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ABSTRACT Fermented foods often have attractive flavor characteristics to meet various
human demands. An ever-challenging target is the production of fermented foods with
equal flavor profiles outside the product’s origin. However, the formation of geography-
dependent flavor in high-complexity fermentations remains poorly understood. Here, tak-
ing Chinese liquor (baijiu) fermentation as an example, we collected 403 samples from 9
different locations in China across a latitude range of 27°N to 37°N. We revealed and vali-
dated the geography-dependent flavor formation patterns by using culture-independent
(metabolomics, metagenomics, and metatranscriptomics) and culture-dependent tools.
We found that the baijiu microbiomes along with their metabolites were flavor related
and geography dependent. The geographical characteristics were determined mainly by
20 to 40 differentiated chemical markers in metabolites and the latitude-dependent fun-
gal structure of the microbiome. About 48 to 156 core microbiota members out of 735
bacterial genera and 290 fungal genera contributed to the chemical markers. The contri-
butions of both fungi and bacteria were greater than those from either bacteria or fungi
alone. Representatively, we revealed that dynamic interdependent interactions between
yeasts and Lactobacillus facilitated the metabolism of heterocyclic flavor chemicals such
as 2-acetylpyrrole, 2,3,5-trimethylpyrazine, and 2-acetylfuran. Moreover, we found that the
intraspecific genomic diversity and microbial structure were two biotic factors that con-
tributed to dynamic microbiome assembly. Based on the assembly pattern, adjusting the
composition and distribution of initial species was one option to regulate the formation
of diverse flavor characteristics. Our study provided a rationale for developing a micro-
biome design to achieve a defined flavor goal.

IMPORTANCE People consume many spontaneously fermented foods and beverages
with different flavors on a daily basis. One crucial and hotly discussed question is how
to reproduce fermented food flavor without geographical limitations to meet diverse
human demands. The constantly enriched knowledge of the microbial contribution to
fermented flavor offers valuable insights into flavor biotechnological development.
However, we still have a poor understanding of what factors limit the reproduction of
fermented flavor outside the product’s origin in high-complexity spontaneous fermenta-
tions. Here, taking baijiu fermentation as an example, we revealed that geography-
dependent flavor was contributed mainly by fungus-bacterium cooperative metabolism.
The distinct initial microbial composition, distribution, and intraspecific genomic diversity
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limited reproducible microbial interactions and metabolism in different geographical
areas. The abundant microbial resources and predicted fungus-bacterium interactions
found in baijiu fermentation enable us to design a synthetic microbial community to
reproduce desired flavor profiles in the future.

KEYWORDS Chinese liquor, flavor biotechnology, geography-dependent flavor,
microbial community, microbial interaction, spontaneous fermentation

Fermented foods accompany human civilization and development not only because
of the primary purpose for food preservation but also for the many attractive and

distinguishing flavors (1, 2). Fermented foods from different geographical areas often
have unique flavor characteristics compared to similar products from other areas. For
example, regionally distinct wine flavor characteristics are widely known as terroir (3, 4).
Such geographical flavor characteristics can be profiled by chemical compositions (5, 6). It
is always of great interest to produce fermented foods with equal flavor profiles regard-
less of the geographical difference of the product’s origin (7–10). Therefore, revealing
how distinct chemical compositions are formed will help reproduce diverse food flavors
without geographical limitations to meet wider human demands (11).

So far, researchers have clarified the key causes of geography-dependent flavor forma-
tion in less complex food fermentations (wine, soy sauce, and cheeses, etc.). Geographical
microbial variations, phage infection, facility-specific parameters, and local environments
(temperature, precipitation, humidity, and water quality, etc.) are essential for the genera-
tion of flavor-related chemicals (1, 12–14). For example, the quality of wine from the differ-
ent vineyards is conditioned by the grape microbiome, which is related to geographical
microbial strains (3, 15). The wine grapes are then transformed into wine through micro-
bial activity, with indisputable consequences for wine chemical compositions (4). In the
case of soy sauce, Japanese soy sauce with the same quality can now be produced in
the United States and Europe by applying pure cultures of Koji and the same processes as
the ones used in Japan (1). As for cheese fermentation, microbial strains from the United
States and Europe with different CRISPR spacers or metabolic genes can affect the pig-
mentation of the cheese and the production of aroma compounds (12, 16). However, in
high-complexity spontaneous food fermentations, the mechanism of geography-depend-
ent flavor formation is not yet completely understood, resulting in difficulties in standardi-
zation and modernization (17).

Among high-complexity food fermentations, Chinese liquor fermentation is a repre-
sentative complex process with saccharification and spontaneous fermentation simul-
taneously (18), and more particularly, fermentation is under solid-state conditions (19).
Researchers revealed that Chinese liquor can be produced with different cultivars of
sorghum (raw materials) from China, America, or Australia (20, 21). In addition, Chinese
liquor can also be produced with different production processes (22). As a result, sev-
eral geographically distinct flavor types appeared under regionally preferred fermenta-
tion types despite the similar raw materials used (mainly Chinese sorghum) (23). Among
them, three typical geography-dependent aroma types, named Qingxiang (QX) (light-
aroma type), Nongxiang (NX) (strong-aroma type), and Jiangxiang (JX) (soy aroma type),
have been documented (Fig. 1a). Microbial activity was an integral part of Chinese liquor
production. However, the large pool of microbial geographical diversity, the many
uncharacterized microbial metabolic interactions, and the limited approaches available
to regulate flavor formation still make it a challenge to reproduce aroma types in differ-
ent geographical areas (17, 22, 24–27).

To further understand the mechanism of geography-dependent flavor formation,
we explored Chinese liquor fermentation to assess (i) the geographical characteristics
of the chemical and microbial compositions, (ii) why microbial geographical diversity
can contribute to distinct flavor formation; and (iii) how to regulate the microbial gen-
eration of flavor-related chemicals. Here, we collected 403 samples of baijiu fermenta-
tions from 9 different locations in China across a latitude range of 27°N to 37°N,
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belonging to 3 aroma types of Chinese liquor (JX, NX, and QX). We used gas chroma-
tography-mass spectrometry (GC-MS) to measure the volatile metabolites of fermented
samples. In addition, marker metabolites of flavor types at geographical scales were iden-
tified by partial least-squares regression discriminant analysis. We used high-throughput

