32]. COS-1 and C2C12

cells were cultured in DMEM with 10% fetal bovine serum [24]. Cells were seeded into tissue

culture plates 24 h prior to transfection. Cells were transiently transfected 24 h after plating

with plasmid DNAs, using Lipofectamine 2000, according to the manufacturer’s instructions.

siRNA duplexes (20 nM) were transfected 24 h after plating of cells, using a TriFECTa kit and
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DharmaFECT reagent, according to the manufacturer’s instructions. Cells were studied 48 h

after transfections.

For migration or wound healing assays, GECs were plated into chambers with inserts that

allow establishment of ~500 μm gaps between cell monolayers (Ibidi USA Inc., Madison, WI).

Migration was monitored upon removal of the inserts. Plates were photographed at serial

intervals, and migration of cells into the gaps was quantified by measuring the widths of the

gaps using National Institutes of Health ImageJ software. In preliminary experiments, it was

demonstrated that the rates of migration were similar regardless of whether cells were pre-

incubated in serum-poor culture medium for 12 h or in complete medium.

Immunoprecipitation and immunoblotting

Cells were rinsed with PBS and lysed with buffer (“lysis buffer”), containing 1% Triton X-100,

125 mM NaCl, 10 mM Tris (pH 7.5), 1 mM EGTA, 2 mM Na3VO4, 5 mM Na4P3O7, 25 mM

NaF, 20 μM leupeptin, 10 μM pepstatin, 50 μM bestatin, 15 μM E64, 0.8 μM aprotinin, 1 mM

4-(2-aminoethyl)benzenesulfonylfluoride. The lysates were then centrifuged at 13,000 g for 10

min. Immunoprecipitation of proteins in the supernatants was carried out by pre-clearance

with agarose beads, followed by incubation with primary antibody or nonimmune IgG as

control, and absorption of complexes using protein A-coupled agarose. After several washes,

immune complexes were solubilized in Laemmli buffer and were subjected to SDS-PAGE

[7,20,24].

For immunoblotting, after addition of Laemmli buffer to cell lysates, proteins were loaded

onto gels with equal amounts of protein per lane. Proteins were separated by SDS-PAGE and

were then electrophoretically transferred to a nitrocellulose or polyvinylidene fluoride mem-

brane. Membranes were blocked with 5% BSA and incubated with primary antibody followed

by horseradish peroxidase-conjugated secondary antibody. Membranes were developed with

ECL. Density of specific bands was measured using ImageJ software. In preliminary studies, it

was shown that there was a linear relationship between densitometric measurements and the

amounts of protein loaded onto gels [7,20,23,24].

Induction of passive Heymann nephritis (PHN)

Male Sprague-Dawley rats (150 g; Charles River, St. Constant, Quebec) were injected with

400 μl of sheep anti-rat Fx1A antiserum, as described previously [33]. This protocol resulted in

the induction of proteinuria within 14 days of injection. Urine was collected from rats in meta-

bolic cages for measurement of protein on days 13–14. Urine protein was quantified using the

Bradford assay. Rats were euthanized on day 14, at which time kidneys were harvested for

immunofluorescence staining. The study was carried out in accordance with guidelines estab-

lished by the Canadian Council on Animal Care, and the animal protocol was approved by the

McGill University Animal Care Committee (permit number 4475).

Immunofluorescence microscopy

Kidney poles were snap-frozen in isopentane (-80˚C). Cryostat sections (4 μm) were cut, air

dried, fixed in 4% paraformaldehyde (15 min), and blocked with 10% normal goat serum (1 h,

22˚C). Sections were incubated with a fluorophore-conjugated primary antibody (overnight,

4˚C), or unconjugated primary antibody, followed by a fluorophore-conjugated goat anti-rab-

bit IgG (1 h, 22˚C) [34]. Sections were examined with a Zeiss AxioObserver fluorescence

microscope connected to an AxioCam digital camera. To allow comparisons of fluorescence

intensities, all images were taken at the same exposure, with the length of exposure set to avoid

camera saturation. Fluorescence intensity of glomeruli was quantified using the histogram
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function of Adobe Photoshop [34]. For all samples, a negative antibody control consisted of

substitution of the primary antibody with nonimmune IgG.

Statistics

Results are presented as mean ± standard error. One-way analysis of variance (ANOVA) was

used to determine significant differences among groups. Where significant differences were

found (ANOVA P<0.05), individual comparisons were then made between groups using the t

statistic, and adjusting the critical value according to the Bonferroni method. The t-test was

used to assess significant differences between two groups.

Results

Phosphorylation in the catalytic domain of SLK regulates kinase activity

In these experiments, we examined the role of dimerization and activation segment phosphor-

ylation in the activation of SLK. We employed the Fv-SLK 1–373 fusion protein, which con-

tains the kinase domain of SLK, fused with two copies of Fv (FK506 binding protein with a

single amino acid substitution, F36V) (Fig 1). AP20187 (an analog of FK506) binds with sub-

nanomolar affinity to Fv (while binding with 1000-fold lower affinity to the wild-type FK506

binding protein). By gel-filtration chromatography, we previously showed that AP20187

induces dimerization of Fv-SLK 1–373, and it enhances autophosphorylation and in vitro

kinase activity [22,23]. We transfected COS-1 cells with HA-Fv-SLK 1–373 WT, T183A/

S189A, or T193A, and then treated cells with AP20187. Autophosphorylation was monitored

by immunoblotting with anti-SLK pT183 and anti-RRXpS/T (pS189) antibodies. Although we

previously employed myelin basic protein to evaluate the exogenous kinase activity of SLK in

vitro [23], since this earlier study, the full-length and catalytic domains of SLK were shown to

induce phosphorylation of ezrin on T567 [12]. Therefore, in the present study, we evaluated

the exogenous kinase activity of SLK using anti-pERM antibody, to identify the activating

T567 phosphorylation of the physiological substrate, ezrin, in the context of intact cells. SLK

T183 and S189 phosphorylation was increased after inducing dimerization of Fv-SLK 1–373

WT with AP20187 (Fig 1). As expected, T183 and S189 phosphorylation was absent in cells

transfected with the T183A/S189A mutant, and was partially inhibited by the T193A mutation.

