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ABSTRACT
Rab proteins are the major regulators of vesicular trafficking in eukaryotic cells. Their activity can be
tightly controlled within cells: Regulated by guanine nucleotide exchange factors (GEFs) and GTPase
activating proteins (GAPs), they switch between an active GTP-bound state and an inactive GDP-
bound state, interacting with downstream effector proteins only in the active state. Additionally,
they can bind to membranes via C-terminal prenylated cysteine residues and they can be
solubilized and shuttled between membranes by chaperone-like molecules called GDP dissociation
inhibitors (GDIs). In this review we give an overview of Rab proteins with a focus on the current
understanding of their regulation by GEFs, GAPs and GDI.
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Introduction

Rabs are the largest branch of the superfamily of small
GTPases with more than 60 members in humans and 11
members in budding yeast.1,2 Since their discovery in the
1980s,3-5 their major role in regulation of vesicular traf-
ficking has been well established and many regulating
factors have been identified, some of which will be dis-
cussed in detail in the following. In their physiologic
role, Rab proteins can attach reversibly to membranes
and bind to the nucleotides guanosine-50-di- (GDP) or
-triphosphate (GTP).2

As a prerequisite for their function and to be able to
localize to internal membranes within eukaryotic cells,
Rab proteins need to become prenylated at C-terminal
cysteine residues.6 In order for this to happen, the newly
synthesized Rab protein binds to the Rab escort protein
(REP, termed Mrs6 in yeast) and is only then prenylated
by Rab geranylgeranyltransferase (RabGGTase or
GGTase-II, Fig. 1a).7-9 After prenylation, the Rab protein
can be delivered to a target membrane, where it is acti-
vated by a guanine nucleotide exchange factor (GEF)
and bound GDP is replaced by the approximately 10-
fold more abundant GTP.1,10 It should be noted that
GEFs catalyze nucleotide exchange in both directions
and directionality is only a result of the higher concen-
tration of GTP compared with GDP. In this active state,
Rabs interact with a variety of different effector proteins

which help to select cargo, form and bud vesicles from
donor membranes, transport vesicles along cytoskeletal
tracks and finally attach and fuse vesicles with the target
membrane (reviewed in ref. 11). Finally, the Rab inter-
acts with GTPase activating proteins (GAPs) and
becomes inactivated by hydrolysis of GTP to GDP. It
can then be extracted from the membrane by the GDP
dissociation inhibitor (GDI), which solubilizes the inac-
tive prenylated Rab protein to provide a pool of inactive
Rab in the cytosol ready for the next round of vesicular
transport12 (Fig. 1a).

The G-domain common to small GTPases and Rab pro-
teins shows a globular fold with a 6-stranded b-sheet sur-
rounded by 5 a-helices (Fig. 1b). The differences between
the inactive and the active state of small GTPases were first
resolved on a structural level in the late 1980s and the early
1990s,13,14 and are well understood today: Upon exchange
of the nucleotide, the major changes of conformation take
place within regions termed switch I and switch II, which
adopt an ordered conformation in the triphosphate state
and a less well defined conformation in the diphosphate
state (reviewed in ref. 15 see Fig. 1b). The high affinity
binding and the specific recognition and discrimination of
guanine over other nucleotides takes place via interactions
between the nucleotide and specific motifs termed G-
motifs (G1-G5).16 The G1-motif (P-loop, GxxxxGK[S/T])
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Figure 1. Rab proteins as molecular switches. (a) After being synthesized, Rab proteins bind to the Rab escort protein (REP) and become
prenylated by RabGGTase at C-terminal cysteine residues. The prenylated protein can be solubilized in the cytosol by the GDP dissociation
inhibitor (GDI), which shields the hydrophobic geranylgeranyl groups from the hydrophilic environment (1). Guanine nucleotide exchange
factors (GEFs) catalyze nucleotide exchange and help to recruit Rabs to certain membranes within the cell (2). In their GTP-bound active
state, Rabs interact with effectors and regulate different steps in vesicular trafficking (budding, vesicular transport along the cytoskeleton,
tethering and fusion with a target membrane; 3). Finally, inactivation takes place via interaction with GTPase activating proteins (GAPs) to
yield the GDP-bound Rab (4). (b) Comparison of Rab proteins bound to GppNHp (left; Rab5 (1HUQ), Rab8 (4LHW), Rab9 (2OCB), Rab11
(2F9M), Sec 4 (1G17) and Ypt7 (1KY2)) and bound to GDP (right; Rab5 (3CLV), Rab8 (4LHV), Rab9 (1WMS), Rab11 (2F9L), Sec 4 (1G16) and
Ypt7 (1KY3)). The nucleotide (sticks) and Mg2C (green sphere), switch I (red), switch II (blue) and the P-loop (magenta) are highlighted (N:
N-terminus, C: C-terminus). Note the switch regions that adopt an ordered and defined conformation in the active state, whereas more
flexible and less well defined conformations can be seen in the inactive Rabs. (c) A sequence alignment of different representatives of Rab
proteins from different Rab families (according to Kl€opper et al.134) is shown highlighting important features within the sequences. The P-
loop (magenta), switch I (red) and switch II (blue), the nucleotide-binding G-motifs (green, G1-G5) as well as the C-terminal cysteine resi-
dues used for prenylation (brown) are highlighted. Additionally, the position of Rab-family (RabF, gray) and Rab-subfamily (RabSF, orange)
motifs that play an important role in recognition of general Rab interacting proteins or Rab family specific interactions, respectively, are
indicated. The secondary structure (a-helices 1–5 and b-sheets 1–6) is shown below the aligned sequences.
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is present in many nucleotide binding proteins and
binds the b-phosphate and a Mg2C-ion,17 the G2-motif
(T, part of switch I) makes contacts with the g-phos-
phate and the Mg2C-ion,15 the G3-motif (DxxGQ at the
beginning of switch II) contains the Gln-residue neces-
sary for GTP-hydrolysis18 and the G4- (NKxD) and
G5-motifs (TSAK) contain essential residues that form
specific contacts with the guanine base to distinguish
guanine from other nucleotides (Fig. 1b and c).15,19

