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Abstract

Introduction: It has been demonstrated that event-related potentials (ERPs) mirror

the neurodegenerative process of Alzheimer’s disease (AD) and may therefore qualify

as diagnostic markers. The aim of this study was to explore the potential of interval-

based features as possible ERP biomarkers for early detection of AD patients.

Methods: The current results are based on 7-channel ERP recordings of 95 healthy

controls (HCs) and 75 subjects with mild AD acquired during a three-stimulus audi-

tory oddball task. To evaluate interval-based features as diagnostic biomarkers in AD,

two classifiers were applied to the selected features to distinguish AD and healthy

control ERPs: RBFNN (radial basis function neural network) and MLP (multilayer

perceptron).

Results: Using extracted features and a radial basis function neural network, a high

overall diagnostic accuracy of 98.3%was achieved.

Discussion: Our findings demonstrate the great promise for scalp ERP and interval-

based features as non-invasive, objective, and low-cost biomarkers for early AD

detection.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder

with a gradual decline in episodic memory, attentional processes, and

cognitive functions.1 Although AD can be diagnosed at an advanced

stage of the diseasewith high diagnostic accuracy, as there are no obvi-

ous symptoms at the beginning of the disease, early diagnosis of AD

remains a major challenge for clinicians and researchers.2 In fact, the

neurophysiological basis for the cognitive and behavioral dysfunction

in AD is not fully understood3 and a definitive diagnosis can only be

made by post mortem autopsy or, while alive, a brain biopsy.4 Although
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there is no cure for AD, early diagnosis via accurate, inexpensive, and

non-invasive diagnostic techniques would allow for better care and

thus improve the quality of life for AD patients, their families, and

caregivers.5

The earliest stage of AD diagnosis often involves neuropsycholog-

ical tests and evaluations of the patient’s history.6 For symptomatic

individuals, diagnosis is supported by biomarkers derived from cere-

brospinal fluid (CSF)7 and neuroimaging techniques such as magnetic

resonance imaging (MRI),8 positron emission tomography (PET),9 com-

puted tomography (CT), diffusion tensor imaging (DTI),10 and sin-

gle photon emission computed tomography (SPECT).11 Unfortunately,

Alzheimer’s Dement. 2021;13:e12191. wileyonlinelibrary.com/journal/dad2 1 of 7

https://doi.org/10.1002/dad2.12191

mailto:sabbaghi.nd@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/dad2
https://doi.org/10.1002/dad2.12191


2 of 7 SABBAGHI ET AL.

physicians are often deterred from ordering these diagnostic methods

routinely because of their costs and lack of accessibility in a primary

care setting.12

More recent research efforts have explored the development of

more convenient and non-invasive means, including the use of scalp

electroencephalography (EEG), which is a non-invasive, well-tolerated,

and economical electrophysiological tool.1,13 Fortunately, EEG-based

biomarkers can be used to identify neuronal deterioration and decay

in synapses caused by AD progression because EEG signals have

their origin in the underlying activity of the cerebral cortex.14 In this

regard, investigated characteristics includeEEG slowing (a reduction in

power at low frequencies as well as an increase at high frequencies),15

reduced coherence,16 reduced complexity,11 and chaoticity.17

Event-related potentials (ERPs) of EEG signals comprise a set of

components that can be discriminated according to their latency

(milliseconds), polarity (positive/negative), amplitude (µV), and scalp

distribution.18 It has been demonstrated that cognitive ERPs of EEG

signals, which have been widely used to study dementia, can pre-

dict the pathology of AD years prior to clinical diagnosis.19 In this

respect, some researchers have investigated ERPs in patients with AD

and studied group differences between AD and healthy controls (HC)

and several features of the ERP have been proposed as biomarkers

in AD.

The P300 component, for instance, the most prominent and most

extensively studied component, is elicited by auditory, visual, or

somatosensory stimuli, and has been associated with various cog-

nitive processes such as attention, working memory, and executive

function.20 Numerous ERP studies have reported a significant increase

in latency for P300,18,21–24 suggesting that measures of P300 latency

can reliably distinguish between AD patients and HCs. Moreover,

some studies have also demonstrated lower P300 amplitude for AD

patients compared toHCs.21,25 However, there remains a lackof agree-

ment regarding the amplitude of P300.26

In addition, N200, considered an index of automatic cognitive pro-

cesses, is usually investigated along with the P300 component and is

provoked by a novel infrequent stimulus during an oddball paradigm.27

Having investigated this ERP component, a number of studies reported

longer latency22–25,28 and a decrease in amplitude28 of N200 in AD.