Phosphorylation of ezrin was induced in the presence of Fv-SLK 1–373 WT, and was abolished

completely by T183A/S189A and T193A mutations (with and without AP20187) (Fig 1). There

was no significant effect of SLK activation on ezrin expression (Fig 1A).

In the next set of experiments, we examined the effects of individual mutations in T183 and

S189 on phosphorylation of the corresponding site. COS-1 cells were transfected with HA-Fv-

SLK 1–373 WT, T183A/S189A, T183E, or S189E. Cells were then treated with AP20187. In an

earlier study, we had expected that substitution of alanine with glutamic acid would increase

SLK catalytic activity, but we found that these mutations actually decreased in vitro kinase

activity [23]. T183 and S189 phosphorylation was increased after treatment of Fv-SLK 1–373

WT-expressing cells with AP20187 (Fig 2). As expected, T183 and S189 phosphorylation was

absent in the T183A/S189A mutant. T183 phosphorylation was partially inhibited by the

S189E mutation, and S189 phosphorylation was partially inhibited by the T183E mutation (Fig

2). SLK-mediated phosphorylation of ezrin was partially reduced by both T183E and S189E

mutations, compared with WT (Fig 2).

To confirm that activation segment phosphorylation of SLK was actually dependent on its

kinase activity, COS-1 cells were transfected with HA-Fv-SLK 1–373 WT, and the K63R kinase

dead mutant. T183 and S189 phosphorylation was increased after treatment of Fv-SLK 1–373

WT-expressing cells with AP20187, but there was no significant phosphorylation of SLK K63R
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Fig 1. Phosphorylation in the catalytic domain of SLK regulates kinase activity. COS-1 cells were

transiently transfected with HA-Fv-SLK 1–373 WT, T183A/S189A, or T193A. AP20187 (AP; 100 nM) was added

as indicated at 24 h. Then, after 24 h, cell lysates were immunoblotted with anti-SLK pT183, anti-RRXpS/T

(pS189), anti-HA, anti-pERM or anti-ezrin antibodies. T183 and S189 phosphorylation was increased after

treatment of Fv-SLK 1–373 WT-expressing cells with AP20187. T183 and S189 phosphorylation was absent in
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(Fig 3). This result also implies that T183 or S189 are not phosphorylated by another upstream

protein kinase. SLK K63 is believed to form a bond with E79, which may lock SLK into an

active conformation, suitable for substrate binding [27]. T183 and S189 phosphorylation was

absent in the K63R and E79A mutants, implying a severe disruption of kinase activity (Fig 3).

Phosphorylation sites involved in the regulation of SLK catalytic activity

Having established a role for dimerization and activation segment phosphorylation in the acti-

vation of SLK using a regulated catalytic domain, we proceeded to investigate phosphorylation

sites and kinase activity in the full-length protein (Fig 4A). COS-1 cells were transfected with

WT, S189A or T183A/S189A full-length HA-SLK. Lysates were immunoprecipitated with

anti-HA antibody and immune complexes were immunoblotted with anti-pT183. T183 phos-

phorylation was evident in both the WT and S189 mutant (Fig 4A and 4C). Also, immunoblot-

ting of full-length HA-SLK WT immunoprecipitates with anti-pS189 antibody demonstrated

S189 phosphorylation (Fig 4A).

Next, COS-1 cells were transfected with full-length SLK WT or T183A, S189A, T183A/

S189A or K63R mutants. To verify the specificity of ezrin phosphorylation by SLK, cells were

also transfected with GFP-ezrin. Transfection of full-length SLK WT stimulated phosphoryla-

tion of GFP-tagged and endogenous ezrin, while T183A, S189A, T183A/S189A mutations

showed significantly lower ezrin phosphorylation (Fig 4B and 4D). As expected, ezrin phos-

phorylation was almost absent in the K63R mutant. GFP-ezrin was expressed ~5-fold above

endogenous ezrin, and SLK activity did not alter expression of either protein (Fig 4B). Basal

ezrin phosphorylation in untransfected COS-1 cells was reduced by 52±12% (P = 0.003) after

transfection of SLK K63R. It should also be noted that transfection of HA-SLK increased the

level of total SLK in COS-1 cells to 2.00±0.26-fold above endogenous (P<0.0001, 7 transfec-

tions performed in duplicate).

Role of the coiled-coil domains in SLK activation

The SLK C-terminal domain is predicted to contain two coiled-coil regions, a N-terminal

(amino acids 826–929) and a C-terminal coiled-coil (amino acids 942–1038) (Fig 4A) [24].

The SLK coiled-coils display typical heptad repeats with hydrophobic residues in the “a” and

“d” positions [35]. To investigate the role of the SLK coiled-coil domains in mediating kinase

activation, we introduced point mutations with the purpose of disrupting the coiled-coil struc-

tures. The I878G mutation, as well as the L986G and I989G mutations (all in the “a” or “d”

positions) are predicted to disrupt the N-terminal and C-terminal coils, respectively [24,35].