FIG 1 Geography-dependent flavor characteristics of baijiu fermentations. (a) Distribution of three typical distilleries (QX, Qingxiang [light aroma]; JX,
Jiangxiang [sauce aroma]; NX, Nongxiang [strong aroma]) in China. Valleys are marked by lines, and sampling sites are marked by points. The color of the
point indicates the aroma type produced by the distillery. The numbers in parentheses indicate the sample size. (b) Principal-component analysis plot
showing the distinct volatile metabolite profiles among 403 samples of JX, NX, and QX. (c) The similarity of volatile chemical profiles among the 403
samples is significantly related to the corresponding geographical distance. The geographical distance was converted by log.
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amplicon sequencing to profile the bacterial and fungal geographical diversity of fer-
mented samples. Microbial geographical diversity was assessed at the latitude and longi-
tude levels. We then revealed the distinct associations of microbial genera with marker
metabolites by molecular ecological networks in three groups. Furthermore, we clarified
the molecular mechanisms of partial associations in the JX group. Time series metatran-
scriptome sequencing was used to illustrate pathways and genes that contribute to the
generation of marker metabolites during the fermentation process. What is more, we
identified the trigger factors underlying the distinct microbiome assemblies by comparing
the initial microbial structure and the initial genomic diversity. Metagenome sequencing
and metagenome-assembled genomes (MAGs) were used to assess microbial genomic di-
versity. Based on trigger factors, we then validated two optional approaches for regulating
flavor formation. Our findings provide novel ecological and molecular insights into the
formation of geography-dependent flavor in high-complexity spontaneous food fermen-
tations and advance our ability to develop a microbiome design to achieve a defined
flavor goal.

RESULTS
Geographical characteristics of fermented chemical compositions. In total, GC-

MS detected 471 volatile compounds (not including ethanol) from 403 baijiu fermented
samples that may contribute to baijiu flavor. Among 471 volatiles, 56 metabolites
were shared by all three groups (QX, NX, and JX) in the samples. We found 69 unique
volatile chemicals in QX, 206 in NX, and 62 in JX (see Fig. S1a in the supplemental mate-
rial). The main chemicals included esters, alcohols, acids, aldehydes, and multiple aro-
matic compounds (Data Set S1). Based on the relative concentrations of metabolites at
the end of the fermentation, esters were the same most abundant volatile metabolites
in QX (89%), NX (92%), and JX (73%). Besides, NX and JX contained more acids than QX,
while QX and JX contained more alcohols than NX (Fig. S1b). Based on the relative con-
centration of metabolites during the whole fermentation process, a principal-component
analysis plot shows clear clusters of samples (Fig. 1b). We found that the difference
among the three groups was greater than that within each group by analysis of similarity
(ANOSIM) (R = 0.714; P, 0.001).

The fermented chemical compositions were geography dependent (tested by one-way
analysis of variance [ANOVA] [P, 0.0001]). We found a significant linear correlation between
metabolic profiles and geographical distance (Fig. 1c). The typical QX distilleries were located
mainly at a latitude range of 36°N to 37°N next to the Yellow River. The typical NX distilleries
were located primarily at a latitude range of 28°N to 30°N next to the Yangtze River (Fig. 1a).
The typical JX distilleries were located mainly at a latitude range of 27°N to 28°N next to the
Chishui River. Notably, the longitude range of JX (106.1°E to 106.4°E) was much smaller than
those of NX (104.1°E to 106.2°E) and QX (101.9°E to 115.7°E).

We confirmed the significant geographical difference in volatile chemical composi-
tions among the three groups by partial least-squares regression discriminant analysis
(Q2 = 0.902, R2Y = 0.930, and Q2Y = 0.896). Table S2 shows the contribution and confi-
dence of each chemical variable from the established partial least-squares model. We
found that the different geographical characteristics of chemical compositions were
contributed mainly by 81 flavor-related metabolites (variable importance in projection
[VIP] value of .1). The 81 flavor-related metabolites contained 37 esters, 11 alcohols,
9 acids, 7 aldehydes, and 17 other chemicals. For these 81 chemicals, QX samples pre-
sented 54 flavor-related metabolites, including several long-carbon-chain alcohols,
such as 3-methyl-1-butanol, 3-methylthiopropanol, 1-nonanol, and 3-octanol. JX sam-
ples presented 53 flavor-related metabolites, mainly short-carbon-chain acids, such as
propanoic acid, butanoic acid, and 3-methylbutanoic acid. NX samples exhibited high
relative concentrations of 62 flavor-related metabolites, primarily esters, such as ethyl
caproate, ethyl butyrate, ethyl caprylate, ethyl valerate, ethyl 3-phenylpropionate,
propyl caproate, and ethyl heptanoate (Fig. S2). Table 1 shows the geographical
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chemical markers of the three aroma types after filtering 81 metabolites based on the
majority (50%) within each group.

Geographical characteristics of the baijiu microbiome. The microbial taxonomic
profiles of 403 baijiu fermentation samples were analyzed to clarify the microbial geo-
graphical characteristics. We classified 811 bacterial amplicon sequence variants (ASVs)
in QX, 1,851 bacterial ASVs in NX, and 3,032 bacterial ASVs in JX. The numbers of fungal
ASVs were 648, 832, and 1,108 in QX, NX, and JX, respectively. In total, we annotated
735 bacteria and 290 fungi to the genus taxonomic level within the baijiu fermentation
ecosystem (Table S3).

We found that the most abundant (relative abundance of .0.1%) microbial genera
were shared among geography-dependent aroma groups, comprising over 90% of the
total bacterial or fungal relative abundance (Fig. 2a). For QX samples, Lactobacillus,
Weissella, Pseudomonas, Bacillus, and Pediococcus were the most abundant bacteria,
whereas Saccharomycopsis, Saccharomyces, Candida, Pichia, and Aspergillus were the
most abundant fungi. For NX samples, Lactobacillus, Pseudomonas, and Bacillus were
the most abundant bacteria, whereas Pichia, Kazachstania, and Aspergillus were the most
abundant fungi. For JX samples, Lactobacillus, Kroppenstedtia, Bacillus, and Lentibacillus
were the most abundant bacteria, whereas Issatchenkia, Pichia, Byssochlamys, Thermomyces,

TABLE 1Main chemical markers of fermented grains among the three aroma types of baijiu

Chemical
taxon

Chemical marker

QX JX NX
Esters Ethyl laurate Ethyl lactate Ethyl caproate

Ethyl myristate Ethyl phenylacetate Ethyl butyrate
Ethyl oleate Ethyl nonanoate Ethyl caprylate
Ethyl palmitate Ethyl valerate
Ethyl pentadecanoate Ethyl 3-phenylpropionate
Diethyl succinate Propyl caproate
Ethyl benzoate Ethyl heptanoate
Ethyl linoleate Hexyl acetate
Isoamyl lactate
Methyl 2-methyltetradecanoate
2-Propenyl phenylacetate
Ethyl heptadecanoate
Ethyl octadecanoate
Ethyl linolenate
Ethyl 3-methylbutanoate

