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Abstract: Many researchers are beginning to adopt the use of wrist-worn accelerometers to objectively
measure personal activity levels. Data from these devices are often used to summarise such activity
in terms of averages, variances, exceedances, and patterns within a profile. In this study, we report
the development of a clustering utilising the whole activity profile. This was achieved using the
robust clustering technique of k-medoids applied to an extensive data set of over 90,000 activity
profiles, collected as part of the UK Biobank study. We identified nine distinct activity profiles in
these data, which captured both the pattern of activity throughout a week and the intensity of the
activity: “Active 9 to 5”, “Active”, “Morning Movers”, “Get up and Active”, “Live for the Weekend”,
“Moderates”, “Leisurely 9 to 5”, “Sedate” and “Inactive”. These patterns are differentiated by
sociodemographic, socioeconomic, and health and circadian rhythm data collected by UK Biobank.
The utility of these findings are that they sit alongside existing summary measures of physical
activity to provide a way to typify distinct activity patterns that may help to explain other health and
morbidity outcomes, e.g., BMI or COVID-19. This research will be returned to the UK Biobank for
other researchers to use.

Keywords: accelerometer; wearables; personal activity; clustering; profiling

1. Introduction

Being physically active is known to promote healthy outcomes, ranging from preven-
tion of non-communicable diseases, such as type 2 diabetes, osteoporosis, dementia, and
certain cancer prevention [1], to mental well-being [2] and even reduced risk of severe
COVID-19 outcomes [3]. However, 23% of adults globally are not sufficiently active; the
World Health Organisation launched the Global Action plan to tackle physical inactivity in
2018. This plan calls for systems to establish the sociocultural and environmental determi-
nants of physical inactivity, so that they can subsequently be tackled [4]. In the developed
world, where manual employment is less prevalent, physical inactivity rates are higher,
with 34% of men and 42% of women in the United Kingdom (UK) not active enough for
good health [5]. As a result, one in six UK deaths can be attributed to physical inactivity [5],
the same as attributed to smoking. This comes not only at a personal cost with respect to
health, but also a financial cost of GBP 7.4 billion annually in the UK [5].

Physical activity makes up the energy expenditure side of the energy balance equation.
Given the low levels of activity observed around the world, it is not surprising that we
also observe high levels of obesity. Improving physical activity levels and reducing obesity
prevalence is one mechanism through which health can be improved, but the benefits
of physical activity go far beyond weight status [5]. A pertinent example has come to
the forefront since the COVID-19 pandemic struck, with higher levels of physical activity
being associated with lower severity of COVID-19 symptoms [6]. In addition to population
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health, there are substantial planetary health benefits associated with being more active,
and replacing car journeys with active travel alternatives.

In part, it is challenging to understand physical activity behaviours and their drivers
because they are difficult and expensive to measure, with many surveys using subjective
self-reported activity diaries. Objective measures of physical activity from accelerometers
are valuable as they are less susceptible to the issues of self-report faced by surveys or
interview, which rely upon participant recall and, therefore, can be subject to inaccurate
recall or purposeful misreporting due to social desirability bias [7]. In addition, they are
able to capture extensive and fine-grained temporal nuances in behaviours, which enable
us to begin to unpick the drivers of physical activity and understand the balance between
activity and inactivity. Nonetheless, due to the associated costs of collecting accelerometry
data, study size and representativeness are often limited [8]. The UK Biobank cohort study
is one of the first studies to achieve objective measures of physical activity at a scale not
normally achieved by surveys [9].

As part of the UK Biobank initiative, a subset of over 103,000 participants wore wrist
worn accelerometer devices for 7 days, and data were subsequently processed using the
Euclidean Norm Minus One (ENMO) metric and made available to researchers [10]. Data
were recorded as activity level over a 5 s time period (measured as milli-gravity units, mg),
providing 120,960 data points for each participant.