Based on these predictions, we generated two single mutations in SLK, including I878G and

L986G, as well as the double mutation, L986G/I989G. Earlier, we employed a protein fragment

complementation assay to demonstrate that full-length SLK homodimerizes via the C-terminal

domain [24]. In this assay, homodimerization was reduced by mutations including I848G,

L986G and L986G/I989G (Fig 4A), conforming the in silico prediction [24].

the T183A/S189A mutant, and was reduced in the T193A mutant (the faint band in the S189 immunoblot is

nonspecific). Phosphorylation of ezrin was abolished by T183A/S189A and T193A mutations (with and without

AP20187). The lower band in the anti-pERM blot could represent an ezrin degradation product or moesin. A)

Representative immunoblots. The inset illustrates the SLK catalytic domain showing the positions of ATP binding

site at K63, E79, and the three phosphorylation sites. B-D) Densitometric quantification. B) *P<0.0001 AP vs

untreated (WT) and WT vs T193A (AP), **P<0.0001 AP vs untreated (T193A). C) *P<0.0005 AP vs untreated

(WT) and WT vs T193A (AP), **P<0.002 AP vs untreated (T193A). D) *P<0.0001 AP vs untreated (WT), WT vs

T183A/S189A (AP), and WT vs T193A (AP). 4 experiments performed in duplicate.

https://doi.org/10.1371/journal.pone.0177226.g001
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Fig 2. Role of T183 and S189 phosphorylation sites in the catalytic domain of SLK. COS-1 cells were

transiently transfected with HA-Fv-SLK 1–373 WT, T183A/S189A, T183E, or S189E. AP20187 (AP; 100 nM)

was added as indicated at 24 h. Then, after 24 h, cell lysates were immunoblotted with anti-SLK pT183, anti-

RRXpS/T (pS189), anti-HA, or anti-pERM antibodies. T183 and S189 phosphorylation was increased after

treatment of Fv-SLK 1–373 WT-expressing cells with AP20187. T183 and S189 phosphorylation was absent

in the T183A/S189A mutant. T183 phosphorylation was reduced in the S189E mutant, and S189
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In the present study, we examined the effects of coiled-coil domain mutations on SLK phos-

phorylation and kinase activity. COS-1 cells were transfected with WT or coiled-coil mutants

of full-length HA-SLK. Immunoblotting with anti-pT183 antibody detected T183 phosphory-

lation in HA-SLK WT, as well as coiled-coil domain mutant transfections (I848G, L986G and

L986G/I989G) (Fig 5A). The faint pT183 band in untransfected cells and in cells transfected

with the T183A/S189A mutant (Fig 5A) most likely reflects phosphorylation of endogenous

SLK (see below). However, the HA-SLK coiled-coil domain mutants showed greater expres-

sion levels, compared with WT, perhaps because of differences in plasmid construction. Thus,

pT183 adjusted for HA-SLK expression tended to be lower in the coiled-coil domain mutants

(I848G, L986G and L986G/I989G), although differences did not reach statistical significance,

as there was considerable variability among experiments. To eliminate the confounding effect

of endogenous SLK in the above experiments, we also monitored T183 phosphorylation after

immunoprecipitation of HA-SLK. T183 phosphorylation was absent in the T183A/S189A

mutant, but was evident in the WT and coiled-coil domain mutants (Fig 5C). By analogy to

Fig 5A, a greater amount of coiled-coil domain mutant SLK was immunoprecipitated, com-

pared with WT, implying that T183 phosphorylation was greater in SLK WT.

Finally, to monitor kinase activity, cells were transfected with WT or coiled-coil mutants of

full-length HA-SLK, plus GFP-ezrin. Transfection of full-length SLK WT stimulated phos-

phorylation of GFP- and endogenous ezrin, while I848G, L986G and L986G/I989G mutations

showed significantly lower ezrin phosphorylation (Fig 5D and 5E). As expected, ezrin phos-

phorylation was almost completely absent in the K63R mutant. Changes in GFP-ezrin phos-

phorylation were independent of expression, which did not change (Fig 5D). This pattern of

ezrin phosphorylation parallels the pattern of SLK homodimerization, reported earlier [24].

Thus, the I848G mutation in the N-terminal SLK coil reduced dimerization and kinase activity

most markedly, while the L986G and L986G/I989G mutations in the C-terminal coil were less

disruptive.

Kinase activity of endogenous SLK

The above experiments relied on expression of SLK WT and mutants in cells by transfection.

To address the kinase activity of endogenous SLK, we initially employed C2C12 myoblasts,

which express a ~3-fold higher level of endogenous SLK, compared with untransfected COS-1

cells [24]. It was previously reported that SLK activity may be stimulated by scratch wounding

of fibroblasts [17,18]; thus, SLK activity was examined in untreated C2C12 myoblasts, and

after subjecting the cells to scratch wounding. Immunoblotting of cell lysates with anti-pT183

antibody showed that there was basal phosphorylation of SLK at T183. Scratch wounding

enhanced T183 phosphorylation at 60 min modestly, and pT183 declined by 120 min (Fig 6).

Ezrin phosphorylation was evident in resting cells, and it increased markedly by scratch

wounding at 60 min, and continued to increase at 120 min (Fig 6). There were no changes in

ezrin expression (Fig 6A).