Furthermore, early ERPs, N100 and P200, represent the sensory

process and are associated with attention.29 While the dominant view

is that early ERP components are mostly unaffected by AD, and thus

not ideal biomarkers,30 a few studies have found prolonged N100

and P200 latencies21,22 and reduced N100 and P200 amplitudes21,28

among AD patients compared to healthy individuals.

In an effort to develop a diagnostic procedure that discriminates

between AD and age-matched control individuals, Jimenez-Rodriguez

et al.31 proposed two novel measures of complexity of the shape in

time series: spectral matching complexity (SMC) and spectral match-

ing entropy (SSME). Performing a linear discriminant classificationwith

only complexity measures, they achieved a sensibility of 81% and a

specificity of 85%. Kim et al.32 achieved the recognition rate of 81.9%

for the untrained dataset after computing EEG and ERP statistical and

nonlinear features as well as spectral features and by feeding them to

RESEARCH INCONTEXT

1. Systematic review: It has been demonstrated that event-

related potentials (ERP) can predict the pathology of

Alzheimer’s disease (AD) years prior to clinical diagno-

sis.While ERPcomponents havebeenwidely investigated

in numerous studies, feature selection and classification

techniques have received less attention.

2. Interpretation: A dementia classification framework

based on ERP data has been developed and implemented.

Interval-based features were extracted from cognitive

ERP recordings of brain electrical activity and different

methods of feature selection and two classifiers were

used to distinguish AD patients and healthy controls. Our

results clearly show that extracted features could detect

AD at an early stage with remarkable accuracy.

3. Future directions: Further analyses should extend the

proposed algorithm to multi-class situations such as the

classification of mild cognitive impairment (MCI), mixed

AD, vascular dementia, and healthy controls.

an artificial neural network (ANN). Bymultiresolution analysis of ERPs,

Polikar et al.33 achieved an average ensemble performance of 72.4%

and best ensemble performance of 75%, with sensitivity of 68.6% and

specificity of 69.2%.

The objective of this study was to assess the viability of an auto-

mated classification approach. We used interval-based features34

extracted fromcognitiveERPrecordingsof brain electrical activity dur-

ing an oddball paradigm to distinguish AD patients from HCs. Differ-

ent methods of feature selection were used and then two classifiers

(radial basis function neural network [RBFNN] and multilayer percep-

tron [MLP]) were applied to the selected features to distinguish AD

patients andHCs.

2 METHODS

2.1 DATABASE

Data were extracted from the open source Neuronetrix clinical

database and consist of 99 mild AD patients (age: 76.2 ± 0.74) diag-

nosed according toNational Institute ofNeurological andCommunica-

tiveDisorders and Stroke—Alzheimer’s Disease and RelatedDisorders

Association criteria and100 age-matchedHCs (age: 73.2±0.71). How-

ever, the final sample includes 75 AD individuals and 95 HCs due to

missing data of some tones in some subjects. Owing to the experiment

requirement, all of the participants had adequate visual and auditory

acuity to allow neuropsychological and ERP testing.

The average Clinical Dementia Rating (CDR) andMini-Mental State

Examination (MMSE) scores for the AD patients were 0.9 ± 0.03
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and 23.4 ± 0.19, respectively, and the MMSE score for the normal

subjects was 29.1 ± 0.08. The mean number of educational years

was 14.9 ± 0.29 years for the HCs, and 14.4 ± 0.32 years for AD

patients.

In addition to a diagnosis of AD, an MMSE score between 21 and

26; a CDR score of 0.5, 1, or 2; and delayed-recall scores on theWech-

sler Logical Memory II subscale of less than or equal to 3 for 0 to

7 years of education, less than or equal to 5 for 8 to 15 years of edu-

cation, and less than or equal to 9 for 16 or more years of educa-

tion were the required inclusion criteria for recruiting subjects with

mild AD. HCs had an MMSE score of 27 or higher, a CDR score of

0, and delayed-recall scores on the Wechsler Logical Memory sub-

scale of equal to or higher than 4 for 0 to 7 years of education, equal

to or higher than 6 for 8 to 15 years of education, and equal to or

higher than 10 for 16 or more years of education.28 The exclusion

criteria were the use of antidepressant medication except selective

serotonin reuptake inhibitor, or evidence of other neurological or psy-

chiatric disorders. Hachinski Ischemic Score and Geriatric Depression

Scale Short Form scores were less than or equal to 4 and less than or

equal to 5, respectively. Finally, all subjectswere requested towithhold

sedatives and dietary memory supplements for the 72 hours prior to

testing.28

ERPdatawere collected througha three-stimulus oddball paradigm.