These data have subsequently been used in combination with the UK Biobank’s
extensive data on disease and health outcomes [11]. These included studies into: func-
tional fitness, measured through walking pace [12] or grip strength [13]; cardio vascular
disease [14,15] and heart failure [16]; cancer generally [17] and specifically breast can-
cer [18]; mental health [19] including psychiatric conditions [20,21] and depression and
anxiety [22]; mortality generally [23,24], but also concentrating on volume and intensity
of activity [25,26]; sleep quality [27,28] and the relationship of sleep to morbidity out-
comes [6,29]; and circadian rhythms [30,31]. Outside of health, a range of studies have
been reported that correlate these objectively measured physical activity levels with other
observations and outcomes such as environmental characteristics [32], travel [33], and
activity [34,35].

To utilise these data, many studies attempt to summarise the activity patterns, often
using statistical summary measures of the activity level, with the risk that using such
summary measures loses some of the richness and value in these data. The average level
of activity is the most common measure used [36–38]. Another study, concerned with
Parkinson’s disease, used the variation in movement to act as proxies for the subject’s gait
and lateral movement [39]. Others have used various thresholds based on milli-gravities to
identify periods of activity covering a range of levels, from being sedate, through light and
moderate, to vigorous activities [16,22,40]. Another approach is to concentrate on just the
higher moderate to vigorous physical activity range [41–44].

The aim of this study is to provide an alternative metric to classify the activity of
individuals. We illustrate the use of processed raw accelerometer data to produce a
useful and comprehensive measure, and investigate its importance to health. In particular,
rather than adding to the existing continuous measures of physical activity we provide
a categorical based measure of physical activity. This measure is defined by both the
participant’s pattern of activity over the week and the intensity of this activity, capturing
both periods of physical activity and sedentary behaviours. We then look at the variation in
participant’s characteristics, based on sociodemographic attributes, socioeconomic status,
their health, and circadian rhythm. We additionally demonstrate the utility of these patterns
to differentiate amongst participants on two outcomes, body mass index (BMI) [45] and
COVID-19 testing outcome. This is similar to what others have done when exploring
how aggregate and threshold derived measures affects outcomes such as physical fitness,
cardiovascular disease etc. (see above). We hypothesise that (1) BMI will be higher in less
active activity patterns and (2) positive COVID-19 test outcomes will be higher in those
who are least active and reliant on outside care.
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2. Materials and Methods

The UK Biobank is a prospective study of over 500,000 participants aged between
40 and 69 years, resident in Great Britain and recruited via their general medical practi-
tioner service. Participants were asked to attend one of 22 regional assessment centres
during the period 2007 to 2010 to collect baseline data. During this visit, data were col-
lected on various themes, including: sociodemographic, family history, lifestyle behaviours,
and health status. In addition, some physical measurements were taken: height, weight,
blood pressure, grip strength, spirometry, and fitness tests, along with biomarker data
such as blood and urine samples. Participants were asked to consent to linkages to their
historic and future electronically held heath data—this latterly including COVID-19 testing
and outcome data. A comparison of the make-up of these participants and the general
population is reported in Fry, Littlejohns [46].

Subsequently sub-samples of participants were asked back for repeat assessments
and also to complete various on-line surveys, for example around diet [47], occupational
history [48], and mental health [49]. One important request was for participants to wear
wrist worn accelerometers for one week over the period June 2013 to December 2015. The
processing of these data is described in Doherty, Jackson [10].

2.1. Activity Profile Selection

Our research team was supplied with accelerometer data from 103,687 participants,
summarised into 5 s time periods. This measure of physical activity was provided in milli-
gravity units (mg), with higher values indicating greater activity, and to put this measure
into context, a table of mg values for typical daily activities is provided by Migueles,
Cadenas-Sanchez [50], with a 3 min walk at a usual speed, measuring around 130 mg
on an accelerometer worn on the dominant wrist. Over a full week, there should have
been 120,960 of these 5 s time periods; however, the completeness of these data varied
by participants. We grouped the participants into five different groups according to the
quality and completeness of these data, as described below:

Complete and perfect. Where participants provide valid readings for all 120,960 of
the 5 s time periods during the week of wear. These data were used as reported, with
no adjustment.