We have demonstrated important functional roles for SLK in kidney GECs in culture and

in vivo [7,8]. Next, we used cultured GECs, a physiologically-relevant cell line, to examine

phosphorylation of endogenous SLK and ezrin. Expression of SLK in GECs is significantly

phosphorylation was reduced in the T183E mutant. Phosphorylation of ezrin was reduced by both T183E and

S189E mutations. A) Representative immunoblots. B-D) Densitometric quantification. B) *P<0.0001 AP vs

untreated (WT) and P<0.015 WT vs S189E (AP), **P<0.0005 AP vs untreated (S189E). C) *P<0.0001 AP vs

untreated (WT) and P<0.001 WT vs T183E (AP), **P<0.001 AP vs untreated (T183E). D) *P<0.0001 AP vs

untreated (WT), WT vs S189E (AP), and WT vs T183E (AP), **P<0.0001 AP vs untreated (S189E),

**P<0.0001 AP vs untreated (T183E). 5 experiments performed in duplicate.

https://doi.org/10.1371/journal.pone.0177226.g002

Regulation of SLK activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0177226 May 5, 2017 9 / 25

https://doi.org/10.1371/journal.pone.0177226.g002
https://doi.org/10.1371/journal.pone.0177226


Fig 3. Role of K63 and E79 phosphorylation sites in the catalytic domain of SLK. COS-1 cells were

transiently transfected with HA-Fv-SLK 1–373 WT, T183A/S189A, K63R, or E79A. AP20187 (AP; 100 nM)

was added as indicated at 24 h. Then, after 24 h, cell lysates were immunoblotted with anti-SLK pT183, anti-

RRXpS/T (pS189), or anti-HA antibodies. T183 and S189 phosphorylation was increased after treatment of

Fv-SLK 1–373 WT-expressing cells with AP20187. T183 and S189 phosphorylation was absent in the K63R

and E79A mutants. A) Representative immunoblots. B and C) Densitometric quantification. B and C)

*P<0.0001 AP vs untreated (WT), WT vs K63R (AP), and WT vs E79A (AP). 4 experiments performed in

duplicate.

https://doi.org/10.1371/journal.pone.0177226.g003
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Fig 4. T183A, S189A, T183A/S189A and K63R mutations in the SLK activation domain reduce catalytic

activity. A) Full-length HA-SLK (1204 amino acids). The kinase domain (amino acids 34–292), position of

mutations, and coiled-coil (CC) domains are indicated. COS-1 cells were transiently transfected with WT or

mutant full-length HA-SLK. After 48 h, lysates were immunoprecipitated with anti-HA antibody (+), or

nonimmune IgG (control; -). Immune complexes were then immunoblotted with anti-pT183 or anti-HA
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lower, compared with C2C12 cells. First, under basal conditions, SLK T183 was phosphory-

lated in GECs, and there was also detectable phosphorylation of ezrin (Fig 7A and 7B). By anal-

ogy, constitutive SLK T183 phosphorylation was evident in isolated rat glomeruli (Fig 7C).

Glomeruli contain endothelial and mesangial cells in addition to GECs/podocytes, but SLK in

the glomerulus is expressed prominently in the GECs [7]. Therefore, these results imply that

basal phosphorylation of SLK in GECs in culture reflects the situation in vivo. Second, most

studies that have addressed the role of SLK in cell migration have been performed in fibro-

blasts. GECs are not migratory cells when compared with fibroblasts, but it has been proposed

that in vivo, GECs may nonetheless show some local motility within the glomerulus, and may

display hypermotility after injury [36]. Given the link of cell motility with wound healing, we

examined the effects of scratch wounding on changes in phosphorylation in cultured GECs.

Cells were transfected with two SLK-directed siRNAs or with a scrambled control siRNA, and

were then subjected to scratch wounding, or were untreated. Scratch wounding did not alter

SLK pT183 significantly, although it tended to increase pERM by ~20% (Fig 7A and 7B). SLK-

directed siRNAs reduced SLK expression and SLK pT183 by 67–68% (4 experiments per-

formed in duplicate), and ezrin phosphorylation by 40–60% both in the presence and absence

of scratch wounding (Fig 7A and 7B). This result implies that a significant portion of ezrin

phosphorylation in GECs is dependent on SLK activity, but we cannot exclude the possibility

that a basal component of ezrin phosphorylation is SLK-independent. We were not able to

achieve knockdown of SLK beyond 68%, perhaps because these cells are difficult to transfect

efficiently. Knockdown of SLK did not affect ezrin expression (Fig 7A).

SLK catalytic activity and the effect of erlotinib

Erlotinib was originally developed as an inhibitor of the epidermal growth factor (EGF) recep-

tor tyrosine kinase, but was later found to have a greater binding affinity for the kinase activity

of SLK (and the related lymphocyte-oriented kinase), and to be an effective SLK inhibitor

[12,37]. The drug appears to have a 5-10-fold lower affinity for Src-family kinases [37]. In

C2C12 cells, erlotinib markedly inhibited ezrin phosphorylation induced by scratch wounding,

but surprisingly, erlotinib did not produce any consistent effect on endogenous SLK pT183

(Fig 6). Actually, erlotinib tended to increase pT183 in the C2C12 cells not subjected to scratch

wounding. Similarly, in GECs, erlotinib inhibited ezrin phosphorylation, but did not produce

any consistent effect on endogenous SLK pT183 (Fig 8A and 8B). In both cell lines, phosphory-

lation of ezrin was not abolished by erlotinib entirely, suggesting that a basal portion of ezrin

phosphorylation was SLK-independent. Also, erlotinib did not affect ezrin expression (Figs 6A

and 8A). Therefore, the reduction in ezrin phosphorylation by erlotinib was distinct from the

lack of erlotinib effect on SLK T183 phosphorylation. Moreover, the effect of erlotinib on ezrin

phosphorylation was consistent with the effects of SLK-directed siRNAs (Fig 7).

