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ABSTRACT

Objective: Human blood metabolites are influenced by a number of lifestyle and environmental factors. Identification of these factors and the
proper quantification of their relevance provides insights into human biological and metabolic disease processes, is key for standardized
translation of metabolite biomarkers into clinical applications, and is a prerequisite for comparability of data between studies. However, so far only
limited data exist from large and well-phenotyped human cohorts and current methods for analysis do not fully account for the characteristics of
these data. The primary aim of this study was to identify, quantify and compare the impact of a comprehensive set of clinical and lifestyle related
factors on metabolite levels in three large human cohorts. To achieve this goal, we improve current methodology by developing a principled
analysis approach, which could be translated to other cohorts and metabolite panels.
Methods: 63 Metabolites (amino acids, acylcarnitines) were quantified by liquid chromatography tandem mass spectrometry in three cohorts
(total N ¼ 16,222). Supported by a simulation study evaluating various analytical approaches, we developed an analysis pipeline including
preprocessing, identification, and quantification of factors affecting metabolite levels. We comprehensively identified uni- and multivariable
metabolite associations considering 29 environmental and clinical factors and performed metabolic pathway enrichment and network analyses.
Results: Inverse normal transformation of batch corrected and outlier removed metabolite levels accompanied by linear regression analysis
proved to be the best suited method to deal with the metabolite data. Association analyses revealed numerous uni- and multivariable significant
associations. 15 of the analyzed 29 factors explained >1% of variance for at least one of the metabolites. Strongest factors are application of
steroid hormones, reticulocytes, waist-to-hip ratio, sex, haematocrit, and age. Effect sizes of factors are comparable across studies.
Conclusions: We introduced a principled approach for the analysis of MS data allowing identification, and quantification of effects of clinical and
lifestyle factors with metabolite levels. We detected a number of known and novel associations broadening our understanding of the regulation of
the human metabolome. The large heterogeneity observed between cohorts could almost completely be explained by differences in the dis-
tribution of influencing factors emphasizing the necessity of a proper confounder analysis when interpreting metabolite associations.
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1. INTRODUCTION

Targeted, high-throughput metabolomics using liquid
chromatography-mass spectrometry (MS) increasingly gains mo-
mentum in epidemiology. Important fields of investigations are the
understanding of the molecular basis of metabolism-related
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phenotypes and diseases and studying biomarkers for diagnostic and
prognostic purposes [1e4]. Furthermore, analysis of metabolomic
features in relation to other molecular-genetic functional layers of the
organism, e.g. genomics and transcriptomics, is a promising approach
to extend our knowledge of regulatory pathways and associated patho-
mechanisms [5e7].
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Proper identification of factors affecting metabolite levels across
multiple studies is highly relevant for standardized translation of
metabolite biomarkers into clinical applications and to understand
possible confounders of disease associations. However, only limited
data exist regarding kind, number, and relevance of possible influ-
encing factors. Furthermore, currently applied analysis methods do not
fully account for the characteristics of MS data. Here, zero inflation
(considerable proportion of measurements below the detection limit) is
one of the issues for which limited guidelines exist. Many studies
simply exclude these data, which may result in biased estimates and
conclusions.
In this study, we investigated the effects of 29 clinical and lifestyle
related factors on metabolite levels in dried whole blood derived from
MS in three large human studies with different designs comprising a
total of 16,222 subjects. We developed a generic and adaptable
workflow and made it publicly available so that it can be used for other
cohorts and metabolite panels. We interpreted the discovered asso-
ciations biologically by applying pathway-based methods and
compared their strength across studies.

2. METHODS

Study design and flow of our analyses is shown in Supplementary
Figure 1.

2.1. Study characteristics
Three different studies are investigated in the present work:

2.1.1. LIFE-Adult
LIFE-Adult is a population-based study of 10,000 randomly selected
individuals from the city of Leipzig, Germany [8]. Individuals were
phenotyped for several lifestyle diseases and corresponding lifestyle
associated risk factors. Data of metabolite and clinical/lifestyle pa-
rameters were available for 9,481 participants and blood samples are
collected after an over-night fast.