Alcohols 3-Methyl-1-butanol 1,2-Propanediol
Isobutanol Furfuryl alcohol
3-Methylthiopropanol Benzyl alcohol
1-Nonanol 2,3-Butanediol
3-Octanol b-Ethylphenethyl alcohol

Acids Octanoic acid Propanoic acid Hexanoic acid
3-Methylbutanoic acid
Benzoic acid
Butanoic acid

Aldehydes 1-Nonanal Benzeneacetaldehyde
Hexanal
(E)-2-Octenal
Acetaldehyde
3,5-Dimethylbenzaldehyde

Others Styrene 2,3,5-Trimethylpyrazine p-Cresol
2-Methoxy-3-(2-methylpropyl)

pyrazine
Tetramethylpyrazine

Naphthalene 2-Pentyl furan
Damascenone 2-Acetyl-5-methylfuran
Butylated hydroxytoluene Acetophenone
2,3-Dihydrobenzofuran 2-Acetylpyrrole
4-Ethylphenol 1-(Furan-2-yl)ethanone
2-Methoxy-4-vinylphenol
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and Saccharomyces were the most abundant fungi. Interestingly, the dominant genera
were similar among the three groups but with different relative abundances, such as
Lactobacillus, Saccharomyces, and some non-Saccharomyces yeasts (Data Set S2). Rare (rela-
tive abundance of,0.1%) microbial genera comprised over 90% of the unique bacterial or
fungal genera. JX included the largest number of unique bacterial and fungal genera in
fermented grains, followed by NX and QX (Data Set S2 and Fig. S3). Statistically, the three
groups represented significantly different (P, 0.001) microbial structures at the genus tax-
onomic level (Fig. 2b). For fungal structures, the JX group was separated from the QX and
NX groups on nonmetric multidimensional scaling 1 (NMDS1). In addition, the NX and QX
groups were separated on NMDS3. The two axes explained 87.45% and 4.44% of the total
variance in fungal community differentiation in QX, NX, and JX. The separation by bacterial
genera among the three groups was less distinct than that by fungi, indicating that the dif-
ferences in fungal structures might be larger.

Both fungal and bacterial structures were significantly related to latitude rather than
longitude (Fig. 2c). The fungal structure exhibited more significant linear correlations
with latitude (R2 = 0.494; P , 0.001) than with longitude (R2 = 0.054; P , 0.001), indicat-
ing that fermentation fungal constituents were latitude dependent (Fig. 2c and Fig. S4).
The bacterial structure showed a weak (R2 = 0.002; P, 0.001) correlation with longitude.
Besides, the correlation between the bacterial structure and longitude was insignificant,
indicating that fermentation bacterial genera were not geographically dependent.

Interactions between geographical chemical markers and the baijiu micro-
biome. We found that both bacteria and fungi contributed to chemical markers. Table
S4 shows that bacteria and fungi were significantly correlated with volatile chemicals
(P , 0.01 by a Mantel test). We modeled the associations between them individually in
the three groups through two-way orthogonal partial least-squares (O2-PLS) modeling.
The Q2 values of the models were 0.375 for the QX group, 0.219 for the NX group, and
0.262 for the JX group. In total, we identified 212 bacterial genera and 106 fungal genera
as volatile chemical-associated microbial genera in QX, 79 bacterial genera and 69 fungal

FIG 2 Microbial characteristics of QX, NX, and JX in 403 samples. (a) Genera that were detected at a relative abundance of $0.1% in this survey (see Data Set
S2 in the supplemental material). (b) Nonmetric multidimensional scaling (NMDS) plot based on the structures of the bacterial (left) and fungal (right)
communities. (c) Microbial NMDS1 is significantly linked to geographic longitude and latitude. The lines represent the regression line fitted by the first-order
polynomial.
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genera in NX, and 97 bacterial genera and 39 fungal genera in JX (Data Set S3). We then
characterized the core microbial genera that contribute to geographically flavor-related
chemical markers. After filtering microbial genera based on coverage in the samples
(.20%), it was determined that 46 chemical markers were significantly associated with
69 core bacteria and 87 core fungi in QX, 44 chemical markers were significantly associ-
ated with 39 core bacteria and 34 core fungi in NX, and 35 chemical markers were signifi-
cantly associated with 35 core bacteria and 13 core fungi in JX (Data Set S3).

Our results showed that 87.3% of the core fungal and bacterial genera participated
in the cometabolism of chemical markers in the QX group, 80.5% participated in the
NX group, and 74.1% participated in the JX group (Fig. 3a). Meanwhile, most acids,
alcohols, aldehydes, esters, and other aromatic compounds were contributed by both
fungi and bacteria. Figure 3b reveals that the contribution of fungus-bacterium comet-
abolism to geography-dependent flavor was greater than that from either bacteria or
fungi solely. The variance explanation of cometabolism are 41.68% in the QX group,
29.66% in the NX group, and 19.12% in the JX group (Fig. 3b).

Figure S5 shows detailed significant associations between chemical markers and the
core microbial community at the phylum and genus taxonomic levels. The Ascomycota,
Basidiomycota, Zygomycota, and Mucoromycota were the fungal phyla that contributed
to chemical markers. The Firmicutes and Proteobacteria were the same top two bacterial
phyla that contributed to chemical markers in the three groups (Fig. S5a). Generally, the
QX and NX groups showed more redundant associations between aldehydes and core
microbial genera than did the JX group. The NX and JX groups showed more redundant
associations between acids and core microbial genera than did the QX group (Fig. S5b).

Notably, the same core fungal and bacterial genera showed different fungus-bacterium
and microbiota-metabolite interactions among the three groups (Fig. 4). In the QX group,
the interactions among Hyphopichia, Pichia, and Lactobacillus were related mainly to esters
such as ethyl 3-phenylpropionate, ethyl palmitate, and ethyl octadecenoate. In the NX

FIG 3 Contribution patterns of flavor-related chemical markers. (a) Interrelationship between chemical markers and microbial
contributors at the chemical classification level and the group classification level. Shown is a visualization of the significant
correlation network according to Pearson correlation analysis between normalized chemical concentrations and microbial
relative abundances. (b) Variation partition analysis of the effects of fungi, bacteria, and fungus-bacterium interactions on the
metabolic profiles of chemical markers. Percentages are variance explanation of the three factors.
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group, the interactions among Pichia, Zygosaccharomyces, Candida, and Lactobacillus
were related primarily to esters and acids such as hexanoic acid, butyl hexanoate, and
ethyl caproate. In the JX group, the interactions among Pichia, Zygosaccharomyces, and
Lactobacillus were significantly related to diverse chemicals such as 2-acetylpyrrole, tetra-
methylpyrazine, b-ethylphenethyl alcohol, and benzoic acid (Fig. 4 and Fig. S5b).