To further delineate the specificity of erlotinib, COS-1 cells were transfected with Fv-SLK

1–373 WT. AP20187 was added to induce dimerization of the catalytic domain, in the presence

or absence of erlotinib. In keeping with earlier experiments, there was some basal phosphory-

lation in SLK T183, and this was enhanced by AP20187 (Fig 8C and 8D). Neither basal nor

antibodies. T183 phosphorylation was evident in the WT and S189 mutant. A) Representative immunoblots.

C) Densitometric quantification. C) *P = 0.0001 WT vs T183A/S189A, **P<0.0001 S189A vs T183A/S189A.

5 experiments. B) COS-1 cells were transiently transfected with WT or mutants of full-length HA-SLK, as

indicated, plus GFP-ezrin (Untr, untransfected control). After 48 h, lysates were immunoblotted with anti-SLK,

anti-pERM, anti-GFP, anti-ezrin, or anti-actin antibodies. SLK mutants reduced ezrin phosphorylation. B)

Representative immunoblots. D) Densitometric quantification. D) *P<0.0002 WT vs T183A, P<0.0001 WT vs

S189A, P<0.0001 WT vs T183A/S189A, P<0.0001 WT vs K63R. 6 experiments performed in duplicate.

https://doi.org/10.1371/journal.pone.0177226.g004
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Fig 5. Coiled-coil domain mutations reduce SLK activity. A-C) COS-1 cells were transiently transfected

with WT or mutants of full-length HA-SLK (Untr, untransfected control). A and B) After 48 h, lysates were

immunoblotted with anti-pT183, anti-HA or anti-SLK antibodies. A) Representative immunoblots. B)

Densitometric quantification. pT183 values were adjusted for HA-SLK expression, and background values

(T183A/S189A mutant) were subtracted. T183 phosphorylation was evident in SLK WT and to a lesser extent
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stimulated T183 phosphorylation was blocked by erlotinib (Fig 8C and 8D). Expression of Fv-

SLK 1–373 induced robust ezrin phosphorylation, and this was enhanced by AP20187 (Fig 8C

and 8D). SLK-induced ezrin phosphorylation was abolished completely in the presence of erlo-

tinib (Fig 8C and 8D). Thus, similarly to endogenous SLK in GECs and C2C12 cells, erlotinib

did not affect Fv-SLK T183 phosphorylation; however, SLK-dependent ezrin phosphorylation

was inhibited. Finally, to determine if erlotinib could directly inhibit T567 phosphorylation of

ezrin, we induced robust ezrin phosphorylation using calyculin A (a protein phosphatase

inhibitor) [12] in the presence or absence of erlotinib. Erlotinib showed no inhibitory effect on

calyculin A-induced ezrin T567 phosphorylation (Fig 8E). This result indicates that erlotinib

most likely does not interfere directly with ezrin phosphorylation.

SLK mediates GEC motility

As noted above, in vivo, GECs are phenotypically distinct from fibroblasts, but have been

viewed as possessing a motile phenotype within the glomerulus, and perhaps becoming hyper-

motile after injury [36]. To link biochemical pathways of SLK activation with a functional out-

put, we employed a wound healing assay. GECs were plated into chambers with inserts that

allow establishment of ~500 μm gaps between cell monolayers. Upon removal of the insert,

migration was monitored for up to 6 h. At 6 h, ~40% of the gap was covered by migrating

GECs that had been transfected with scrambled siRNAs (Fig 9A and 9B). The gap was fully

covered by these GECs within ~24 h (data not shown). Transfection of SLK siRNAs, under

conditions that reduced SLK expression and ezrin phosphorylation (Fig 7A and 7B), attenu-

ated the rate of GEC migration by 45–90% at 6 h, compared with the scrambled siRNA (Fig

9A and 9B). Furthermore, in the presence of erlotinib, which partially inhibited ezrin phos-

phorylation (Fig 8), migration of GECs was reduced by ~40%, compared with untreated con-

trol (Fig 9C; photomicrographs not shown).

SLK is activated in PHN

To address SLK activation and phosphorylation in a pathophysiological context, we examined

SLK activation in the PHN model of experimental membranous nephropathy, using quantita-

tive immunofluorescence microscopy. In PHN, binding of anti-Fx1A antibody to GEC/podo-

cyte plasma membranes leads to formation of immune deposits, complement activation and

podocyte injury [33,38]. Fourteen days after induction of PHN, rats developed proteinuria

(625±208 mg/24 h), compared with control (12±2 mg/24 h, P<0.05, 6–9 rats per group). Het-

erologous antibody (sheep anti-Fx1A IgG) was present in glomeruli of rats with PHN, but not

control (Fig 10A). Glomerular SLK expression, and phosphorylation of SLK T183 and ezrin

increased in rats with PHN, compared with control (Fig 10A and 10B), in keeping with glo-

merular SLK activation in PHN. Ezrin expression was actually decreased in PHN despite

increased phosphorylation (Fig 10A and 10B). Along the glomerular capillary wall, ezrin is

in the coiled-coil domain mutants (I848G, L986G and L986G/I989G), although differences did not reach

statistical significance. The minor T183 phosphorylation in Untr and the T183A/S189A mutant most likely

reflects endogenous SLK. 5 experiments. C) COS-1 cells were transiently transfected as above. After 48 h,

lysates were immunoprecipitated with anti-HA antibody (+), or nonimmune IgG (control; -). Immune

complexes were then immunoblotted with anti-pT183 or anti-HA antibodies. T183 phosphorylation was

absent in the T183A/S189A mutant, but was evident in the WT and coiled-coil domain mutants.