2.1.2. LIFE-Heart
LIFE-Heart is an observational study of 7,000 patients with suspected
and confirmed coronary artery disease collected from the Heart Center,
Leipzig, Germany (ClinicalTrials.gov No NCT00497887 [9]). Patients
originate mainly from Leipzig and surrounding areas. Combined
metabolite data and clinical and lifestyle parameters were available for
5,767 patients. Patients were not required to be at fasting state.

2.1.3. Sorbs study
The Sorb study is a convenience sample of individuals recruited in the
self-contained population of the Sorbs, an ethnic minority of Slavic
origin residing in the Upper Lusatia region of Eastern Saxony [10,11].
Data of metabolite and clinical/lifestyle parameters were available for
974 participants. Blood was also collected after an overnight fast.
All studies conform to the ethical standards of the Declaration of
Helsinki and were approved by the ethics committee of the University
of Leipzig (LIFE-Adult: Reg. No 263-2009-14122009, LIFE-Heart: Reg.
No 276e2005, Sorbs: Reg. No: 088e2005). Written informed consent
was obtained from all participants.

2.2. Factors studied in relation to blood metabolite levels
We selected a number of parameters for which an impact on whole
blood metabolite levels is supposed. First, blood composition can be
supposed to affect measured metabolite levels derived from dried
whole blood. We here considered hematocrit, hemoglobin,
MOLECULAR METABOLISM 29 (2019) 76e85 � 2019 The Authors. Published by Elsevier GmbH. This is an open ac
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erythrocytes, reticulocytes, platelets, leucocytes, neutrophils, lym-
phocytes, and monocytes.
Second, previously applied covariates in metabolome association
studies were included. The most frequently considered factors were
age, sex, log-BMI, smoking status [6,12e16], and, to a lesser extent,
type-2-diabetes (T2D) and application of sex hormones [6,7,15,17].
Third, we included waist-to-hip ratio (WHR) [18], systolic and diastolic
blood pressure (BP) [12,13] as well as the pulse pressure, defined as
the difference of systolic and diastolic BP. Additionally, we considered
parameters of lipid metabolism as there is a well-known relation to
certain AAs [13,14]. Regarding medication, we considered the effects
of statin treatment and other lipid modifying agents (defined as
Anatomical Therapeutic Chemical (ATC) classification category C10)
and sex hormones or modulators of the reproductive system (ATC
G03). Diabetes status was defined in our study as either self-reported
consumption of type-II-diabetes-specific medication (ATC A10), self-
reported diagnosis of T2D, or measured HBa1c level of >6.5%.
Fasting hours were available in LIFE-Adult and LIFE-Heart. In the Sorbs
study, it was required that fasting was >8 h.
Distribution of the considered clinical and lifestyle parameters of the
three cohorts is presented in Table 1.

2.3. Metabolite measurement
In LIFE-Adult and LIFE-Heart, 40 ml of EDTA whole blood were spotted
on filter paper WS 903 (Schleicher and Schüll, Germany). In the Sorbs,
40 ml of the plasma free cell suspension was spotted after centrifu-
gation at 3500 �g for 10 min.
Spots were dried for 3 h and stored at�80 �C until analysis. To prepare
samples for tandem mass spectrometric analysis, blood spots with a
3.0 mm diameter (corresponds to 3 ml of blood) were punched out and
extracted via methanol containing isotope labeled internal standards.
After butylation, sample derivatives were analyzed by flow injection
analysis with an API 2000 tandem mass spectrometer (Applied Bio-
systems, Germany) in 96-well plates. Each plate included two quality
control samples, from which inter-assay coefficients of variation were
estimated. A detailed description of sample preparation and the mea-
surement method can be found elsewhere [19e21]. In consequence, 63
metabolites (27 amino acids (AAs), 34 acylcarnitines (ACs), free carnitine
(C0), and the sum of total ACs, Supplementary Table 1) were quantified
using the software ChemoView 1.4.2 (Applied Biosystems, Germany).