Fungus-bacterium dynamic cometabolism of geographical chemical markers.
Taking the JX group as an example, we identified the genes and pathways underlying
partial fungus-bacterium metabolic interactions. We found that most community met-
abolic functions were dynamic interdependent interactions according to the fragments
per kilobase of transcript per million fragments (FPKM) values of metabolism-related
genes (Pearson’s correlation r . 0.6; P , 0.01). Metabolism-related genes were involved
mainly in functional categories of carbon, nitrogen, and sulfur metabolism during the fer-
mentation process. During the early phase of fermentation, fungi like non-Saccharomyces
yeasts were active in sulfur metabolism, terpenoid and polyketide metabolism, glyoxylate
and dicarboxylate metabolism, lipid metabolism, and the tricarboxylic acid (TCA) cycle.
During the medium and later phases, bacteria such as Lactobacillus were active in carbon
metabolism, butanoate metabolism, propanoate metabolism, methane metabolism, galac-
tose metabolism, nitrogen metabolism, and amino acid metabolism. We found that 7 core
species were involved in the metabolism of 15 chemical markers or precursors of chemical
markers in JX fermentation. Specifically, Zygosaccharomyces bailii contributed to the
metabolism of 1,2-propanediol, benzoic acid, ethyl lactate, 2,3-butanediol, b-ethylphe-
nethyl alcohol, and precursors of 2-acetylpyrrole, ethyl phenylacetate, ethyl nonanoate,
and 2,3,5-trimethylpyrazine. Schizosaccharomyces pombe generated the precursors of
2,3-butanediol, 1-(furan-2-yl)ethenone, 1,2-propanediol, 2,3,5-trimethylpyrazine, ethyl lac-
tate, ethyl phenylacetate, and ethyl nonanoate. Pichia kudriavzevii, Torulaspora delbrueckii,
and Saccharomyces cerevisiae generated several organic acids and the precursors of

FIG 4 The identified core fungus-bacterium interactions and patterns of contribution to the volatile chemical markers during QX, NX, and JX fermentations.
The core bacteria and fungi along with their corresponding relationships with the metabolite markers individually screened by O2-PLS modeling are shown
(see Data Set S3 in the supplemental material). Only microbiotas with high coverage (.50%) are shown. The green, blue, and red lines represent microbial
interactions within the QX, NX, and JX groups, respectively.
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2,3-butanediol, 1-(furan-2-yl)ethenone, 1,2-propanediol, and b-ethylphenethyl alcohol.
Limosilactobacillus panis and Limosilactobacillus reuteri generated the precursors of 1,2-pro-
panediol, benzoic acid, ethyl lactate, 2,3-butanediol, and 2-acetylpyrrole. Based on the cor-
relations between species and the corresponding chemical markers, we found abundant
cometabolism interactions between fungi and bacteria across fermentation phases (Fig. S7
and Data Set S4). Representatively, both Zygosaccharomyces bailii and Limosilactobacillus
panis contributed to the metabolism of 1,2-propanediol, benzoic acid, ethyl lactate, 2,3-
butanediol, and 2-acetylpyrrole. Both Pichia kudriavzevii and Limosilactobacillus reuteri con-
tributed to the metabolism of 2,3,5-trimethylpyrazine, ethyl lactate, and precursors of the
Maillard reaction. Some cometabolism patterns, such as the interdependent interactions
between Zygosaccharomyces and Lactobacillus, facilitated the synthesis of 1-(furan-2-yl)
ethenone, 2-acetylpyrrole, 2,3-butanediol, 2,3,5-trimethylpyrazine, and tetramethylpyrazine
(Fig. 5 and Fig. S6).

We then constructed the whole pathway from raw materials to these five chemical
markers (Fig. 5). Overall, eight fungal genera (mainly yeasts) and six bacterial genera
(mainly Lactobacillus) participated in the metabolism of chemical markers. Although yeasts
and Lactobacillus coexisted during the entire fermentation process, the cometabolism pro-
cess happened mainly in the early and medium phases. Specifically, during the first
10 days of fermentation, Zygosaccharomyces, Torulaspora delbrueckii, and other yeasts con-
verted raw materials into glucose, acetoin, L-2-amino-acetoacetate, glutamate-5-semialde-
hyde, and other flavor precursors. Yeasts exhibited high FPKM values for SGA1 (glucoamy-
lase), INV (beta-fructofuranosidase), BDH (butanediol dehydrogenase), dfG (3-hydroxy acid
dehydrogenase), and OAT (ornithine-oxoacid transaminase). Next, Lactobacillus, along with
abiotic reactions, converted these flavor precursors into chemical markers. We found the
Lactobacillus exhibited high FPKM values for INV, butA (butanediol dehydrogenase), pepN
(aminopeptidase N), and LAP3 (cytosol aminopeptidase) at 10 days of fermentation. After
25 days of fermentation, bacterial expression of INV, butA, pepN, and LAP3 gradually
increased, while the metabolic functions of yeasts gradually diminished (Fig. 5).

Biotic factors contribute to distinct baijiu microbiome assemblies. We identified
two biotic factors that can cause distinct baijiu microbiome assemblies by analyzing the
initial biotic characteristics of the samples (Fig. 6). The two biotic factors are the initial mi-
crobial structure and microbial intraspecific diversity. By comparing the initial microbial
structures of the three groups, we found that most core microbial genera were shared
among the three groups but with different relative abundances, such as Lactobacillus,
Weissella, Acinetobacter, Oceanobacillus, Pseudomonas, Bacillus, Kroppenstedtia, Pediococcus,
Acetobacter, Saccharomyces, Pichia, Wickerhamomyces, and Thermoascus. The total relative
abundance of the shared bacterial genera was 97.6%, and the total relative abundance of
the shared fungal genera was 99.5%. Although the similarity of the microbial genera, we
observed significant (P = 0.001 by ANOSIM) differences in the initial fungal and bacterial
structures among the three groups (Fig. 6a). We found high initial relative abundances of
Zygosaccharomyces, Bacillus, and Kroppenstedtia in the JX group; Hyphopichia, Aspergillus,
Pediococcus, andWeissella in the QX group; and Saccharopolyspora, Candida, Rhizopus, and
Pseudomonas in the NX group (Fig. S8). The high initial abundance of Hyphopichia
enhanced its possibility of encountering other species in the QX group. As a result,
Hyphopichia showed more interactions with bacteria in the QX group than in the NX and
JX groups (Fig. 4). The high abundance of Zygosaccharomyces in the JX group and
Candida in the NX group also showed similar effects on fungus-bacterium interactions.
Different fungus-bacterium interactions could cause different microbial succession and as-
sembly patterns. That microbial intraspecific diversity was another biotic factor that con-
tributed to the microbiome assembly. Taking JX fermentation as an example, we found
genomic diversity across fermentation samples with distinct species or strains of the same
genera (Fig. 6b). Bacteria showed the highest values for both gene abundance (84.805%)
and genomic diversity at the initial fermentation phase (Fig. 6b and Data Set S5).
Lactobacillus, Bacillus, and Acinetobacter were the three core microbial genera that showed
the most diverse strain-level or species-level diversity, suggesting that some of the same
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FIG 5 Synthetic pathway and molecular mechanism of representative chemical markers in the JX fermentation process. The pathway was constructed
by mapping genes and chemicals to the KEGG database. The gene transcription levels were normalized to the FPKM values (detailed information is
shown in Data Set S4 in the supplemental material).
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FIG 6 Different initial microbial structures and strain-level diversity contribute to distinct microbiome
assemblies. (a) Principal-component analysis plot showing distinct initial fungal and bacterial structures