Representative immunoblots. D) COS-1 cells were transiently transfected with WT or mutants of full-length

HA-SLK, as indicated, plus GFP-ezrin (Untr, untransfected control). After 48 h, lysates were immunoblotted

with anti-SLK, anti-pERM, anti-GFP, anti-ezrin, or anti-actin antibodies. SLK mutants reduced ezrin

phosphorylation. D) Representative immunoblots. E) Densitometric quantification. E) *P<0.0005 WT vs

I848G, P<0.03 WT vs L986G, P<0.0001 WT vs K63R. 6 experiments performed in duplicate.

https://doi.org/10.1371/journal.pone.0177226.g005
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Fig 6. Scratch wounding enhances phosphorylation of endogenous SLK T183 and ezrin. C2C12

myoblasts were preincubated with (+) or without (-) erlotinib (10 μM) for 30 min, and were then untreated

(Untr) or subjected to scratch wounding (SW). After 60 or 120 min, lysates were immunoblotted with anti-

pT183, anti-SLK, anti-pERM, anti-ezrin, or anti-actin antibodies. A) Representative immunoblots. B)

Densitometric quantification. B) *P<0.05, **P<0.005, +P<0.0001 SW vs Untr (no erlotinib), ++P<0.0001

erlotinib vs no erlotinib, 3–10 experiments performed in duplicate.

https://doi.org/10.1371/journal.pone.0177226.g006

Regulation of SLK activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0177226 May 5, 2017 15 / 25

https://doi.org/10.1371/journal.pone.0177226.g006
https://doi.org/10.1371/journal.pone.0177226


Fig 7. Activity/phosphorylation of endogenous SLK in GECs. GECs were transfected with two SLK-

directed siRNAs or with scrambled control (Ctrl) siRNA. After 48 h, cells were untreated (Un) or subjected to

scratch wounding (SW). After 1 h, lysates were immunoblotted with anti-pT183, anti-SLK, anti-pERM, anti-

ezrin, or anti-actin antibodies. A) Representative immunoblots. B) Densitometric quantification. *P<0.0001,

**P<0.0002, +P<0.025 SLK siRNA vs Ctrl siRNA, 4 experiments performed in duplicate. C) SLK is
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expressed primarily in podocytes and not endothelial cells, while moesin and radixin are

expressed in endothelial cells, but not podocytes [39–41]. Consequently, the increase in pERM

staining in PHN (a podocyte disease) most likely reflects an increase in podocyte phospho-

ezrin.

Discussion

The present study comprehensively addresses the activation and signaling of SLK in the con-

text of intact cells, including a physiologically relevant cell line (GECs). Using phospho-specific

antibodies and mutagenesis, the study demonstrates the important role of the SLK T183 and

S189 phosphorylation sites in the activation segment, as well as critical amino acid residues in

the coiled-coil regions. Controlled dimerization of the SLK catalytic domain enhanced activa-

tion segment autophosphorylation at T183 and S189 (Fig 1) [23,27]. Full-length ectopically- or

endogenously-expressed SLK were constitutively phosphorylated at T183 and S189 (Figs 4–8).

Using ezrin as a physiological SLK substrate (to address exogenous kinase activity), we demon-

strated that dimerization of SLK 1–373 (Fig 1) or full-length SLK (Fig 5) is essential for effec-

tive ezrin T567 phosphorylation. Mutations in the coiled-coil region of full-length SLK, which

impair dimerization [24], significantly reduced exogenous kinase activity and tended to reduce

autophosphorylation of SLK at T183 (Fig 5).

Single mutations in T183, S189 or T193 partially reduced phosphorylation in the non-

mutated activation segment sites, and showed greater reduction in ezrin phosphorylation (Figs

1 and 2). The effect of the T183A/S189A double mutation on blocking ezrin phosphorylation

was almost complete and was greater than the effect of the two single mutations (Fig 1). In

contrast to SLK 1–373, which is a constitutive monomer, we demonstrated previously that

full-length SLK forms a high molecular mass complex in cells, which is a constitutive dimer

(or oligomer) [22]. Unlike SLK 1–373, the S189A mutation in full-length SLK did not detecta-

bly reduce SLK T183 phosphorylation, compared with WT; however, S189A, T183A and

T183A/S189A mutations in full-length SLK significantly reduced ezrin phosphorylation (Fig

4). These results suggest that a mutation of one phosphorylation site in the catalytic domain

may lead to a modest impairment in phosphorylation of the other site, but the effect on exoge-

nous kinase activity is more substantial. By analogy, it was reported that when assayed in vitro,

the S189A mutation in the isolated catalytic domain did not affect T183 phosphorylation sig-

nificantly, and that T183 is the primary phosphorylation site, while S189 is secondary [27].

The Drosophila SLK homolog, Slik, phosphorylates and activates moesin in developing epithe-

lial tissues to promote epithelial integrity. Phosphorylation of at least two of three analogous

conserved sites in the activation segment is required for efficient catalytic activity [42].

Previously, we employed a protein complementation assay to show that coiled-coil domain

mutations reduced the ability of SLK to dimerize [24]. The present study provides additional

key results, showing that SLK coiled-coil domain mutations reduced exogenous kinase activity,

and tended to reduce T183 autophosphorylation (Fig 5). Interestingly, the I848G mutation,

found in the N-terminal coiled-coil, had the most pronounced effect on reducing ezrin phos-

phorylation, while L986G and L986G/I989G were less effective (Fig 5). This result is in keeping

with the protein complementation assay, which showed that I848G disrupted SLK dimeriza-

tion more severely than L986G and L986G/I989G [24]. Based on these results, it can first be

concluded that T183 and S189 phosphorylations are essential to kinase activity, but they

may not reflect exogenous kinase activity precisely, since the sites can be at least partially

constitutively phosphorylated in glomeruli. Glomeruli were isolated from normal rat kidneys, and were

immunoblotted as indicated. Representative immunoblot showing glomeruli from 2 rats.