Electrical brain activitieswere recorded from seven electrode sites (Fz,

Cz, Pz, F3, P3, F4, and P4) according to the international 10/20 stan-

dards using a COGNISION Headset (Neuronetrix). Electrodes were

referenced to averagedmastoids (M1,M2), and Fpz served as the com-

mon electrode. The skin contact impedance was below 70 kΩ. Record-
ing was initiated at ≈240 ms before stimulation and maintained for

≈944ms thereafter, digitized at 125Hz, and bandpass filtered from0.3

to 35Hz.28

Subjects were seated comfortably in a chair in an office under

normal lighting conditions. Between 300 and 400 stimuli were binau-

rally presented through insert earphones at 70 dB volume in pseudo-

randomized order within a three-stimulus oddball paradigm so that

target and distractor tones were never presented sequentially. The

standard stimulus was the 1000 Hz tone (75% probability), the tar-

get stimulus was the 2000 Hz tone (15% probability), and unexpected

distractor stimulus was white noise (10% probability). The tone dura-

tion for each stimulus was 100 ms with rise and fall times of 10 ms

and the interstimulus interval varied from 1.5 to 2 s. Subjects were

instructed to press a button using their dominant hand in response

to each target tone. Trial averaging and extraction of ERP measures

were automatically performed by the COGNISION system software

(Neuronetrix).28

2.2 Feature extraction

Previous studies demonstrated excellent classification accuracy on

several different datasets using interval-based features derived from

ERP signals over time segments of various lengths.34–36 Kuncheva and

Rodriguez34 examined four traditionally used feature extractionmeth-

ods (principal component analysis, independent component analysis,

autoregression, andwavelets) as well as the interval feature extraction

method on two visual ERPdatasets and showed that the top accuracies

with the interval features were often larger than those with the other

feature extraction methods, and in many experimental configurations,

those differences were statistically significant.

Considering only intervals of size power of two, for each ERP, time

series spanned 149 time points; the lengths of time intervals would

be 2, 4, 8, 16, 32, 64, and 128. Overall a set of 796 time intervals was

achieved (for reviews, see Kuncheva and Rodriguez34). For each inter-

val, the average amplitude of the point set, the standard deviation, and

the covariance with the time variable were calculated. Adding the 149

original features to this collection,weextracted2537 features (3×796

+ 149) from the ERP signals. Computations were performed using the

platform MATLAB R2013a, and data of each electrode and stimulus

were processed separately.

2.3 Feature selection

Due to thepossible scatteringof input valuesof theneural network, the

network may be unable to achieve a desirable outcome. Thus, through

normalizing the data, the input values were limited to a certain range.

Features are normalized by equation (1), which brings all values into

the range [0, 1].

X′ =
X − Xmin

Xmax − Xmin
(1)

where Xmin and Xmax are the minimum and maximum values of original

features in each dimension.

It has been generally recognized that high-dimensional input data

in classifiers typically increase computational complexity and com-

puting time. This often leads to bias and overfitting in classification

when limited data are available.37 For the purpose of classify-

ing, feature selection is adopted to select the optimal features in this

study.

Different feature selection methods were performed to elimi-

nate redundant features used for training classification models. This

allowed us to alleviate the effect of the curse of dimensionality, speed

up the learning process, and improve the model’s performance. To this

end, the Feature Selection Library (FSLib) MATLAB Toolbox was used

to rank and select a subset of relevant features basedon their degreeof

relevance, performance, or importance. Forty relevant features were

selected as the input vector of the RBFNN andMLP classifiers because

they yielded better results. An equal number of features feeding to

the classifiers also enabled us to have a fair comparison between

them.