Besides these G-motifs, Rab proteins also contain short
stretches of amino acids that have been termed RabF
and RabSF motifs (Fig. 1c). These distinguish Rabs
from other small GTPases and provide the specificity
toward general Rab interaction partners such as REP/
GDI (RabF motifs) or toward specific interaction part-
ners that only bind a subset of or single Rabs, typically
effector proteins (RabSF motifs).20,21

Here we present an overview of different regulatory
factors of Rabs (GEFs, GAPs and GDI), with a focus on
their discoveries and their molecular mechanisms of
action and function within cells.

Guanine nucleotide exchange factors (GEFs)

Families and numbers

Guanine nucleotide exchange factors play an important
role in activating Rab proteins in a spatiotemporally con-
trolled manner.22 In the past, a variety of different Rab
GEFs have been identified (summarized in Table 1),
including the Vps923 and DENN domain24 families of
Rab GEFs as well as several other unrelated proteins.
The low homology between Rab GEFs is probably the
reason that for many Rabs, the corresponding GEFs are
yet to be identified.25

The first large family of Rab GEFs identified were
Vps9-domain containing proteins (at least 9 members in
humans) that are specific toward Rab5 family members
and act in early endocytic trafficking.26-28 The second
large family of RabGEFs, with 18 members in humans,
are DENN domain GEFs.29 Compared to the Rab5-fam-
ily specific Vps9 domains, this family has a broader sub-
strate spectrum and DENN domain containing proteins
act on several different Rab proteins (see Table 1). The
domain architecture of these proteins shows 3 distinct
regions, the upstream (uDENN), the central (DENN)
and the downstream (dDENN) segments that are sepa-
rated by linkers of different length within the primary
sequence,30 but form a 2-domain closely packed tertiary
structure with one longin domain (a domain found in
several GEFs31) and a C-terminal lobe.32 Besides these 2
major families of related Rab GEFs, several other pro-
teins have been shown to possess GEF activity, including

multi-subunit complexes such as the TRAPP I and II
complexes (GEFs for Ypt1/Rab1 and Ypt31/32, respec-
tively),33 the Mon1/Ccz1 complex (GEF for Rab7/
Ypt7),34 Ric1-Rgp1 (GEF for Rab6/Ypt6)35 and BLOC-3
(GEF for Rab32 and Rab38).36 Interestingly, some of
these contain longin-fold domains (Mon1/Ccz1, BLOC-
3 and the TRAPP complex31), however they seem to ful-
fill different functions within these proteins compared
with DENN domains.22 The related Sec2/GRAB/Rabin-8
GEFs that act on Rab8 or the yeast Rab8 homolog Sec4
all consist of a long parallel coiled-coil that catalyzes
nucleotide exchange.37,38 Very recently, the C. elegans
protein REI-1 and its human homolog SH3BP5 were
found to possess GEF activity toward Rab11.39

As a mechanism of fine-tuning their activity, several
GEFs of small GTPases have been reported to be controlled
by auto-inhibition and release of this autoinhibition by reg-
ulatory proteins.22 One such example is the Vps9 domain
of Rabex-5, which shows basal activity toward Rab5, but is
strongly activated in a positive feedback loop only upon
interaction with a Rab5 effector protein, Rabaptin-5.40 Fur-
thermore, several GEFs have been implicated in Rab cas-
cades, where they are recruited by one Rab to activate
another Rab protein acting further down the pathway.41

One example of this is the yeast Rab protein Ypt32p that
recruits Sec2p, the GEF of downstream acting Sec4 (the
yeast Rab8 homolog).42 Additionally it has been shown
that GEFs (together with other factors) play a major role in
recruitment of Rabs to certain sites within cells.43,44 There-
fore, untangling the role of Rab-GEF networks including
further interacting proteins and the identification of as yet
unknown (possibly multi-subunit) GEFs will be a major
challenge to fully understand their precise roles in the regu-
lation of vesicular trafficking.