2.4. Statistical analysis of the three cohorts
Metabolites were pre-processed prior to analysis. In order to stabilize
regression analysis, outliers were removed cohort-wise by applying a
cutoff of mean þ 5 � SD of the logarithmized data. Zero values were
excluded for this purpose. In our hands, outlier analysis removed a
maximum of 0.3% of measurements per metabolite and cohort.
Remaining metabolite data were inverse-normal-transformed. Effects
of known technical batches (e.g. analysis plate ID) are removed by a
non-parametric empirical method as implemented in function ‘Com-
Bat’ [22] of the R-package ‘sva’ [23]. We considered the plate ID of the
mass-spectrometer sample plate (96 well plates including two
analytical controls) as batch variable, resulting in 71, 68, and 15
batches for LIFE-Adult, LIFE-Heart, and the Sorbs, respectively. Since
the ‘ComBat’ procedure requires complete data, missing values were
mean-imputed, using within-batch data or all data when a certain
metabolite was completely missing in a batch. After batch correction,
imputed data points were set missing again. For Asparagine and Cis-
11,14,17-eicosatrienoic acid methyl ester (C20:3) in LIFE- Adult and
LIFE-Heart, batch affects were removed by residualization via a linear
model due to small batch variance.
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Table 1e Subject characteristics of the three cohorts considered. For continuous variables, median and IQR are shown. For binary variables, total numbers and
percentages are provided.

LIFE-Adult LIFE-Heart Sorbs

Area of collection Leipzig, Germany Leipzig, Germany Upper Lusatia
N 9481 5767 974
Sex (female/male) 4952 (52.2%) 1712 (29.7%) 574 (58.9%)
age (years) 57.91 [47.7e68.2] 63.11 [54.4e71.7] 48.7 [35.6e60.9]
WHR 0.93 [0.863e0.994] 0.98 [0.909e1.04] 0.87 [0.804e0.949]
BMI (kg/m2) 26.58 [23.9e29.9] 28.41 [25.7e31.8] 26.5 [23.3e29.7]
fasting hours (hours) 12 [11e14] 3 [1.67e12.3] >8
Lipid modifying agents (yes/no) 1272 (13.4%) 2066 (35.8%) 176 (18.1%)
sex hormones (yes/no) 751 (7.9%) 52 (0.9%) 111 (11.4%)
diabetes status (yes/no) 1090 (11.5%) 1720 (29.8%) 86 (8.8%)
HBa1c (%) 5.32 [5.08e5.59] 5.7 [5.38e6.18] 5.4 [5.1e5.7]
self-reported diabetes (yes/no) 996 (10.5%) 1547 (26.8%) 71 (7.3%)
diabetes medication (yes/no) 840 (8.9%) 1258 (21.8%) 57 (5.9%)
smoking status (current, previous, never) 2034 (21.5%)/2706

(28.5%)/4483 (47.3%)
1581 (27.4%)/2108
(36.6%)/2063 (35.8%)

150 (15.4%)/195
(20%)/616 (63.2%)

Blood pressure (systolic) 127 [117e138] 136 [125e150] 132 [121e145]
Blood pressure (diastolic) 75 [68.5e81.5] 83.5 [76e90.5] 80 [73e87]
Pulse pressure 51 [44e60] 53 [44e63] 52 [44e61]
Cholesterol (mmol/l) 5.52 [4.85e6.26] 5.18 [4.4e6.01] 5.25 [4.63e5.94]
LDL-Cholesterol (mmol/l) 3.45 [2.84e4.11] 3.15 [2.48e3.87] 3.32 [2.71e3.98]
HDL-Cholesterol (mmol/l) 1.57 [1.28e1.9] 1.22 [1.01e1.48] 1.57 [1.33e1.89]
Blood hemoglobin (mmol/l) 14 [13.2e15] 14.3 [13.2e15.3] 8.8 [8.3e9.3]
Erythrocytes (10̂12/l) 4.66 [4.38e4.94] 4.67 [4.34e4.97] 4.73 [4.47e4.98]
Reticulocytes (per 1000) 12.1 [9.6e14.8] 12.9 [10.5e16.1] 10.6 [8.4e13]
Hematocrit (%) 41 [39.2e43.6] 42 [39e44] 42 [39.2e43.8]
Platelets (10̂9/l) 237 [204e275] 230 [194e271] 229 [201e263]
Leucocytes (10̂9/l) 5.94 [5e7.1] 7.9 [6.4e9.9] 5.25 [4.4e6.23]
Neutrophils (%) 57.6 [51.9e63.2] 66.5 [59.9e72.8] 54.65 [48.7e60.5]
Lymphocytes (%) 30.2 [25.1e35.5] 22.3 [16.8e28.2] 33.3 [27.9e38.6]
Monocytes (%) 8 [6.8e9.4] 8.5 [7.1e10.1] 8.1 [6.9e9.5]
Basophils (%) 0.6 [0.4e0.8] 0.3 [0.2e0.5] 0.03 [0.02e0.04]
Eosinophils (%) 2.5 [1.6e3.6] 1.4 [0.7e2.5] 0.14 [0.09e0.21]