In this study, we tested different methods of feature selec-

tion, including infinite feature selection (Inf-FS),38 relief feature

selection (Relief-F),39 feature selection via concave minimization

(FSV),40,41 mutual information feature selection (Mutinffs),42 support

vector machine recursive feature elimination (SVM-RFE),43 Fisher’s,44
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multi-cluster feature selection (MCFS),45 and feature selection via

eigenvector centrality (EC-FS).46 Regarding classification, FSV and

SVM-RFE outperformed other feature selectionmethods.

2.4 Classification

To classify the ERP data into HC and AD groups, two classifiers were

adopted: RBFNN and MLP. RBFNNs have been widely used in the last

decade as a powerful tool in modeling and simulation, because they

are proven to be universal approximators of nonlinear input–output

relationships with any complexity.47 The MLP neural network classi-

fier is the most commonly used neural-network architecture because

it enjoys properties such as the ability to learn and generalize, fast

operation, and ease of implementation. One major characteristic of

these networks is their ability to find nonlinear surfaces separating the

underlying patterns.48

Cross-validation, which is a robust validation method, was used in

this study to evaluate the classification performance and to reduce

bias. The data from 150 subjects were initially divided into 10 folds.

One of the folds was for the testing and the other nine folds were

used for training the proposed models. This procedure was repeated

10 times until each fold had been used for testing. Ten times 10-fold

cross-validation was carried out for each classifier model, which gives

100 testing accuracy, sensitivity, and specificity, from which averages

were calculated. Averaging results over several iterations would lower

the fluctuation and provide statistically meaningful results.49 Classi-

fication accuracy is defined as the percentage of correctly identified

subjects over the total number of subjects in the dataset. Classification

sensitivity is defined as theprobability of a positive diagnosis given that

the patient does in fact have the condition. Specificity is defined as the

probability of a negative diagnosis given that the patient does not have

the disease.33

3 RESULTS

Presenting results for each combination of feature selection meth-

ods and classifiers would not be pragmatic and would unnecessarily

extend the length of this article; hence, best results are provided here.

The average classification results for all electrodes and three stim-

uli obtained using FSV and SVM-RFE as feature selectionmethods and

the two classifiers are presented in Tables 1, 2, and 3. It is noticeable

that the classification algorithms achieved high average classification

accuracy of > 75.1% for RBFNN and of > 79.2% for MLP. Accuracy

ranges from 75.1% to 96.1%. For RBFNN, the classification accuracy

was from 75.1% to 89.7% while for MLP, the accuracy ranged from

79.2% to 96.1%.

Comparing the results of standard tone presented in Table 1

with other electrodes, we can see that the classifiers had a better

performance at Pz and P3 electrodes. The best results were achieved

from the Pz electrode using MLP classifier and FSV feature selection

method (with an accuracy of 93.2%, a sensitivity of 91.6%, and a

specificity of 94.2%). Results for the target tone are presented in

Table 2. The best results were obtained at F3 electrode using MLP

classifier and SVM-RFE feature selection method (with an accuracy of

93.4%, a sensitivity of 89.8%, and a specificity of 96.0%). The results

for distractor tone are reported in Table 3. Comparing results of

seven electrodes, the classifiers generally yielded better results at

F3 electrode with the best results using MLP classifier and SVM-RFE

feature selection method (with an accuracy of 96.1%, a sensitivity of

95.6%, and a specificity of 96.4%).

To assess the overall performances of classifiers we combined all

the features (i.e., 2537 features × 7 electrodes × 3 stimuli = 53,277

features) and the top 40 features were used in the classification mod-

els. The overall results are given in Table 4. It can be observed from

Table 4 that RBFNN classifier and SVM-RFE feature selection method

achieved the highest average classification accuracy, of 98.3%.