The possibility of manipulating vesicular transport for
their own survival is exploited by several intracellular
surviving pathogens.45 One example is the pathogenic
bacterium Legionella pneumophila that provides a pleth-
ora of proteins for manipulation of vesicular transport
and other physiologic processes.46 The protein DrrA
(defect in Rab recruitment protein A) is among these
and it was shown that Legionella injects this protein into
infected host cells and uses its GEF activity to recruit and
mislocalize Rab1 to the intracellular vacuole where
Legionella resides.47,48 Similarly, the Salmonella protein
SopE was reported to act as a GEF for and recruit Rab5
to the intracellular Salmonella containing phagosomes,
thereby promoting fusion with endosomes.49

Structures and mechanisms

The first structure of a Rab:GEF complex, published in
2006, was that of Rab8:Mss4, even though structural
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Table 1. Rab proteins and their known GEFs and GAPs.

Rabs GEFs catalytic efficiency(M¡1 s¡1) GAPs catalytic efficiency(M¡1 s¡1)

human
Rab1a TRAPP I135,136 TBC1D2063

DrrA (L. pneumophila)47 LepB (L. pneumophila)69

USP6NL66

Rab1b TRAPP I135,136 TBC1D2063 7.3 ¢ 10470
DrrA (L. pneumophila)47 2.0 ¢ 10548 LepB (L. pneumophila)69 Three.6 ¢ 106 70

USP6NL66

Rab2a TBC1D166/TBC1D4/TBC1D11/TBC1D20/
TBC1D2563/USP6NL66

Rab2b TBC1D11/TBC1D2063/USP6NL66

Rab3a MADD (Denn)135,136 TBC1D10B63

Rab3GAP65 1.3 ¢ 104137
USP6NL66

Rab3b MADD (Denn)135,136 Rab3GAP65

Rab3c MADD (Denn)135,136 Rab3GAP65

Rab3d MADD (Denn)135,136 Rab3GAP65

Rab4a TBC1D1163/EVI5-like66

Rab4b TBC1D1163

Rab5a Rabex-5 (Vps9)135,136 2.3 ¢ 104138 TBC1D3/RUTBC3/USP6NL63

Rab5b TBC1D3/RUTBC3/USP6NL63

Rab5c TBC1D3/RUTBC3/USP6NL63

Rab6a Ric1-Rgp1135,136 TBC1D1163

Rab6b Ric1-Rgp1135,136 TBC1D1163

Rab6c TBC1D1163

Rab7a Mon1/Ccz1135,136 TBC1D2A/TBC1D5/TBC1D1563/EVI5-L66

Rab7b Mon1/Ccz1135,136 TBC1D2A/TBC1D5/TBC1D1563/EVI5-L66

Rab8a Rabin-8 TBC1D1/TBC1D3066/TBC1D463

GRAB135,136 2.6 ¢ 10455
Mss450 8.5 ¢ 10350
C9Orf72128

Rab8b C9Orf72128 TBC1D166

Rab9a DennD2135,136

Rab9b DennD2135,136

Rab10 DennD4135,136 TBC1D166/TBC1D463/EVI5-L66

Rab11a SH3BP5 (REI-1)39 TBC1D11/TBC1D15/EVI563

Rab11b SH3BP5 (REI-1)39 TBC1D11/EVI563

Rab12 DennD3135,136

Rab13 DennD1C135,136 TBC1D2566

Rab14 DennD6135,136 TBC1D166 5.3 ¢ 103139
TBC1D463 2.8 ¢ 103139

Rab15
Rab17 Vps9135,136 TBC1D763

Rab18
Rab20
Rab21 Rabex-5 (Vps9)135,136 3.2 ¢ 104138 TBC1D1763

Rab22a Rabex-5 (Vps9)135,136 3.5 ¢ 102138 TBC1D10B/TBC1D1863

Rab23 EVI5L63

Rab24
Rab25
Rab26
Rab27a MADD (Denn)135,136 TBC1D10A/TBC1D10B63

Rab27b
Rab28 SBF1 (Denn)135,136 USP6NL66

Rab29
Rab30
Rab31 TBC1D10B66

Rab32 BLOC-336

Rab33a TBC1D2566

Rab33b TBC1D2566

Rab34 TBC1D18/ TBC1D2566

Rab35 DennD1A-C135,136 2.9 ¢ 10432 TBC1D10A/TBC1D10B/TBC1D10C/
TBC1D17/EVI563

Rab36 TBC1D1163

Rab37
Rab38 BLOC-336

Rab39a DennD5A-B135,136

C9Orf72128

Rab39b DennD5A-B135,136 TBC1D1866/RUTBC363

C9Orf72128

(Continued on next page )
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analysis showed some peculiarities compared with other
known GTPase:GEF structures and indicated a function
of Mss4 as a chaperone rather than a GEF.50 In the fol-
lowing years, a variety of different GEFs in complex with
their cognate Rabs were successfully crystallized and
their structures solved (Sec4:Sec2,51,52 Rab21:Rabex-5,53

Ypt1p:TRAPP,54 Rab35:DennD1B,32 Rab8:GRAB/
Rabin855 and Rab5:Rabex-5,56 Fig. 2a), allowing a struc-
tural view of intermediates of the nucleotide exchange
reaction. Since the general mechanism of action of GEFs
is the stabilization of the intermediate nucleotide-free
state of small GTPases, GEFs bind these nucleotide-free
GTPases with high affinities. Accordingly, most struc-
tures of GTPase:GEF complexes have been obtained in
the absence of nucleotides (Fig. 2a), with the exception
of the recently published structures of Rab5:Vps957 and
Rab8:Rabin855 that could be crystallized in the presence
of different nucleotides.