Original Article
Following batch correction, relatedness among Sorb subjects was
accounted for as described elsewhere [7], i.e. by fitting a generalized
linear model as implemented in the ‘polygenic’ function of the ‘Gen-
ABEL0 package [24]. We used a kinship matrix estimated from SNP
data for this purpose [25].
Prior to association analysis with metabolites, all continuous clinical or
lifestyle parameters were mean-centered and scaled to one standard
deviation (SD). For association analysis, inverse-normal transformed
batch-adjusted metabolites were univariately associated with the
clinical/lifestyle parameters by linear regression analysis. For multi-
variable analysis, correlated factors were pruned to avoid collinearity
and to improve interpretation (default Pearson’s jrj > 0.75 in any
cohort [26]). Correlation structure between factors is shown in
Supplementary Figures 3e5. In case of correlated factors, we
preferred those which are clinically more often evaluated. In detail, we
preferred diabetes status over diabetes medication and anamnestic
diabetes, hematocrit over blood hemoglobin levels and erythrocytes,
LDL-Cholesterol over total cholesterol, systolic BP over pulse pressure,
and neutrophils over lymphocytes. To account for multiple testing of all
metabolites and factors, we implemented a Bonferroni correction [27]
in a hierarchical way, considering each tested factor as a family of
hypotheses regarding metabolite association [28,29].
Effect sizes of metabolite associations are assessed by the explained
variance (r2) of the considered factor in a univariable model or as
partially explained variance in a multivariable regression model. For
every factor, we quantify the difference in the distribution of r2 between
cohorts by Friedman test followed by Benjamini-Hochberg correction
for multiple testing. When two distributions were compared, the
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Wilcoxon signed rank test was used. R-scripts of our analyses are
available at https://github.com/cfbeuchel/Metabolite-Investigator.
For every factor, we performed a pathway analysis considering all
metabolites for which the factor explains at least 1% of the metabo-
lite’s variance in at least one cohort. Enrichment was tested with
MetaboAnalyst [30] using the intersection of all representable
metabolites (M ¼ 58) and KEGG-metabolic pathways as background.
Bi-partite networks, connecting metabolite nodes, and factor nodes
with edges representing the partial explained variance were created
using ‘visNetwork’ [31].