(Continued on next page)

Microbial Interactions Contribute to Regional Flavor Microbiology Spectrum

September/October 2022 Volume 10 Issue 5 10.1128/spectrum.01844-22 11

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01844-22


core bacterial genera might have different interactions with fungi (Fig. 4 and 5) or different
functional traits (Data Set S6). Variable fungus-bacterium interactions at the genus taxo-
nomic level could also cause fluctuations in the microbiome assembly pattern.

We then used the beta nearest-taxon index (bNTI) (null models to assess whether the
total microbial variation was higher than the predicted value) to show the effect of biotic
factors on the assembly patterns (Fig. 6c). We found that all three groups underwent a
three-phase assembly process, from a stochastic assembly process followed by an almost
determined assembly process (the total microbial variation of most samples were lower
than the predicted values) to a stochastic assembly process. The contribution of biotic fac-
tors to distinct stochastic microbiome assemblies began early during fermentation
(Fig. 6c). For the QX group, the community assembly shifted from stochastic to an almost
determined phase between day 5 and day 10 of fermentation. During this phase, the av-
erage jbNTIj value (absolute value of beta-NTI) of the QX group was approximately 1.1,
and the maximum bNTI value was approximately 3.5, indicating an almost determined
assembly process. For the JX group, the community assembly experienced a phase shift
between day 10 and day 15 of fermentation. During this phase, the maximum jbNTIj
value for the JX group was approximately 3.3, and the average jbNTIj value was approxi-
mately 1.2, indicating an almost determined assembly process. For the NX group, the
community assembly underwent a phase shift between day 20 and day 40 of fermenta-
tion. The average jbNTIj value was approximately 1.46 in the NX group, and the maxi-
mum jbNTIj value was approximately 6.1 during the shift phase (Fig. 6d).

Regulation of microbial flavor metabolism in simulated fermentation. We cre-
ated and validated two optional approaches for regulating microbial flavor metabolism
based on the characteristics of the geographical baijiu microbiome assembly. First,
Fig. 7a shows the different concentrations of flavor-related chemicals regulated by dif-
ferent initial microbial abundances. The five-strain communities generated significantly
higher concentrations of acids, esters, and aromatic chemicals than did the one- or
two-strain communities. Specifically, combinations 1 and 2 generated the highest con-
centrations of esters, which were 7.317 and 5.206 times higher than those with
Saccharomyces cerevisiae, respectively. Combinations 10 and 11 generated the highest
concentrations of acids, which were 5.371 and 4.385 times higher than those with
Saccharomyces cerevisiae, respectively. Combinations 6 and 8 generated the highest
concentrations of aromatic chemicals, which were 5.415 and 4.488 times higher than
those with Saccharomyces cerevisiae, respectively. We found that combination 11 (PK
(Pichia kudriavzevii)/SC (Saccharomyces cerevisiae)/SP (Schizosaccharomyces pombe)/ZB
(Zygosaccharomyces bailii)/TD (Torulaspora delbrueckii) ratio of 3:3:1:2:4) showed the
highest accumulated concentrations of flavor-related chemicals and was regarded as
the most efficient yeast combination of the simulated fermentation. Second, Fig. 7b
shows the different metabolic profiles generated by the same microbial strains by reg-
ulating the initial spatial distributions of Saccharomyces cerevisiae and Fructilactobacillus
fructivorans (Fig. S9). The concentrations of nonanal, ethyl 2-hydroxypropionate, 1-pen-
tanol, hexanoic acid, isobutyl phthalate, and ethyl butyrate all decreased with increas-
ing strain distance.

DISCUSSION
Geographical characteristics of fermented chemical compositions. Determining

the flavor-related chemical markers of baijiu is an ever-challenging target for academic

FIG 6 Legend (Continued)
among the three groups (green, QX [n = 17]; blue, NX [n = 7]; red, JX [n = 48]). (b) Composition of the
total taxonomy annotation (left) and bacterial genomic diversity across six samples at the initial
fermentation phase (right). (c) Distribution of beta nearest-taxon index (bNTI) values during the
fermentation process. (d) Fermentation phases were identified by jbNTIj values. The observed value is
from the mean of its associated null distribution. The initial phases were 0 to 5 days for QX, 0 to 20
days for NX, and 0 to 10 days for JX. The medium phases were 5 to 15 days for QX, 20 to 50 days for
NX, and 10 to 20 days for JX. The later phases were 15 to 30 days for QX, 50 to 60 days for NX, and 20
to 30 days for JX.
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FIG 7 Core yeast composition and microbial distribution trigger distinct metabolic profiles in simulated fermentations. (a)
Volatile profiles (parts per million) at the end of 3 days of fermentation. The combination ratios of PK to SC to SP to ZB to

(Continued on next page)
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and industrial research. Marker chemical compositions are essential for identifying dif-
ferent geographical characteristics of flavor and fermentation quality (6, 28–30). Our
work illustrated 20 to 40 chemical markers out of 471 volatile chemicals for each basic
baijiu aroma type (Table 1). The number of markers chemicals agrees with the charac-
teristic ratios (about 3 to 40 genuine key odorants) of food flavor (6). The identified
chemical markers include both key odorants and quality risk chemicals such as p-cresol
(31). However, the results may not fully include all genuine key odorant chemicals due
to errors from the statistical model. For example, some key odorant chemicals (32)
with low concentrations showed low VIP values in the statistical model, whereas some
noncritical odorant chemicals with high sample coverage showed high VIP values in
the statistical model (see Table S2 in the supplemental material). Future work combin-
ing quantification and sensory approaches (33) to evaluate these chemical markers
would help us not only further determine the quality of fermentation flavor but also
assess the quality risks of production. For instance, ethyl ester and b-damascenone
were previously reported to be key flavor-related chemicals for the formation of QX
aroma (34). Some chemicals such as ethyl caproate, ethyl 3-phenylpropanoate, hexanoic
acid, and p-cresol have been reported for their sensory characteristics in NX fermentation
(33, 35). Some chemicals such as 3-methylbutanoic acid and tetramethylpyrazine were
previously reported to be flavor-related chemicals in the JX group (22).