The general exchange mechanism of all GEFs must
follow a common route with a first low-affinity encoun-
ter complex with the nucleotide-bound GTPase and sub-
sequent release of the nucleotide. In all cases, GEFs bind
to the switch I/switch II and interswitch regions of the
small GTPases, inducing structural rearrangements
within these regions that are incompatible with high
affinity nucleotide binding (Fig. 2a). The largest confor-
mational changes (compared with the active GTP-bound
GTPases) generally take place in switch I, where interac-
tions occur mostly between the GEF and the C-terminal
half of switch I (where the g-phosphate and Mg2C bind-
ing G2-motif Thr is located) to pull the switch I into an
open conformation. This movement also leads to

displacement of a highly conserved aromatic Phe or Tyr
residue in Rab proteins (Tyr33 in Rab1b) from an edge-
to-face interaction with the guanine base,32 thus lowering
the nucleotide affinity. In many cases, the residues sur-
rounding this aromatic residue in switch I move approxi-
mately 10–30 Angstrom away from their position in the
GTP-bound GTPase and often adopt a disordered state.
For this reason, amino acids within this region often can-
not be traced in the electron density of Rab:GEF struc-
tures (Fig. 2a), similar to the situation in GDP-bound
GTPases. In contrast, switch II adopts an ordered con-
formation in Rab:GEF structures that is more similar to
the GTP- than the GDP-bound state of Rabs and the
overall conformational change of switch II shown in
Fig. 2 is less dramatic than that of switch I. Since GEFs
catalyze nucleotide exchange in both directions (i.e. from
GDP- to GTP-bound state or vice versa), these results
indicate that, depending on the educt of the GEF cata-
lyzed reaction (i.e., Rab:GDP or Rab:GTP), the initial
recognition of the GTPase by the GEF might be either by
binding to switch I (GDP-bound state) or switch II
(GTP-bound state).

In contrast to the switch regions, the conforma-
tional change of the P-loop is usually less dramatic
and changes in the P-loop are mostly secondary effects
due to a collapse of this loop into the nucleotide-bind-
ing pocket in the absence of interactions with nega-
tively charged phosphates.51,53 In fact, PO4

2¡ or SO4
2¡

ions were found to be bound at a position resembling
the b-phosphate of the nucleotides in some structures
(e.g. Rab1b:DrrA and Rab8:Rabin8) and seem to stabi-
lize the P-loop in a conformation similar to the

Table 1. (Continued )

Rabs GEFs catalytic efficiency(M¡1 s¡1) GAPs catalytic efficiency(M¡1 s¡1)

Rab40a
Rab40b
Rab40c
Rab41 USP6NL63

Rab43 USP6NL66

yeast

Ypt1p TRAPP I135 1.4 ¢ 103141 Gyp1p143/Gyp3p144

Dss4140 6.6 ¢ 102142
Ypt6p Ric1-Rgp1135 Gyp3p144

Gyp6p64,144 3.2 ¢ 104145
Ypt7p Mon1/Ccz1135 Gyp1p143

Gyp7p146 7.5 ¢ 105147
Sec4 Sec2135 2.0 ¢ 105148 Gyp1p143/Gyp3p144

Ypt10p
Ypt31p TRAPP II135 Gyp3p144

Ypt32p TRAPP II135 Gyp3p144

VPS21 Vps9135 5.2 ¢ 102142 Gyp1p143 2.7 ¢ 104149
Gyp3p144

Ypt52p Vps9135 Gyp3p150

Ypt53p Vps9135 Gyp3p150

SMALL GTPASES 9



nucleotide-bound form. In this respect, comparison of
Sec2:Sec4 structures with (pdb 2EQB) and without
(pdb 2OCY) a bound PO4

2¡ ion nicely illustrate this
effect with a collapsed conformation of the P-loop
only in the PO4

2¡-free structure (Fig. 2).51,52 Further-
more, a similar collapsed state of the P-loop can also
be observed in the related P-loop NTPase myosin in
the absence of both an exchange factor and a bound
nucleotide (Fig. 2b). However, in some GEF:Rab com-
plexes (Ypt1:TRAPP, Rab21:Rabex-5), a negatively
charged residue from the GEF is projected into the
vicinity of the highly conserved P-loop lysine, thus
substituting for the missing negative charge.58

In addition to binding to the switch and interswitch
regions and opening of the nucleotide binding pocket,

binding of the GEF in many cases involves projection of
residues toward and steric hindrance of Mg2C binding
(e.g., Sec2, Vps9).51,53 as well as electrostatic repulsion
between acidic residues of GEFs or the Rab itself point-
ing toward the phosphate groups (e.g., Vps9,
TRAPP)53,54 These effects additionally lower the nucleo-
tide affinity and thereby further accelerate nucleotide dis-
sociation from the open nucleotide binding pocket.