2.5. Simulation study to justify the analysis approach
In our analysis approach, we applied inverse normal transformation of
metabolite data in combination with linear regression analyses (INT-LR
approach), i.e. no removal of measurements below the detection limit is
applied. We conducted a simulation study to compare this approach with
possible alternatives. In detail, we simulated data mirroring typical is-
sues of MS data, including zero-inflation, skewness (by assuming a log-
normal distribution) and batch effects and imposed different effect sizes
of factors on simulated metabolite levels. In the preprocessing steps, we
considered different data transformation methods [area sinus hyper-
bolicus, inverse-normal-transformation, dichotomization (zero vs. non-
zero measurements), categorization (quantile or range-based equal
spaced categories), and creation of ranks]. Accordingly, we performed
univariate linear modeling, binary logistic regression, proportional odds
logistic regression, and Spearmans’ Rank correlation to perform hy-
potheses testing in accordance to the chosen transformation method.
Performance was rated according to the ability of the individual method
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: Comparison of INT-LR method with alternatives e selected results of simulation study: Shown is the distribution of p-values from the simulation study comparing
INT-LR approach (Linear regression with inverse-normal transformation) with other methodological approaches (binary/ordinal logistic regression for binary/categorical data, asinh-
transformation followed by linear regression and Spearman’s Correlation Coefficient for rank data). Results from nine different simulated scenarios are presented, differing in the
simulated effect b (no effect: b ¼ 0, small effect: b ¼ 0.02, and large effect b ¼ 0.1) and variable numbers of measurements below the detection limit (0%, 20%, and 80%). The
percentage of hypotheses with nominal significance (i.e. p < 0.05) is shown (based on 1000 replications). For scenarios with b ¼ 0, this number is required to be 0.05 (false
positive control) and for scenarios with b > 0 as large as possible (good power). The binary model is only applicable in case of zeros. Overall, method INT-LR performed best.
Results of additional scenarios are reported in Supplementary Figure 6 and Supplementary Table 5.
to discover the imposed effect of a factor on a metabolite and the ability
to correctly control the number of false positives at the expected 5%
level. A schematic workflow of the simulations is presented in
Supplementary Figure 2 and a detailed description of the simulations
can be found in the Supplementary Methods.
Figure 2: Heat map of univariable associations between metabolite levels and clini
(1 a 100%) with direction of effect (red ¼ positive correlation, blue ¼ negative correlation
significant after adjusting for multiple testing. Rows and columns are ordered accordin
Figures 8e10.
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3. RESULTS

3.1. Justification of metabolite analysis method
To evaluate its performance, we compared our INT-LR approach in a
simulation study with three other analysis strategies (rank correlation,
cal or lifestyle-related factors. Explained variance by the single factor is color-coded
). Maximum values across the three cohorts are presented. Stars indicated associations
g to a hierarchical clustering. Cohort-specific plots can be found in Supplementary
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Figure 4: Bi-partite network of metabolites (yellow) and factors (blue) based on
multivariable associations explaining at least 1% of variance. Thickness of edges
corresponds to the maximum partial explained variance over the three cohorts. An
interactive version of this plot is available at https://cfbeuchel.shinyapps.io/interactivefig4/.

Original Article
binary, and ordinal logistic regression) and three other data trans-
formations (categorization, dichotomisation, inverse sinus hyperbolicus
transformation, see Supplementary Figure 2 for the design of the
simulation study).
We found that INT-LR controlled false positives sufficiently well as the
number of identified associations was close to 5% in all scenarios with
no effect (b ¼ 0, Figure 1 and Supplementary Table 5). Furthermore,
no other approach had better power to identify true associations of
factors with metabolite levels, especially in scenarios with high zero
inflation (see scenarios with b > 0 in Figure 1 and Supplementary
Table 5). As expected, increased zero-inflation resulted in decreased
observed vs. true effect size (Supplementary Figure 7).

3.2. Identification and characterization of clinical and lifestyle
related factors affecting metabolite levels
We applied the INT-LR approach to determine the effect of 29 indi-
vidual clinical and lifestyle related factors on metabolite levels in our
studies.