Geographical characteristics of the baijiu microbiome. Microbial resources are
the most important members in flavor biotechnological processes. Our work revealed
that the baijiu microbiome consists of about 735 bacterial genera and 290 fungal genera
(Data Set S4). In JX fermentation, the baijiu microbiome was active in the expression of
over 32,373 genes (Data Set S6). Compared with less complex fermentations (7), the bai-
jiu microbiome provides more abundant microbial resources for generating almost all
kinds of flavor-related volatile chemicals containing less than 20 carbon atoms (36).

For most spontaneous fermentations, fermentation microbiomes are usually artifi-
cially isolated or enriched from the local environmental microbial pools (19, 37–39)
that often have different microbial diversity and metabolic functions in latitude gra-
dients (40). Similar to the geographical characteristics of the wine microbiome (4), our
work revealed that fungal genera rather than bacterial genera showed significant dif-
ferences during fermentation among different latitude groups (Fig. 2). Notably, these
results do not mean that bacterial diversity is the same among different areas. Future
work using metagenome sequencing on a large scale could help us better understand
microbial geographical characteristics at a deeper taxonomic level. Nevertheless, we
confirm that the baijiu microbiome is flavor related and geography dependent.

The geographical characteristics of the baijiu microbiome could be ascribed to the
enrichment of species from various microbial pools (41). At a large scale, the local micro-
bial pool is largely governed by pH, precipitation, and nutrition (4, 40), suggesting that
different areas may possess the corresponding suitable natural conditions to produce
one typical baijiu aroma type. With climate change, the functional complexity and diver-
sity of local microbial pools are severely impacted (42). The predominant environmental
microbiome is essential for flavor quality in spontaneous fermentations (19). Such micro-
bial pool changes may cause quality fluctuations in geography-dependent flavor without
environmental microbiome control. Our work provided a representative sink for source
tracking (41, 43) in each geography-dependent flavor group (Fig. 2). It would be fascinat-
ing to see how to regulate the fermentation environment to face global climate change.
In addition, reproducing the desired food flavor regardless of the geographical condi-
tions of the product’s origin would be possible.

Interactions between geographical chemical markers and the baijiu micro-
biome. The changeable strength of microbial interactions could affect the efficiency of
chemical marker metabolism (11). Our results predicted abundant fungus-bacterium

FIG 7 Legend (Continued)
TD were 1:1:1:1:1 (1), 1:2:2:2:2 (2), 1:3:3:3:3 (3), 1:4:4:4:4 (4), 2:1:2:3:4 (5), 2:2:1:4:3 (6), 2:3:4:1:2 (7), 2:4:3:2:1 (8), 3:1:3:4:1 (9),
3:2:4:3:1 (10), 3:3:1:2:4 (11), 3:4:2:1:3 (12), 4:1:4:2:3 (13), 4:2:3:1:4 (14), 4:3:2:4:1 (15), and 4:4:1:3:2 (16). (b) Metabolic profiles
(parts per million) of fermentations with different initial distances of the inoculated strains.
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interactions that contribute to chemical marker metabolism (Fig. 4). Although the bai-
jiu microbiome correlated with almost all volatile chemicals, the variance explained is
limited (Fig. 3b), suggesting the potential importance of abiotic reactions (Maillard
reactions and cereal enzymes, etc.) (44) or biomass-independent correlations (high-order
interactions, etc.) (45, 46). Within the predictable range, fungus-bacterium interactions
account for most of the explained variance. Thus, we confirm that a higher correlation of
fungus-bacterium metabolic interactions facilitates the metabolism of flavor-related
chemicals.

As for the interactions that we precited for the JX network, a recent study revealed that
the interaction between Pichia andMonascus is driven by the biosynthesis of 2-phenylethanol.
Volatile flavor chemical markers such as 2-phenylethanol will inhibit conidium germination
and mycelial growth by filamentous fungi (47). Notably, the generation of 2-phenylethanol
can also be achieved by metabolic cooperation between Zygosaccharomyces bailii and
Levilactobacillus brevis (Fig. S6). The mechanisms of many microbial interactions through vola-
tile chemicals in the network (Fig. 4) are still awaiting exploration.

Fungus-bacterium dynamic cometabolism of geographical chemical markers.
Although predicted associations between the microbiome and chemical markers have the
enormous potential to reproduce fermentation flavor, the yields of flavor-related chemicals
are usually too low for commercial applications (48). We cannot efficiently obtain the
desired flavor production without understanding the metabolic pathways of flavor-related
chemicals. Taking JX fermentation as an example, we constructed whole biotic and abiotic
reactions of heterocyclic chemical markers (Fig. 5 and Data Set S4). The constructed path-
way provided a blueprint for the design of engineered microbiomes to produce flavor-
related chemicals. Notably, partial steps in the constructed pathway also relied on chemical
conversions and enzymes (49, 50). Understanding the contribution of these abiotic factors
is also important and awaits further research in the future. With the further optimization of
the microbiome based on the design-build-test-learn cycle, we will be able to efficiently
reproduce fermentation flavors for commercial applications (27). In addition, some flavor-
related chemicals such as 2-acetylpyrrole may also be efficiently produced for biofuel use.

Biotic factors contribute to distinct geographical baijiu microbiome assem-
blies. Understanding microbiome assemblies is the first prerequisite for ensuring repro-
ducible fermentation outcomes because different microbiome assembly patterns will
cause different functional outputs (51). We found that the baijiu microbiome underwent
different three-phase ecological processes among the three groups (Fig. 6c). Microbiome
assembly is driven by both deterministic factors (temperature, organic acids, and etha-
nol) (17, 36, 52) and stochastic processes. Deterministic factors can constrain microbial
functional diversity (53), suggesting that the microbiome assembly will affect flavor for-
mation at different time points of ecological process shifts. Food fermentation usually
ends with the convergence of microbial compositions (2, 12, 13). Thus, we believe that
the different time points of phase shifts could be the reason why different baijiu aroma
types undergo fermentation for different times. The balance between the speed of mi-
crobial fermentation within phases and the speed of phase shifts would be another chal-
lenge to solve for efficient and reproducible high-complexity fermentations.

Notably, studies of less complex fermentations demonstrated that unstable micro-
biome assemblies and functional outputs are ascribed largely to intraspecific diversity
and phage infections (12, 16). Here, although the existence of microbial phages or
viruses was detected (Fig. 6b), the effect of infection on baijiu fermentation is not clear.