Complete and imputed. Where participant data required some imputation by UK
Biobank, using readings from the same time-of-day on other days [10], thereby providing
the 120,960 readings. These data were used as reported, with no adjustment.

Incomplete, but recoverable. These data were provided with 120,959 readings (either
actual or UK Biobank imputed), with additionally just one blank reading, typically the
final 5 s of the reporting period. These data are used here, but with a recognition that
when readings were averaged over 1 h (see below), for one of the hours this is based on
719 readings rather than 720.

Switch to day light savings time. This happens in the UK in late March, as the time
zone moves from Greenwich Mean Time (GMT) to British Summer Time (BST), effectively
providing blank data from 01:00:00 GMT to 02:00:00 BST. These participants provide
121,680 readings, with at least 720 of these being blank and the final day’s wear extended
by 1 h. To use these data, the missing blank hour of data on Sundays from 01:00:00 GMT to
01:59:55 GMT was be imputed by us using the average of readings in this same hour on
other days and the extra hour of data at the end of the series removed.

Switch from daylight saving time. This happens in late October, effectively duplicat-
ing data during 01:00:00 BST to 01:59:00 BST with 01:00:00 GMT to 01:59:00 GMT data,
providing just 120,240 readings. This means that these data have one less hours’ worth of
data on the final day, usually 09:00:00 GMT to 09:59:55 GMT, and to recover these data, this
final hour is imputed by us using the averages of readings in this same hour on other days.

The data from the participants who did not fall into one of these five categories was not
used in this study. Further participant data were not used (even though it was technically
useable) because the participant had asked to withdraw from the study, or they were
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younger than 40 or older than 69 at baseline assessment and, thus, outside the scope of
UK Biobank.

In line with other studies, these useable data were further checked for suitability.
Participants whose average activity levels were greater than 100 mg were excluded and
those with less than 72 h of non-impute wear were removed; both thresholds have been
used in other studies involving these data [15,16,51]. Recognising that there is some noise
in these data, for later analysis purposes, these 5 s time periods were averaged out to cover
1 h periods (an average over 60 × 12 = 720 5 s time periods).

As can be seen in the Section 3, this process provided us with over 91,000 useable
activity profiles. The goal was then to establish whether there are any meaningful clusters
and what their overall activity patterns look like.

2.2. Clustering Algorithm Choice

For this study, a number of clustering techniques were considered. One consider-
ation was the number of participants present in these data. Techniques that required
the computation of a full (but symmetric) distance matrix (of approximately 91,533 by
91,533 in size, ≈4140 million entries) were too computationally demanding for meaningful
analysis. Additionally methods that were themselves computationally expensive, in terms
of calculating these distances, would also present challenges. These two considerations
lead us to looking at the k-means family of clustering algorithms.

These methods only require the computation of similarities (measured as distances)
from each participant to a set of k cluster centres (i.e., a sequence of n × k calculations,
rather than calculations to populate a triangular n × (n − 1)/2 matrix). Consideration is
then needed of how to best calculate these similarities and to what an ‘averaging’ might
look like to establish the cluster centres. Some studies have advocated the use of dynamic
time warping (DTW) distances as an alternative to Euclidean distances in measuring
the similarity between time series trajectories [52,53]. However the calculation of DTW
distances is much more time consuming than the Euclidean equivalents [54]. Genolini,
Ecochard [55] highlight these issues, and propose the use of a custom distance metric,
an extension of the Fréchet distance, to compute these distances and a Fréchet mean
to calculate cluster centres. Recognising that these refinements can be computationally
demanding, even for small to medium sized data sets, they propose workarounds, such
as initial clustering using Euclidean distance to generate a large sample of representative
trajectories (e.g., k = 128), which are then themselves clustered using a Fréchet based
approach, or by simplifying the trajectories themselves. Both these solutions involve
assumptions on the representativeness of the initial clustering solution and compromises
on the detail within the trajectories.