GTPase activating proteins (GAPs)

Families and numbers

Small GTPases have a low intrinsic nucleotide hydrolysis
activity with the half-life of the active state being of the

Figure 2. Conformational changes during GEF-catalyzed nucleotide exchange. (a) Structures of Rab1b:GppNHp (pdb id 3NKV) and the
Rab:GEF complexes Rab21:Rabex-5 (pdb id 2OT3), Ypt1:TRAPP (pdb id 3CUE), Rab35:DennD1 (pdb id 3TW8) and Rab1b:DrrA (pdb id
3JZA) Sec 4:Sec 2 (pdb id 2EQB and 2OCY). The relative distance of residues of the different Rab proteins (Ca-positions) within the P-
loop, switch I and switch II compared with Rab1b:GppNHp is shown below each structure, highlighting the structural changes during
GEF-catalyzed nucleotide exchange. Note the structures of Sec 4:Sec 2 in the presence of a PO4

2¡-ion (pdb id 2EQB) and Sec 2:Sec 4 in
the absence of a PO4

2¡-ion (pdb id 2OCY), showing the collapsed state of the P-loop due to missing interactions with a negatively
charged ion. (b) A comparison of the P-loop conformation of myosin bound to a nucleotide analogon (ADP-Metavanadate; pdb id
3MJX) and of the P-loop conformation of myosin in the absence of any nucleotide (pdb id 2AKA) indicates that the collapsed state of
the P-loop is solely caused by missing interactions with a negatively charged phosphate group, not by binding of an exchange factor.
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order of 30 min to several hours.59-62 Therefore, to be
turned off in a physiologically meaningful timeframe,
additional proteins termed GTPase activating proteins
need to bind to the small GTPases and assist in hydroly-
sis. Whereas Rab GEFs are highly diverse in primary
sequence and structure, Rab GAPs consist of one major
family, the TBC- (Tre-2/Bub2/Cdc16) domain GAPs
with more than 40 different members present in
humans.63 They were first described in yeast in the early
1990s where they are called Gyps (“GAP for Ypt pro-
teins”).64 Only one GAP in humans is known that does
not contain this conserved TBC domain: The Rab3GAP
complex, consisting of 2 different proteins and acts on
members of the Rab3 family.65

As can be seen in Table 1, for many Rabs, no corre-
sponding GAP has been identified. However, many
GAPs have been found to be promiscuous toward Rabs63

and possibly evolved low specificity to ensure that differ-
ent active Rabs that reach a certain destination/organelle
in a cell are inactivated by the GAP(s) present at this
site.66 Additionally, the boundaries between different
Rabs are regulated by cascades similar to the case of
GEFs described above. Thus, besides recruiting the
downstream acting GEF Sec2, Ypt32 has also been
described to recruit Gyp1, the GAP acting on Ypt1, as
well as Gyp6, the GAP for Ypt6, thus helping to establish
a sharp transition between active Ypt1/Ypt6 and Ypt32
on intracellular membranes.41,67,68

Similar to DrrA as a GEF, Legionella pneumophila
also harbors a Rab GAP in its arsenal of translocated
proteins for the manipulation of host vesicular transport,
the GAP protein LepB.69 LepB also binds to the Legion-
ella containing vacuole and appears to inactivate Rab1
(and possibly other Rab proteins) to allow their removal
at a later stage in the reproduction cycle.70

Structures and mechanisms

The first structure of a TBC domain GAP was that of Gyp1
in 2000,71 followed by the structure of the complex
between Gyp1 and Rab33b in 2006.72 In this paper, Lam-
bright and colleagues made the surprising discovery that,
in contrast to other known GAPs of small GTPases, TBC-
domain GAPs use a slightly different mechanism for catal-
ysis. Whereas other GAPs were shown to provide an Arg
finger to assist hydrolysis together with the Gln within the
G3-motif of the small GTPases, Gyp1 provides an Arg-
and an additional Gln-finger in trans that substitutes the
G3-motif Gln that is used by many other GTPases in their
GAP activated mechanism. TBC-domain GAPs were thus
shown to act via a dual-finger mechanism (Fig. 3a).72 In
contrast, the Legionella pneumophila GAP LepB uses a

single Arg-finger comparable to other GAPs of small
GTPases in conjunction with the cis-Gln provided by the
Rab protein (Fig. 3b).70 The general role of the Gln
(whether provided by the GAP or the Rab itself) is to align
a water molecule for an in-line attack of the g-phosphate,
whereas the Arg finger (generally provided by the GAP)
neutralizes developing negative charges during the hydro-
lysis reaction.22 Since TBC-domain GAPs are not depen-
dent on the Gln provided by the small GTPase, they have
also been shown to still be able to catalyze GTP-hydrolysis
in Rab proteins carrying a mutation often considered to
stabilize GTPases in the active state (e.g., the G3-Gln
mutated to Leu or Ala), thus possibly leading to misinter-
pretations obtained with Rabs carrying these mutations in
in vivo experiments.70,72 On the other hand, some TBC-
domain GAPs lack the Arg, the Gln or both and might
thus be either inactive or act via a different mechanism.66