TABLE 1 The results of classifiers for standard tone for seven electrodes

Classifier/feature

selectionmethod

Classifier

results (%) Fz Cz Pz F3 P3 F4 P4

RBFNN/FSV Accuracy 79.7 85.2 87.6 82.7 86.6 80.2 83.5

Sensitivity 78.3 86.7 88.8 81.5 87.0 78.1 82.6

Specificity 80.2 84.4 86.9 84.6 86.1 82.4 85.0

RBFNN/SVM-RFE Accuracy 80.1 88.2 88.4 82.4 86.7 85.3 85.7

Sensitivity 81.3 89.2 92.6 81.0 85.5 84.2 87.2

Specificity 78.9 88.0 84.9 83.4 88.2 86.0 84.1

MLP/FSV Accuracy 83.9 87.8 93.2 84.4 89.2 81.4 88.8

Sensitivity 81.0 84.3 91.6 81.5 85.5 75.2 87.6

Specificity 87.1 90.3 94.2 87.3 92.1 86.3 90.2

MLP/SVM-RFE Accuracy 87.9 89.8 92.4 80.2 91.5 85.5 89.1

Sensitivity 85.3 87.0 90.8 77.9 87.6 81.5 88.8

Specificity 89.4 91.6 93.6 81.9 95.2 89.2 89.2

Abbreviations: FSV, feature selection via concaveminimization;MLP,multilayer perceptron; RBFNN, radial basis function neural network; SVM-RFE, support

vector machine recursive feature elimination.
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TABLE 2 The results of classifiers for target tone for seven electrodes

Classifier/feature

selectionmethod

Classifier

results (%) Fz Cz Pz F3 P3 F4 P4

RBFNN/FSV Accuracy 83.8 86.4 75.1 79.9 82.3 82.8 78.8

Sensitivity 83.4 86.7 73.8 74.3 79.4 82.5 73.8

Specificity 84.5 86.3 76.4 84.5 85.1 83.7 83.5

RBFNN/SVM-RFE Accuracy 83.6 85.3 79.8 82.8 86.4 84.4 86.2

Sensitivity 80.8 80.0 76.4 78.5 84.8 80.1 84.8

Specificity 85.5 89.3 83.6 86.3 88.1 88.0 87.2

MLP/FSV Accuracy 90.8 88.6 80.1 84.1 85.9 86.7 79.2

Sensitivity 86.9 88.0 76.9 79.5 82.1 82.6 71.8

Specificity 93.8 88.9 82.9 88.6 89.2 90.0 84.9

MLP/SVM-RFE Accuracy 90.0 87.5 84.6 93.4 85.6 89.9 89.7

Sensitivity 87.3 84.0 80.0 89.8 82.1 86.4 86.5

Specificity 91.9 91.2 89.4 96.0 88.0 93.0 92.9

Abbreviations: FSV, feature selection via concaveminimization;MLP,multilayer perceptron; RBFNN, radial basis function neural network; SVM-RFE, support

vector machine recursive feature elimination.

TABLE 3 The results of classifiers for distractor tone for seven electrodes

Classifier/feature

selectionmethod

Classifier

results (%) Fz Cz Pz F3 P3 F4 P4

RBFNN/FSV Accuracy 85.1 83.5 82.8 88.4 82.1 86.8 79.1

Sensitivity 84.7 80.8 80.8 89.2 80.2 85.2 78.2

Specificity 85.5 86.2 84.0 87.4 83.0 88.2 80.0

RBFNN/SVM-RFE Accuracy 85.8 89.7 87.3 86.9 77.6 85.2 81.6

Sensitivity 86.4 86.1 83.9 85.9 79.7 86.4 78.5

Specificity 86.2 92.4 89.7 88.2 76.1 84.5 85.2

MLP/FSV Accuracy 92.2 87.8 90.0 92.9 85.4 88.9 84.9

Sensitivity 90.7 83.5 86.5 93.3 81.4 87.8 83.5

Specificity 93.4 91.1 93.2 93.2 88.7 90.7 86.0

MLP/SVM-RFE Accuracy 91.5 89.4 92.7 96.1 83.7 88.5 93.1

Sensitivity 88.2 86.2 89.3 95.6 82.1 89.1 92.0

Specificity 93.9 92.7 95.0 96.4 85.5 88.1 93.8

Abbreviations: FSV, feature selection via concaveminimization;MLP,multilayer perceptron; RBFNN, radial basis function neural network; SVM-RFE, support

vector machine recursive feature elimination.