Regulation of microbial flavor metabolism in simulated fermentations. In many
food fermentations, the addition of starters (koji, etc.) that are related to the initial mi-
crobial inoculum for fermentation is the key step in the regulation of fermentation fla-
vor (1). Here, we validated that we could regulate fermentation flavor by adjusting the
initial microbial combination or the initial microbial spatial distribution (Fig. 7). These
two approaches can help optimize the design of synthetic fungus-bacterium commun-
ities in a new round of the design-build-test-learn cycle (27). Collectively, we confirm
that reproducing the desired fermented flavor can be achieved with a well-designed
fungus-bacterium cofermentation system.
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MATERIALS ANDMETHODS
Fermentation. Chinese liquor has three typical aroma types, named Qingxiang (QX) (light-aroma

type), Nongxiang (NX) (strong-aroma type), and Jiangxiang (JX) (sauce aroma type). The spontaneous
solid-state fermentation of Chinese liquor is done in sealed pits (a sort of fermentation chamber) and
lasts approximately 30 days for QX and JX and 60 days for NX (17, 18, 36).

Sampling. To assess the geographical characteristics of the chemical and microbial compositions,
we collected 403 fermented samples, including 101 samples of QX, 98 samples of NX, and 204 samples
of JX, from 9 representative distilleries in China (Fig. 1a; see also Table S1 in the supplemental material).
The collected samples covered five to six batches of fermentation within each group. To keep the uni-
formity of sampling, samples were taken at selected intervals of time and space during fermentation.
Specifically, samples were taken at intervals of about 5 days during fermentation. At each sampling time
point, samples were taken at the same depth (0.5 m and 1.0 m) of each pit. All collected samples were
transferred to a bucket filled with dry ice and transported to the laboratory within 24 h. We separated
consistent 500 g of fermented grains from each sample for further analyses of volatile compounds and
microbial characteristics.

Volatile compound analysis. Volatile chemicals of samples were identified by headspace solid-
phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS) as described
previously (54). All samples were pretreated with 20 mL of sterile saline (1% CaCl2, 0.85% NaCl) in
50-mL centrifuge tubes to collect the supernatants after centrifugation at 5,000 � g for 10 min. The
supernatant (8 mL) was added to headspace bottles and mixed with 3 g of NaCl and an internal
standard (10 mL menthol).

DNA and RNA extraction. To reveal why microbial geographical diversity can contribute to the for-
mation of distinct flavors, we extracted the total DNA and RNA from samples for further sequencing and
bioinformatic analysis. The samples were pretreated with sterile phosphate-buffered saline (PBS)
(0.1 mol/L, pH 7.2 to 7.4) and centrifuged at 300 � g for 5 min. Next, the supernatants were centrifuged
at 11,000 � g for 5 min to obtain sediments.

For DNA extraction, the sediments were cooled, milled in liquid nitrogen, and extracted using so-
dium laurate buffer (sodium laurate at 10 g/L, Tris-HCl at 0.1 mol/L, NaCl at 0.1 mol/L, and EDTA at
0.02 mol/L) with phenol-chloroform-isoamyl alcohol (25:24:1) to obtain total DNA. The quality of the
total DNA was assessed by 1% agarose gel electrophoresis with a NanoDrop 8000 spectrophotometer
(Thermo Scientific, Waltham, MA) (260-nm/280-nm ratio). All genomic DNA of the samples was stored at
280°C for further procedures.

For RNA extraction, the sediments were milled with liquid nitrogen, and total RNA was extracted
with sodium laurate buffer (sodium laurate at 10 g/L, Tris-HCl at 0.1 mol/L, NaCl at 0.1 mol/L, and EDTA
at 0.02 mol/L) containing TRIzol (Sigma-Aldrich, St. Louis, MO). A Ribo-Zero rRNA removal kit (bacteria)
and a Ribo-Zero magnetic gold kit (yeast) (Epicentre, San Diego, CA) were used to remove rRNA from
the total RNA. The RNA of the samples was then stored at 280°C for further procedures.

DNA and RNA sequencing. For DNA sequencing of marker genes, the V3-V4 hypervariable region
of the 16S rRNA gene and the internal transcribed spacer 1 (ITS1)/ITS2 region were PCR amplified as pre-
viously described (36, 54). The resulting amplicons were quantified and sequenced on the Illumina
MiSeq PE300 sequencing platform (Illumina, San Diego, CA), which was conducted by the Allwegene
Technology Company (Beijing, China). Low-quality samples were removed before bioinformatic analysis.

For DNA sequencing of the metagenome, the genomic DNA was randomly broken into fragments
with a length of about 350 bp by a sonicator. Next, the whole library was prepared by steps of terminal
repair, A-tail addition, ligation of the adaptors to the fragments, purification, and PCR amplification.
Illumina (San Diego, CA) HiSeq sequencing was performed after qualified library pooling.

For RNA sequencing, metatranscriptomic libraries were constructed according to the instructions of
the NEBNext Ultra RNA library prep kit (Illumina) (New England BioLabs, Ipswich, MA) and sequenced on
the Illumina (San Diego, CA) HiSeq 2500 platform, which was conducted by the Allwegene Technology
Company (Beijing, China).

Bioinformatic analysis. For raw DNA sequencing reads, we trimmed low-quality sequences accord-
ing to the average Q20 quality standard (55). Next, overlapping reads were merged by fastq-join, primer
sequences were removed, and only completely assembled reads were used for further analysis. The
overlap length of merging was set to be no less than 20 bp, and the minimum length of fungal sequen-
ces was set at 50 bp. The unique sequence set was classified into amplicon sequence variants (ASVs) via
QIIME 2 (version 2019-04) under default thresholds. Chimeric sequences were identified and removed
using DADA2 (55). The bacterial ASVs were mapped to the SILVA 132 database for taxonomic identifica-
tion. The annotated Lactobacillus ASVs in this study represented the sum of Lactobacillus, Lacticaseibacillus,
Lactiplantibacillus, Latilactobacillus, Liquorilactobacillus, Levilactobacillus, Lentilactobacillus, Loigolactobacillus,
Limosilactobacillus, Fructilactobacillus, Companilactobacillus, Acetilactobacillus, and Apilactobacillus based on
the SILVA 138 database annotation. The fungal ASVs were mapped to the Unite database (version 8.2) for
taxonomic identification.

For raw metagenomic DNA sequencing fragments, the raw data were filtered to obtain clean data
based on the Q20 value. Clean reads were assembled using the MEGAHIT (v1.0.6) (56) assembly program
(–min-count 2 –k-min 27 –k-max 87 –k-step 10). Contigs with a length of less than 500 bp were filtered.
Metabat2 was used to perform the binning process based on contigs. The metagenome-assembled
genomes (MAGs) were assessed by Checkm. Open reading frame prediction was performed using
PRODIGAL (57) and filtered using a length of ,100 nucleotides (nt). CD-HIT (58) (with set -c 0.95, -G 0,
-aS 0.9, -g 1, -d 0) was used to remove redundancy from the predicted gene sequences. The reads of
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each gene in different samples was calculated using Bowtie (59) and normalized to obtain a gene abun-
dance table.