https://doi.org/10.1371/journal.pone.0177226.g007
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Fig 8. Erlotinib inhibits SLK-mediated ezrin phosphorylation, but not phosphorylation of SLK T183. A and B) GECs were incubated with (+) or

without (-) erlotinib (10 μM) for 30 or 60 min. Lysates were immunoblotted with anti-pT183, anti-SLK, anti-pERM, anti-ezrin, or anti-actin antibodies. A)

Representative immunoblots. B) Densitometric quantification. *P<0.015, **P = 0.005 erlotinib vs no treatment, 3 experiments performed in duplicate. C

and D) COS-1 cells were transiently transfected with HA-Fv-SLK 1–373 WT or vector (V). AP20187 (AP; 100 nM) was added at 24 h, as indicated.

Erlotinib (10 μM) was added at 48 h, for 60 min, as indicated. Lysates were immunoblotted with anti-SLK pT183, anti-HA, anti-pERM anti-ezrin, or anti-

actin antibodies. C) Representative immunoblots. D) Densitometric quantification. pT183: *P<0.005, **P<0.0001, +P<0.0005 vs vector; pEzrin:

*P = 0.01, **P<0.0001 vs vector, +P<0.0001 erlotinib vs untreated, ++P<0.0001 erlotinib+AP vs untreated+AP: 3 experiments performed in duplicate. E)

Erlotinib does not directly inhibit calyculin A-induced phosphorylation of ezrin. GECs were preincubated with or without erlotinib (10 μM, 30 min), and were

then incubated with calyculin A (50 nM, 30 min). Basal ezrin phosphorylation (i.e. without calyculin A) was, however, reduced by erlotinib, as in panel A.

The anti-pERM immunoblot is representative of 3 experiments, and is presented at higher and lower exposures (low exp).

https://doi.org/10.1371/journal.pone.0177226.g008
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Fig 9. SLK mediates GEC motility. A, representative photomicrographs; B and C, quantification. GECs

were plated into tissue culture chambers with inserts that allow establishment of ~500 μm gaps between cell

monolayers. A and B) GECs were transfected with two SLK-directed siRNAs or with scrambled control (Ctrl)

siRNA (as in Fig 7). Upon removal of the inserts at 48 h, migration was monitored for 6 h. Transfection of SLK

siRNAs reduced the rate of GEC migration. P<0.005 siRNA-1 vs Ctrl at 6 h, P = 0.001 siRNA-2 vs Ctrl at 4 h,
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phosphorylated, yet exogenous kinase activity is absent (Figs 4 and 5). In some previous stud-

ies, SLK autophosphorylation was used as an index of kinase activity, whereas the present

study indicates that this may not be entirely accurate. Second, dimerization of SLK is essential

for exogenous kinase activity, since coiled-coil mutations abolish exogenous kinase activity

towards ezrin (Fig 5). Third, the coiled-coiled domains are likely not involved in the interac-

tion of SLK with substrate, since ezrin was effectively phosphorylated by SLK 1–373 (Fig 1).

This result is in keeping with an earlier study of ezrin phosphorylation [12], and with the

mechanism of moesin phosphorylation by Drosophila Slik [42]. Actually, phosphorylation of

T183 and/or S189 may be important for substrate interaction. The coiled-coil domain also

P<0.0001 siRNA-2 vs Ctrl at 6 h, 9–12 measurements. Bar = 100 μm. C) At 48 h erlotinib (10 μM) was added

for 30 min to one group of cells. After removal of the inserts, migration was monitored for 6 h in the presence

or absence of erlotinib. Erlotinib reduced the rate of migration. P<0.02, P<0.0001 erlotinib vs Ctrl at 4 and 6 h,

respectively, 23 measurements.

https://doi.org/10.1371/journal.pone.0177226.g009

Fig 10. SLK is activated in PHN. Rats were untreated (Control, Ctrl), or injected with sheep anti-Fx1A antiserum to induce PHN.

Kidneys were isolated on day 14, and kidney sections were incubated with primary antibodies, as indicated, followed by fluorophore-

conjugated secondary antibody. A, representative photomicrographs; B quantification of fluorescence intensity. *P<0.0005,

**P<0.04, +P<0.01, ++P<0.05 PHN vs control (measurements were performed in 12–22 glomeruli in 4–6 rats per group).

Bar = 50 μm. Incubation of kidney sections from control and PHN rats with nonimmune IgG (instead of primary antibody; negative

control) resulted in an absence of immunofluorescent staining (results not shown).

https://doi.org/10.1371/journal.pone.0177226.g010
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appears to be involved in the recruitment of SLK, as well as Slik, to an apical localization in

cells [12,42], and in mediating the interaction of SLK and Slik with other proteins [12,24,42].

The protein kinase inhibitor, erlotinib, was employed to further characterize the catalytic

activity of SLK. Interestingly, erlotinib did not reduce T183 phosphorylation appreciably in

full-length SLK, or in monomeric and dimeric SLK 1–373 (Figs 6 and 8). However, erlotinib

markedly reduced phosphorylation of ezrin, in keeping with a previous study [12]. Although it

is possible that the effect of erlotinib on ezrin phosphorylation was independent of SLK, we

believe this is unlikely, since knockdown of SLK reduced ezrin phosphorylation (Fig 7), and

phospho-ezrin increased in parallel with phosphorylation of T183 in SLK 1–373 (Fig 8),

thereby linking SLK activity with ezrin phosphorylation. Furthermore, erlotinib did not block

calyculin A-induced ezrin phosphorylation (Fig 8). Detailed studies on the inhibitory effect of

erlotinib on the EGF receptor tyrosine kinase have provided insights into kinase inhibition

[43]. The EGF receptor has at least 6 tyrosine autophosphorylation sites, and after stimulation

of cells with EGF, there is a distinct temporal pattern of tyrosine autophosphorylation. The

range of drug sensitivity for erlotinib varied substantially for each individual tyrosine residue

autophosphorylation, and for phosphorylation of downstream signaling proteins. Erlotinib

showed relatively limited inhibition of two EGF receptor phosphorylation sites [43]. This type

of kinetic inhibition behavior suggests that erlotinib may be a noncompetitive inhibitor of

ATP in the autophosphorylation of these EGF receptor tyrosines, and by analogy of SLK T183.