Prenylation of Rab proteins and membrane
binding

Besides cycling between an active and an inactive state
regulated by GEFs and GAPs, Rab proteins also cycle
between a cytosolic and a membrane bound form and
these cycles are tightly interconnected. As a necessary
requirement for the reversible membrane attachment,
Rab proteins need to become irreversibly prenylated at
C-terminal cysteine residues.73

Prenylation as a posttranslational modification was
first discovered in the late 1970s,74 but it took another
decade until C-terminal prenylation was also shown for
Ras75-77 and Rabs.78,79 Prenylation is catalyzed by 3 dif-
ferent enzymes using either farnesylpyrophosphate
(FPP) or geranylgeranylpyrophosphate (GGPP) for
modification of target proteins. Farnesyltransferase
(FTase) and geranylgeranyltransferase I (GGTase I) both
recognize C-terminal CaaX-motifs (C - Cys, a - aliphatic
amino acid, X - any amino acid) and attach a single far-
nesyl- or geranylgeranyl-group to the cysteine via a thio-
ether linkage.80,81 In contrast, geranylgeranyltransferase
II (GGTase II, also termed RabGGTase) recognizes C-
terminal cysteine residues within different motifs (e.g.,
CC, CXC, see Fig. 1) and usually modifies 2 cysteine resi-
dues at the C-terminus of Rab proteins.82 Rab proteins
ending on CXC, but not CC, are then further processed
by carboxymethylation.83

Prenylation machinery and REP

After ribosomal synthesis, Rab proteins first need to
bind to the Rab escort protein (REP), which only
then presents the Rab proteins to RabGGTase for
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prenylation.7,9 The double prenylation observed in most
Rab proteins proceeds without intermediate release of
the mono-prenylated Rab protein.84 After binding of a
new molecule of GGPP to the active site of the RabGG-
Tase, the doubly prenylated Rab in complex with REP
dissociates from RabGGTase and can deliver the Rab
protein to a target membrane.85,86

The X-ray structures of mono-prenylated Rab7 in
complex with REP87 as well as that of the RabGGTase:
REP complex88 have been solved (Fig. 4a). REP, which
exists in 2 different isoforms in humans and one isoform
(termed Mrs6) in yeast,89,90 consists of 2 different
domains. Whereas domain I recognizes and binds the
globular G-domain and the extended C-terminus of the
Rab protein via regions referred to as the Rab binding
platform (RBP) and the C-terminus binding region
(CBR), respectively, the prenyl-groups bind between
helices D and E of domain II (Fig. 4).87 These 2 helices
within domain II of REP additionally form the binding

platform for the heterodimeric RabGGTase which con-
sists of one large (60kDa) a-subunit and a smaller
(38kDa) b-subunit (termed Bet4 and Bet2, respectively,
in yeast).88,89 The large subunit consists of 3 domains, an
immunoglobulin- (Ig-) like domain, a leucine-rich
repeat- (LRR-) domain and a solely a-helical domain
which provides the binding interface with REP. The
interaction is formed by the a-helices 8, 10 and 12 within
this domain interacting with helices D and E of REP-1
(Fig. 4a and c). The active site, containing a Zn2C-ion for
catalysis of prenylation, is located within the b-subunit.

Based on the available structures of Rab7:REP and
REP:RabGGTase, modeling of the ternary complex was
also possible which in turn allowed proposal of a model
of the catalytic mechanism87: Whereas the Rab-protein
is bound to domain I of REP distal from the RabGGTase,
the flexible C-terminus can extend toward and bind
within the active site of the b-subunit of RabGGTase to
become prenylated. As discussed before, binding of

Figure 3. Dual- and single-finger mechanism used by RabGAPs. The structures of Gyp1:Rab33 (a) and LepB:Rab1 (b) are shown (left; Rab:
gray cartoon with the switch I and II in red and blue, respectively and the P-loop in magenta (the switch regions and the P-loop are
shown as ribbon), the GAP is shown as rainbow colored cartoon) and a zoom into the active site (right; residues provided by the GAP
are colored in green, residues of the Rab protein in gray). Both structures were obtained in the presence of GDP and BeF3 or AlF3 as tran-
sition state mimetics of the hydrolysis reaction. (a) Gyp1 uses a dual-finger mechanism to catalyze GTP-hydrolysis and provides both
Arg343 and Gln378 (green) in trans. The G3-motif Gln92 (gray) of Rab33 is repositioned by interactions with backbone atoms of Gyp1 and
does not participate in catalysis. (b) In contrast to TBC-domain GAPs, the Legionella pneumophila GAP LepB uses a single-finger mecha-
nism and provides only one residue (Arg444, green). Gln67 of Rab1b remains in its usual conformation to position the attacking water for
the in-line attack of the g-phosphate.
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another GGPP leads to displacement of the already pre-
nylated C-terminus from the active site which then
migrates toward and binds to helices D and E of domain
II of REP. This in turn leads to a conformational change
that interferes with the interaction of Phe279 (a-helix D)
and Arg290 (a-helix E) with RabGGTase (Fig. 4a and c),
so that the Rab:REP complex finally dissociates from
RabGGTase and the prenylated Rab can be delivered to a
target membrane.87