For RNA sequences, we then performed species classification analysis, species complexity analysis, as
well as gene expression abundance analysis. We compared the high-quality reads to the reads in the non-
redundant (Nr) protein, metabolic pathway (KEGG), gene ontology (GO), protein family (Pfam), homologous
gene cluster (eggNOG), and carbohydrate-active enzyme (CAZy) databases to obtain functional annotation
information. The sequencing reads for each sample were remapped to the reference sequences using RSEM
software (60). Gene expression levels were measured using the fragments per kilobase of transcript per mil-
lion fragments (FPKM) method based on the number of uniquely mapped reads (61). The DESeq package
(version 2.1.0) was employed to detect differentially expressed genes (DEGs) between two groups (62). The
false discovery rate (FDR) was applied to correct the P value threshold in multiple tests (63). An FDR-adjusted
P value (q value) of #0.05 and a jlog2 fold changej of .1 were used as the thresholds for identifying signifi-
cant differences in gene expression in this study.

Network analysis of fungus-bacterium and microbiota-metabolite interactions. To assess major
microbial contributors of flavor-related metabolites, molecular ecological network analysis was applied
with online tools using default parameters (64). All interaction thresholds were calculated according to
random matrix theory to filter node associations. Core fungal and bacterial genus interactions were fil-
tered out based on 20% coverage of samples in each group.

Calculation of ecological processes. The beta nearest-taxon index (bNTI) was calculated according
to a protocol described previously (65). We excluded some low-confidence (average relative abundance
of ,0.008%) representative microbial sequences due to the difficulty in calculating the large microbial
evolutionary tree. bNTI values of less than22 or greater than12 indicate a statistically significant diver-
gence between the observed and expected beta mean nearest-taxon distances. Generally, a higher
jbNTIj value represents fewer stochastic effects (65).

Isolation and identification of microorganisms. For microbial species that were used in simulated
fermentations, five yeasts and Fructilactobacillus fructivorans were isolated from pooled fermented sam-
ples of JX. To isolate microbial strains, 50 g of fermented samples was homogenized in 250 mL of sterile
PBS in a shaking incubator at 200 rpm for 30 min at 30°C. Next, 1.0 mL of the homogenate was diluted
10-fold in a sterile saline solution (0.9% [wt/vol] NaCl). Using methods similar to the ones described in
our previous study (52), we spread 100 mL of the diluted homogenate onto the surface of Luria-Bertani
(LB) agar and potato dextrose agar (PDA) plates. PDA plates were used to isolate fungi and were incu-
bated at 30°C for 48 h. LB agar plates were used to isolate bacteria and were incubated at 37°C for 48 h.
We used the universal primer set 27F (59-AGA GTT TGA TCM TGG CTC AG-39) and 1492R (59-CGG TTA CCT
TGT TAC GAC TT-39) to amplify the 16S rRNA genes of bacteria. The ITS region of fungi was amplified with
primers ITS1 (59-TCC GTA GGT GAA CCT GCG G-39) and ITS4 (59-TCC TCC GCT TAT TGA TAT GC-39). The
PCR products were sequenced by a pipeline created by Genewiz (Suzhou, China). Next, we subjected the
sequences to a BLAST search against the NCBI database, and the results were used to identify the isolates.
Because the isolated species were not type strains, we just named the isolated organisms Saccharomyces
cerevisiae, Pichia kudriavzevii, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Torulaspora del-
brueckii, and Fructilactobacillus fructivorans according to the BLAST results.

Regulation of the microbial generation of flavor-related chemicals in simulated fermentations.
We created and validated two optional approaches for the regulation of the microbial generation of
flavor-related chemicals based on the geographical characteristics of baijiu fermentation. The first
simulated fermentation aimed to validate that different initial microbial structures can generate dif-
ferent flavor-related chemical profiles. If we have different demands for flavor-related chemicals, the
best microbial combination design could be different even with the same microbial members. We
established 21 synthetic microbial communities of one yeast, two yeasts, or five yeasts (Table S5) to
compare the metabolic profiles after 3 days of fermentation. The simulated still fermentations were
conducted at 30°C with the same initial biomass (2 � 106 CFU) in liquid medium containing sorghum
extract. Each simulated community had three replications of fermentation. The volatile compounds
of fermented samples were analyzed by GC-MS using the same process as the one described above.
Next, we screened out the most efficient yeast combinations according to the total concentration of
flavor-related chemicals.

We assumed that different abundances of strains (yeasts, etc.) in solid fermentation material would
provide different possible opportunities to interact with other strains. The speed and possibility of fun-
gus-bacterium interactions may impact microbial flavor metabolism. Thus, the second simulated fermen-
tation aimed to validate that different speeds and possibilities of fungus-bacterium interactions could
affect fungus-bacterium cometabolism and, thus, flavor formation in solid-state fermentations. We
designed a fungus-bacterium fermentation system under four cell spatial distances (0 mm, 2 mm, 4 mm, and
6 mm) to create different microbial interaction possibilities. Saccharomyces cerevisiae and Fructilactobacillus
fructivorans were isolated from JX fermentation samples as flavor producers. We inoculated the two strains
into a solid fermentation matrix (sorghum extract medium with agar added) with the same biomass (2 � 106

CFU) at the start of fermentation (Fig. S9). After 10 days of simulated fermentations, we harvested and
smashed the fermented material to conduct further volatile compound analysis.

Statistical analysis. The dynamics of physical and chemical factors were fitted with OriginPro2019.
Principal-component analysis, two-way orthogonal partial least-squares modeling, and variable impor-
tance in projection analysis were done via SIMCA-P (version 13.0). Mantel tests, ANOVA, ANOSIM, micro-
bial correlation analysis, canonical correspondence analysis, and virtual population analysis were carried
out using the vegan package in R (http://vegan.r-forge.r-project.org/). P values were adjusted for non-
parametric analysis using the Statistical Package for the Social Sciences (SPSS) (version 22).
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Data visualization. Data were plotted in OriginPro2019, Microsoft Excel, and Adobe Illustrator CS6.
The network was visualized via Gephi (version 0.9.2).

Data availability. The reads of marker genes sequencing can be accessed in the PRJNA377357,
PRJNA396629, and PRJNA837950. The reads of metatranscription sequencing can be accessed in the
PRJNA837634. The reads of metagenome sequencing can be accessed in the PRJNA837610.
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