Moreover, since erlotinib mainly blocked SLK substrate phosphorylation, but not T183 phos-

phorylation, the result suggests that erlotinib may block an interaction of the SLK catalytic

domain with ezrin.

Based on crystallography studies, phosphorylation in the kinase activation segment, such as

pT183 in SLK, is believed to stabilize the kinase in a conformation suitable for substrate bind-

ing [23,24,26,27]. In kinases that autoactivate, transient activation of the catalytic domain of

one monomer can phosphorylate the activation domain of the partner monomer. In turn, acti-

vation of the partner leads to the phosphorylation of the original monomer in its activation

segment. The result is the activation of two kinases, which can then phosphorylate downstream

targets [27,28]. Kinases that may undergo such activation in addition to SLK include check-

point kinase 2, death-associated protein kinase 3, and oxidative stress-responsive-1 [23,28,44].

In vitro, catalytic domain monomers show low-affinity interactions, and SLK and death-asso-

ciated protein kinase 3 formed dimers in solution to a minor extent [23,27,44]. In intact cells,

dimerization of the SLK catalytic domain appears to be constitutive, and is dependent on the

C-terminal coiled-coil regions, as our protein complementation assay indicated that catalytic

domains do not dimerize independently [20,24]. While dimeric SLK 1–373 showed phosphor-

ylation at T183 and S189, the SLK 1–373 monomers also showed a minor degree of phosphor-

ylation (Fig 1). Thus, SLK activation segment autophosphorylation could represent transient

dimeric interactions of the catalytic domains, or alternatively our results point to the possibil-

ity of an intramolecular autophosphorylation mechanism. It has been suggested that S189

phosphorylation is relevant for monomeric kinase activity [27].

Phosphoproteomic analyses have identified S189 and T183 phosphorylation in endogenous

SLK in multiple tissues/cells [45–50]. Other serine/threonine phosphorylation sites within and

outside of the catalytic domain were also noted. In most cases, phosphorylation of T183 and

S189 appears to be constitutive, and the extent to which further enhancement of phosphoryla-

tion at these sites leads to an increase in SLK activity is unclear. A study in HeLa cells showed

~2-fold variation in T183 and S189 phosphorylation during the cell cycle [45], in keeping with

variations in SLK activity, reported earlier [30]. A 2-4-fold increase in S189 phosphorylation

was induced by the stromal cell-derived factor 1/G protein-coupled receptor chemokine recep-

tor 4-mediated pathway in breast cancer cells, which were used as a model of metastasis [49].
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In the present study, SLK T183 phosphorylation was present in various resting cells and in

normal glomeruli. In C2C12 cells, scratch wounding enhanced SLK T183 phosphorylation

modestly, while ezrin phosphorylation was enhanced more markedly. Since SLK was previ-

ously shown to localize to the leading edge of fibroblasts and to mediate fibroblast migration

(wound healing) after scratch wounding [17,18], these results support the view that enhanced

phosphorylation regulates SLK activity and cell migration in this context. The so-called motile

phenotype of GECs in culture is considered to be the in vitro analog of podocyte foot process

effacement. In PHN, proteinuria and podocyte injury (which features foot process effacement)

[33,38] were associated with increased SLK expression and activity (Fig 10). Together with the

wound healing assay (Fig 9), these results indicate that SLK may play a role in the podocyte’s

response to injury in glomerulonephritis [51] (also see below).

By analogy to other epithelia, in the kidney, SLK and ezrin phosphorylation may be impor-

tant in maintaining the structure of microvilli on renal tubular epithelial cells [12]. GECs/

podocytes in vivo show a more complex structure, compared with tubular epithelium. Ezrin is

linked with the actin cytoskeleton, and is also linked with podocalyxin via Na+/H+-exchanger

regulatory factor 2 (NHERF2). The ezrin-NHERF2-podocalyxin complex, situated on the api-

cal side of the podocyte foot process, appears to be important in maintaining polarity and

architecture [40,41,52], and could be a target of SLK, which was also reported to localize in

the apical domain of epithelia [12]. Previously, SLK was shown to phosphorylate RhoA S188,

which resulted in the inhibition of RhoA-mediated arterial contraction induced by angiotensin

II type 2 receptor activation RhoA [11]. Both activation or inhibition of RhoA in podocytes

may cause proteinuria [36,51,53]. How interactions of SLK with ezrin-NHERF2-podocalyxin

or RhoA may be involved in the regulation of GEC cytoskeletal and foot process structure will

require further study. Our preliminary studies show that deletion of SLK in GECs/podocytes

in vivo leads to GEC injury and proteinuria, confirming a functionally important role for SLK

in maintaining normal glomerular physiology [54]. The characterization of the key SLK phos-

phorylation sites and regulation of catalytic activity may also provide novel targets for design

of drugs [27,55], which may be useful in the treatment of acute kidney injury, glomerulone-

phritis, wound healing, cancer, and other diseases.
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