3.2.1. Univariate analysis
We observed statistically significant associations for all 29 analyzed
parameters with at least one metabolite (multiple testing
padjusted � 0.05, Figure 2 and Supplementary Table 2). The overall
highest explained variances were found for sex on C0 and total ACs
(Sorbs, r2 ¼ 0.25 for both), on Leucine/Isoleucine (LIFE-Adult;
r2 ¼ 0.22), and on C5OH þ HMG (Sorbs; r2 ¼ 0.21); followed by the
effect of WHR on Leucine/Isoleucine (LIFE-Adult; r2 ¼ 0.21).
The top-five factors affecting most metabolites (padjusted � 0.05 and
explained variance�1%) were WHR, sex, application of sex hormones,
age, and hematocrit, influencing 44, 41, 40, 38, and 36 metabolites,
respectively. Factors affecting the fewest number of metabolites at the
same level were smoking status (10), eosinophils (9), cholesterol (8),
fasting hours (6), and basophils (1), respectively.
To evaluate how strongly the metabolites are affected by the consid-
ered factors, we averaged corresponding explained variances over all
factors and cohorts. The five most strongly affected metabolites are
leucine/isoleucine (mean explained variance 3.65%), valine (3.42%),
propionylcarnitine (2.70%), hydroxyproline (2.69%) and total ACs
(2.46%); the metabolites with the lowest amount of explained variance
(<0.14%) comprise nine ACs and the dipeptide carnosine. Of note,
these are low abundant metabolites with at least 40% of values below
the detection limit in at least one of the cohorts.
Figure 3: Heat map of multivariable association results between clinical and lifesty
color-coded according to the direction of the effect (positive ¼ red, negative ¼ blue). Ma
according to a hierarchical clustering. To avoid collinearity, strongly correlated factors
Figures 11e13.
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3.2.2. Independent effects of clinical and lifestyle related
parameters on metabolite levels
Next, we were interested in the variances independently explained by
the clinical and lifestyle related factors. Therefore, we performed
multivariable linear regression analysis considering all parameters
simultaneously for each study. This requires elimination of correlated
parameters to avoid collinearity (see methods). Thus, a total of 22
parameters were considered. Again, all parameters showed signifi-
cance for at least on metabolite after adjusting for multiple testing.
However, maximum partial explained variance was approximatively
halved compared to univariable association analysis (Figure 3,
Supplementary Table 3).
The largest partial explained variance was found for sex hormones on
total ACs (r2 ¼ 0.13), threonine (r2 ¼ 0.13), citrulline (r2 ¼ 0.12), C0
le-related factors and metabolite levels. Partial explained variance (1 a 100%) is
ximum values across the three cohorts are presented. Rows and columns are ordered
were pruned (see methods). Cohort-specific plots can be found in Supplementary
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Figure 5: Distributions of uni- and multivariable explained variances of clinical and lifestyle-related factors and comparison between cohorts. Boxplots show the
distribution of explained variances (respectively partial explained variances for multivariable models) for the different metabolites. The dashed line represents an exemplarily r2

cutoff (1%) to mark strong effects.
(r2 ¼ 0.12), and aminobutyric acid (r2 ¼ 0.11) in the Sorbs. This is
very similar to unadjusted analysis where all these association (with
the exception of threonine) were among the strongest effects, too.
Application of sex hormones, reticulocytes, WHR, sex, haematocrit,
and age were relevant for the highest numbers of metabolites as they
independently explained more than 1% of variance for 58, 18, 14, 11,
and 9 metabolites, respectively. Again, this is similar to univariate
analysis. Vice versa, leukocytes and platelets are the least relevant
parameters in multivariate analysis explaining 1% variance for only
one metabolite each (hydroxyproline (3.3%) and pipecolic acid (3.2%),
respectively).
Overall, a highest percentage of variance explained by the multivari-
able models was observed for leucine/isoleucine in two studies
(adjusted-r2 ¼ 0.37 and 0.38 in LIFE-Adult and Sorbs, respectively).
Additionally, adjusted-r2 per metabolite was > 0:3 for the six me-
tabolites valine (adjusted-r2 ¼ 0.36, Sorbs), hydroxyproline (adjusted-
r2 ¼ 0.35, Sorbs), propionylcarnitine (adjusted-r2 ¼ 0.34, Sorbs),
phenylalanine (adjusted-r2 ¼ 0.31, Sorbs), citrulline (adjusted-
MOLECULAR METABOLISM 29 (2019) 76e85 � 2019 The Authors. Published by Elsevier GmbH. This is an open ac
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r2 ¼ 0.31, Sorbs) and total acyl-carnitines (adjusted-r2 ¼ 0.31, Sorbs)
(Supplementary Table 3). We observed that AA were more strongly
affected by the investigated factors than AC by mean explained vari-
ance (p ¼ 0.039), but not by median explained variance (p ¼ 0.19,
Wilcoxon-Test, Supplementary Figure 14).
We selected factors explaining at least 1% variance in multivariable
analysis of at least one metabolite in one of the cohorts. 14 such
factors where identified resulting in 94 factor-metabolite relationships
involving 39 metabolites. A bi-partite network of these relationships is
shown in Figure 4, and interactively online, at https://cfbeuchel.
shinyapps.io/interactivefig4/.
To obtain further biological insights, we analyzed which metabolite
pathways are affected by the single factors analyzed. For this purpose,
we selected the same associations as for the bipartite network analysis
and performed formal enrichment analyses with respect to metabolite
pathways implemented in ‘MetaboAnalyst’ (Supplementary Table 4).
Strongest enrichment was observed for WHR. Among others, WHR is
associated with the metabolites carnitine, acetylcarnitine, and
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 81
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Figure 6: Heatmap of partial-r2 of interaction effects of study with the 22 factors and study regarding the 63 metabolites. Significance is indicated as an asterisk and was
computed via likelihood-ratio test of multivariable linear regression models. The full model includes main effects for each factor and study and their interactions. It is compared with
a reduced model not containing the considered interaction effect. Correction for multiple testing was applied by a hierarchical Bonferroni procedure (see methods).