TABLE 4 The overall performances of classifiers

Classifier/feature selectionmethod

Classifier

accuracy (%)

Classifier

sensitivity (%)

Classifier

specificity (%)

RBFNN/FSV 97.4 99.5 95.9

RBFNN/SVM-RFE 98.3 97.2 99.4

MLP/FSV 97.8 98.4 97.5

MLP/SVM-RFE 98.1 97.6 98.4

Abbreviations: FSV, feature selection via concaveminimization;MLP,multilayer perceptron; RBFNN, radial basis function neural network; SVM-RFE, support

vector machine recursive feature elimination.
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4 DISCUSSION

AD is the most prevalent form of dementia accompanied by progres-

sive memory loss, cognition loss, and functional decline. As the diver-

sity of dementia symptoms does not allow for easy diagnosis, the

search for an accurate biological marker for early diagnosis of the

disease remains an open challenge. Because controlling disease pro-

gression is much more effective in the preliminary stages, early diag-

nostic methods and biomarkers that could reveal the disease at the

earliest onset of it, prior to the manifestation of clinical symptoms,

are sought. To this end, this study was concerned with automated

early diagnosis of AD, using a non-invasive, objective, and low-cost

biomarker that could be measured in a community clinic, where most

patients get their first intervention.

Regarding dementia, ERPs have been used in numerous stud-

ies, most of which have exploited ERP components when studying

AD. Nonetheless, feature selection and classification techniques have

received less attention. In this research, a dementia classification

framework based on ERP data has been developed and implemented

in theMATLABR2013a environment to classify subjects with AD from

HCs. To meet our objective, interval-based features of ERPs recorded

during a three-stimulus oddball paradigm were explored as potential

biomarkers for discriminating AD patients from HCs. The results for

the two-class discrimination are encouraging as an overall accuracy of

98.3% was achieved using the RBFNN classifier and SVM-RFE feature

selectionmethod.

Amongprevious studies that have explored various ERP features for

the discrimination of AD from normal individuals, Jimenez-Rodriguez

et al.31 extracted SMC and SSME features and reached a sensibility of

81%and a specificity of 85%.Kimet al.,32 by computing statistical, non-

linear, and spectral features of EEG and ERP and feeding them to ANN

achieved a recognition rate of 81.9%. Compared to other similar stud-

ies in EEG, we have also been able to achieve satisfactory results. For

instance, McBride et al.13 extracted complexity and regional spectral

features of EEG and obtained an accuracy of 85.4% and Falk et al.,50

analyzing EEG amplitudemodulation, achieved an accuracy of 90.6%, a

sensitivity of 90.5%, and a specificity of 90.9%.

The findings of this work clearly show that adopting an interval-

based feature extraction method and the exploitation of artificial neu-

ral networks is practical and this method could detect AD at an early

stage with a remarkable accuracy. In addition, the results of this study

parallel the previous findings34 and support the idea that the interval-

based feature extraction method could be implemented to produce

comparable results in various classification scenarios during different

tasks. It is also expected that this technique could be applied to auto-

matically diagnose other neurological and psychiatric disorders such

as mild cognitive impairment (MCI), attention deficit hyperactivity dis-

order, and autism spectrum disorder. It is noteworthy that to distin-

guish between AD and HC subjects, patients with mild AD have been,

usedwhich is oneof the special advantages of this research. In addition,

the exclusion of patients suffering from severe psychiatric disorders

and avoiding sedatives and/or memory dietary supplements are other

benefits of this study as these types of disorders andmedications could

directly impact patterns of brain signals. Another advantage of our

method is its non-invasive characteristic and its independence of cul-

tural and educational influence; therefore, there is no limit to such

tests. Moreover, its procedure is totally free from radiation exposure,

and easy to operate.

One limitation of this study, however, is that we have focused on

a two-class classification problem (AD vs. HC), and did not evaluate

patients suffering from other types of dementia; hence, we cannot

comment onwhether these findingswould differentiateAD fromother

causes of cognitive impairment, such asMCI.

To improve this methodology and conduct more precise examina-

tions, it is suggested that MCI subjects be included in future studies.

Future studies should also take sex into consideration, as sex differ-

ences may also play a role. It is also thought that by combining more

robust and complex classifiers and other feature extraction techniques

the diagnostic accuracy of the method may increase. Future research

is expected to extend the proposed algorithm to multi-class situations

such as the classification of MCI, mixed AD, vascular dementia, and

HC. They should also cover various brain disorders other than demen-

tia to perform multi-class dataset classification to separate normal

brain function from various neurological disorders.

In summary, the results of our AD classifiers, with the best overall

accuracy of 98.3%, further confirm the usefulness of the ERP data as a

complementary approach in evaluating cognitive disorders.
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