GDI function and structures

To be recycled after one round of vesicular trafficking,
Rab proteins need to be extracted from membranes and
solubilized in the cytosol. The protein responsible for
this was originally identified as a Rab3 interacting pro-
tein that inhibited dissociation of GDP and was therefore
named GDP dissociation inhibitor (GDI).91 In contrast
to REP, GDI only binds prenylated and inactive GDP-

Figure 4. The interaction of Rab proteins with REP, RabGGTase and GDI. (a) Model of the ternary complex between Rab7:GDP (gray,
switch I – red, switch II – blue, P-loop – magenta, Mg2C - green sphere, GDP - sticks), REP (cyan) and RabGGTase (a-subunit – green,
b-subunit – blue, Zn2C - orange sphere). The ternary complex was modeled from the structures of Rab7:REP (pdb id 1VG0) and REP:
RabGGTase (pdb id 1LTX). (b) Model of doubly prenylated Ypt1:GDP (colors as above) in complex with GDI (yellow, pdb id 2BCG). Note
the structural similarity between Rab7:REP and Ypt1:GDI. (c) Close-up view of helices D, E and H of the lipid-binding domain II of REP in
complex with RabGGTase (left) or in complex with one geranylgeranyl-group (middle) and of the corresponding domain II of GDI in
complex with 2 geranylgeranyl-groups (right). A conformational change within this domain upon binding of the C-terminally linked ger-
anylgeranyl-groups of the Rab is presumably the cause of dissociation of RabGGTase from REP subsequent to prenylation.

SMALL GTPASES 13



bound Rab proteins with high affinity,91,92 thus ensuring
extraction of the Rab proteins only after their trafficking
cycle is complete and they have been inactivated by a
GAP. Whereas GDI displays similar affinities for mono-
and diprenylated Rabs (KD D 1.5 nM and 5.2 nM,
respectively), but does not bind to unprenylated Rab,
REP has a higher affinity for the mono-prenylated form
(KD D 61 pM) compared with the unprenylated or dipre-
nylated Rab (KD D 1 nM and 1.3 nM, respectively).92,93

These observations provide an explanation for the ther-
modynamic driving force of extraction of Rab proteins
from membranes by GDI, but not REP: Whereas GDI
binds only weakly to the G-domain of a Rab, the affinity
increases approximately 3 orders of magnitude upon
additional binding of the prenylated C-terminus. On the
other hand, REP binds with similar affinities to the pre-
nylated and unprenylated Rab, thus allowing binding
and presentation of the unprenylated Rab to
RabGGTase.92

The first structure of GDI was solved in 1996, display-
ing 2 separate domains termed domain I and II.94 A first
structure of GDI in complex with a prenylated cysteine95

initially suggested the lipid binding site to be located in
domain I. However some years later, the structures of
mono-96 and diprenylated97 Rab proteins bound to GDI
showed that the lipid binding site was actually located in
domain II, whereas the globular G-domain and the
extended C-terminus both bind to domain I, with an
overall fold, binding regions and relative orientation of
Rab and GDI similar to the situation in the Rab:REP
complex (see comparison in Fig. 4a and b).

Targeting and retrieval of Rab proteins to and from
intracellular membranes

One major issue that still remains to be fully resolved
is the mechanism of specific targeting of Rab proteins
to certain membranes within a cell. Initially, the
hypervariable C-terminus was thought to contain the
information encoded in the amino acid sequence for
targeting to certain membranes,98,99 but it was later
shown that this does not apply to all Rabs and that
sequences important for the intracellular localization
are distributed throughout the primary sequence of
Rabs.100 Further work implied membrane localized
GDI dissociation factors (GDFs) that are able to spe-
cifically dissociate Rab:GDI complexes and thereby
contribute to specific localization.101,102 However,
Pra1 and the yeast homolog Yip3 remain the only
proteins with proven GDF activities that have been
identified. Since GDIs bind with high affinity to Rabs
in their inactive, but not their active state,103 a role of
specific membrane targeting was also suggested for

GEFs, since they can catalyze activation and therefore
stabilize Rabs at a membrane.43,48 A present consen-
sus view is that targeting of Rabs to certain mem-
branes is most probably a process involving many
different factors, including the C-terminus of Rabs,
further putative GDFs, GEFs, GAPs and effectors.44

On the other hand, it is currently not clear whether
extraction of Rabs by GDI is actively regulated and
possibly accelerated beyond the presumably slow
spontaneous dissociation rate of Rabs from mem-
branes. The precise mechanisms of delivery and
extraction of Rabs to and from intracellular mem-
branes and additional factors that might catalyze
these processes and contribute to spatial specificity
therefore need to be established in future research.