Original Article
propionylcarnitine resulting in an over-representation of the pathway
“oxidation of branched-chain fatty acids” (p ¼ 2.0 � 10�4).

3.2.3. Comparison of cohorts
Distributions of effect sizes of the single studies are shown in Figure 5
for the 22 factors included in multivariable analysis. Agreement of
distribution of effect sizes are stronger in univariable analyses
compared to multivariable analysis. In univariable analyses, 13 factors
had effect sizes >1% explained variance in all three cohorts. In
contrast, this applies to only five factors in multivariable analysis.
Among the 29 factors, 27 were associated significantly
(padjusted � 0.05) with at least one metabolite in all three studies.
Exceptions were fasting hours and diabetes medication, which are not
available in the Sorbs. We analyzed differences in effect sizes of our
factors between cohorts by formal interaction analysis considering
study as interaction partner. It revealed that only a few such in-
teractions were significant and that only one of the interactions ex-
plains more than 1% of variability of the metabolite, namely the
interaction of diabetes (and study) regarding citrulline (partial-
r2 ¼ 0.015, padjusted ¼ 1.5 � 10�56, Figure 6). Further, interaction
effects were found for fasting hours regarding proline, tyrosine and
alanine, of log-BMI regarding sarcosine and tyrosine and of sex
regarding hydroxyproline and leucine/isoleucine. These interactions
explain 0.8% down to 0.2% of the respective metabolites variances. All
interactions are presented in Supplementary Figure 15.

4. DISCUSSION

In this study, we comprehensively analyzed the impact of 29 clinical
and lifestyle related factors on plasma levels of 37 AA, 24 AC, C0, and
the sum of total ACs measured by the same tandem mass-
spectrometric method in three large cohorts over 10 years. For this
purpose, we propose a principled workflow of data preprocessing and
analysis which can be applied to other studies and metabolite panels.
A major finding is that the large heterogeneity of metabolite levels
across cohorts can almost completely be explained by the different
distributions of influencing factors rather than their effect size on
metabolites, i.e. there were almost no interactions between study and
factors. We also detected a number of known and novel associations
broadening our understanding of the regulation of the human
metabolome, which we discuss in the following.
Within the identified 14 strongest multivariable associating factors
(defined as explaining at least 1% variance for at least one metabolite),
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we could confirm several previously reported AA- and AC-affecting
factors. These factors included sex [32e36], medication with sex
hormones (e.g. contraceptives, [32,37,38]), hematocrit [39], and
medication with lipid modifying agents (e.g. statins, [40,41]). Addi-
tionally, our work provided novel support for relationships for which
contradicting results are present in the literature. Exemplarily, rising
levels of proline were reported for prolonged fasting recently, contra-
dicting an earlier study [42,43]. Our results support the earlier studies,
as we identified strong negative associations of proline levels with
prolonged fasting in LIFE-Adult (bb ¼ � 0:07, padjusted¼ 8.7� 10�15)
and LIFE-Heart (bb ¼ � 0:22, padjusted ¼ 6.4 � 10�108). This
observation is also in line with research linking proline catabolism with
lipid utilization during fasting [44].
We also identified a number of novel findings. Among the 33 significant
(padjusted � 0.05) associations with sex hormones, negative associa-
tions with glycine (bb ¼ � 0:57, padjusted ¼ 2.2 � 10�77, LIFE-Adult)
and arginine (bb ¼ � 0:20, padjusted ¼ 7 � 10�12, LIFE Adult) were
observed. Such an interaction of sex hormones with the creatine for-
mation pathway is plausible given the role of estrogen in the upregu-
lation of the L-arginine:glycine amidinotransferase [45,46]. Additionally,
the negative association of sex hormones with ornithine (bb ¼ �
0:38, padjusted ¼ 3.46 � 10�54, LIFE- Adult) is corroborated by
research in animal studies linking sex hormones to increased ornithine
decarboxylase activity [47e49], but was to the best of our knowledge
not yet described for human cohorts. It needs to be acknowledged that
these associations, despite being plausible, do not retain satisfactory
evidence for causal relationships. Further experimental validation of
interesting associations is required to unravel underlying causal
mechanisms. Relevance of these mechanisms for patho-mechanisms
of diseases should be investigated in specifically designed studies.
Pathway enrichment analysis revealed plausible results, all at nominal
significance level (Supplementary Table 4). For instance, metabolites
associated with reticulocyte counts (carnitine, acetylcaritine, propio-
nylcarnitine) showed a significant enrichment in the metabolism of
branched chain fatty acids (p ¼ 0.017). This is in line with knowledge
on the fatty acid catabolism in reticulocyte mitochondria [50,51].
Moreover, associations of carnitine and acetylcarnitine with WHR
showed an enrichment in beta oxidation of very long chain fatty acids
(p ¼ 0.06) in line with knowledge on the peroxisomes [50,51].
Overall, we observed a stronger impact of the considered factors on
AAs rather than ACs. However, since ACs show a higher rate of zero-
inflation than AAs (Supplementary Table 1) and higher zero-inflation
could result in underestimation of the observed explained variance
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(Supplementary Figure 7), we considered metabolites with less than
10% zero inflation in a sensitivity analysis. For this subset, no clear
trend regarding differences in mean or median of explained variances
per factor were observed (mean: p ¼ 0.63, median p ¼ 0.092,
Wilcoxon-Test, Supplementary Figure 14).
When analyzing heterogeneity of effects across our three cohorts, we
observed strong similarities. 45/63 metabolites and all but three fac-
tors associated significantly in all three studies. Limited sample size
and thus power issues could be a reason for the lower number of
strong associations in the Sorbs study. The low number and low effect
size of interaction effects between study and factors in a pooled
analysis supports reproducibility of our findings across multiple cohorts
and suggest excellent between-study comparability required for mega-
or meta-analyses.
The few differences in effect sizes could be explained by the different
study designs. Relevance of sex hormones was highest in the Sorbs, in
line with the younger age of this cohort and the higher percentage of
females before menopause in this cohort (Table 1). Another example is
the higher importance of blood parameters in the Sorbs, in line with the
different type of blood specimen used here. Whereas dried whole blood
was used in LIFE-Adult and LIFE-Heart, cell suspension after plasma
removal was used in the Sorbs reducing the influence of cell-free
plasma-specific metabolites, providing a clearer picture of the intra-
cellular metabolism. Thus, associations with intracellular metabolic
actors, especially ACs, are stronger than in the cohort utilizing plasma-
free cell suspension as a tissue source, leading to the strongest as-
sociations found in all three studies (Supplementary Table 3). Finally,
the higher effects of fasting in LIFE-Heart is also plausible due to the
effect that a considerable percentage of patients were not at fasting
state (Table 1). Hence, for the purpose of selecting relevant factors, we
recommend study specific analyses first, which can be efficiently done
with the help of our preprocessing and analysis tool provided online.
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