PTMs and their role in regulation

Besides prenylation of the C-terminus, several other
posttranslational modifications (PTMs) at different posi-
tions within the primary sequence of Rabs have been
reported, including for example phosphorylation and
serotonylation.104-109 p34cdc2 kinase for example phos-
phorylates Ser204 within the C-terminus of Rab4 close to
the prenylateable cysteines,105 Parkinson’s disease kinase
LRRK2 phosphorylates several Rabs including Rab10 at
position Thr73 within switch II109 and a yet to be identi-
fied kinase phosphorylates Rab8 at Ser111 within the
RabSF3 motif and close to the switch II region in the ter-
tiary structure.108 The latter was also shown to negatively
influence the activation of Rab8 by its cognate GEF
Rabin8.108 In a very recent study, TGF-b activated kinase
1 mediated phosphorylation of Rab1a at Thr75 in switch
II was shown to disrupt interaction with GDI.110 Sero-
tonlyation (the attachment of serotonin via an amide
bond to the catalytic glutamine side chain by transgluta-
minases) on the other hand has been shown to cause
constitutive activation of the modified GTPase.106 Addi-
tionally, not only Rabs can be posttranslationally modi-
fied, but also their regulatory proteins including for
example GEFs, GAPs and GDIs.111-115

Again, much has been learned from the pathogenic
bacterium Legionella pneumophila concerning the
potential of PTMs for manipulation of Rabs. The
Legionella proteins DrrA/SidD116-119 and AnkX/
Lem3120-122 were shown to reversibly modify a Tyr and
a Ser/Thr residue (Tyr77 and Ser76 in Rab1b within
switch II) with AMP or phosphocholine, respectively,
having an impact on the interaction of these Rab pro-
teins with effectors, GAPs, GEFs and GDI. The poten-
tial role of PTMs was therefore discussed as means of
modulating Rab interactions, including an effective
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displacement of Rab:GDI complexes and stabilizing
Rabs at a certain membrane.114,123

Even though several examples have been published, a
universal regulatory role or the impact of the different
PTMs on Rab regulated membrane trafficking is still
uncertain for many PTMs and will be subject to further
interesting investigations in the future. However, the
positions of the posttranslational modification within
functionally important regions of Rab proteins indicate
that regulatory roles are highly probable.

Genetic disorders involving regulatory proteins

Besides being targeted by pathogenic bacteria, Rabs and
associated regulatory proteins are also mutated in several
genetic disorders.45,124 Mutations of the GAPs Rab3GAP
or TBC1D20 for instance are known to cause the severe
Warburg Micro syndrome with neurologic and ocular
disorders as well as microgenitalia.125,126 Another muta-
tion in Rab3GAP causes cataracts, mental retardation
and hypogonadism in Martsolf syndrome.127 The GEF
BLOC-3 is mutated in Hermansky-Pudlak syndrome,
causing albinism and bleeding disorders.36 A very recent
discovery shows that the product of the C90rf72 gene,
which harbors expanded GGGCCC repeats in non-cod-
ing regions in many cases of amyotrophic lateral sclerosis
(ALS) leading to underexpression of the gene product, is
a GEF for Rab8 and Rab39. These Rabs are involved in
autophagy, which is defective in ALS.128,129

Many other mutations are known or can be assumed
to effect prenylation, delivery and/or retrieval of Rabs
from membranes. For instance, Hermansky-Pudlak syn-
drome is also caused by a mutation of RabGGTase pre-
sumably causing deficient prenylation.130 Several
mutations within the gene coding for REP-1 cause Cho-
roideremia, an X-chromosomal disease causing degener-
ation of the retina and resulting night blindness as well
as loss of peripheral vision,131,132 and another X-chromo-
somal mutation within the gene for GDI-1 is known to
cause X-linked non-specific mental retardation.133

Together, these severe impacts on human physiology
illustrate the importance of regulated membrane cycling
of Rab proteins.

Outlook

Even though further GEFs and GAPs still will (and need
to be) identified, many have been found and biochemi-
cally and structurally characterized in vitro. Similarly,
the structures of GDI and REP in complex with Rabs
have been reported as discussed above. Together, these
insights give a rough scheme of the regulation of
vesicular transport and factors involved. However,

comparatively little is still known about the situation in
vivo, especially regarding the localization and the speci-
ficity of these regulatory proteins toward Rabs as well as
regarding their spatiotemporal regulation by additional
proteins and posttranslational modifications. Our knowl-
edge of the underlying protein interaction networks
therefore still needs to be expanded to finally understand
the fine details of the different Rab regulated vesicular
transport processes in physiological and pathological
states.
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