Working on an assumption that the Euclidean distance is good enough to capture the
similarity between activity profiles, we used a random sample of our data to compare the
patterns in the distance matrix calculated using both DTW and Euclidean distances. We
require that the pattern in these two matrices should be similar, e.g., two profiles that are
similar using the DTW metric should also be similar using the Euclidean metric. If we
are satisfied with this assumption, then k-means and its variants become possibilities for
analysis. We assess these metrics in Section 3.2.

Acknowledging that the activity profiles can be noisy, even when averaged to hourly
profiles, we adopted the k-medoids clustering algorithm [56,57]. The k-medoid algorithm
works in a similar manner to k-means except that the cluster centres are chosen to be actual
profiles rather than an aggregation of profiles. This approach makes the algorithm less
sensitive to the presence of unusual profiles, since it is effectively using the median rather
than the mean as its measure of average. It also uses the Euclidean distance rather than the
squared Euclidean distance, which again reduces the influence of outlying profiles.
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2.3. Model Specification and Validation

To fit these models, the K_Medoids function from the R package ClusterR was
used [58], running on a high performance computer with 40 cores and 192 Gb of RAM.
A measure of dis-similarity is calculated that measures how heterogeneous each cluster
is, with the aim to minimise this value. However, by definition, this value will always
decrease as the number of clusters, k, increases (as with the scree plot in k-means [59]). An
approach to deciding the number of clusters is to look for an elbow in a plot of k versus the
dis-similarity measure. This elbow indicates a change in the gradient in the plot, where
the reduction from having additional clusters levels off. Another measure to evaluate the
clustering performance is that the sizes of each cluster should be relatively similar, with
no cluster having too many or too few participants associated with it. The chosen value
of k can be further internally validated by examining the resultant activity profiles, to see
if they are plausible. External validation can be gained by seeing how these clusters are
characterised against other information available on the participant that was not used in
the clustering process.

2.4. Application of Activity Profiles to Health Outcomes

To illustrate the utility of these activity profiles, two outcomes were examined to
see if they vary between the clusters, a participant’s BMI and COVID-19 test result. This
is possible since at the baseline visit the participant’s standing height and weight were
objectively measured by a nurse, with these measures then used to calculate their BMI.
Here, we report the activity patterns associated with each participant’s BMI status.

The UK Biobank recently provided information to researchers on various outcomes
related to COVID-19. One rich and contemporary source of information concerns testing,
whether a participant had undergone a test for COVID-19, and what the test result was.
Here, we have data for tests conducted up to 23 March, 2021, which was after the UK’s
second wave of infections. It is also in this period—up to the end of March 2021—that
most of the UK Biobank participants, who would be in priority groups by virtue of their
age, would have been offered at least one of their two COVID-19 vaccinations. We report
the number of participants in each activity pattern that were alive on 23 March, 2021, the
percentage of these participants who had a test, the proportion that tested positive, and the
percentage of tests that were positive.

3. Results

The UK Biobank provided 103,687 acceleration profiles from volunteer participants.
Subsequent to wearing the accelerometer, nine participants asked for their data to be
removed from UK Biobank. Of those remaining, 346 profiles were from participants who
were aged younger than 40 or older than 70 at baseline and therefore should technically
not be part of the cohort. This leaves 103,332 activity profiles for potential analysis (99.7%
of the original 103,687).

3.1. Selection of Profiles

As described above not all these profiles will be amenable to analysis. Looking at those
that are available, we find that there are 22,056 profiles that are complete and perfect (21%
of the 103,332); 45,574 that are complete and imputed (44%); 21,634 that are incomplete
but recoverable (21%); 1141 that occurred during the switch to daylight savings time (1%);
and 2015 that occurred during the switch from daylight savings time (2%). This provides
92,420 profiles for potential analysis (89% of the 103,332).

The 16 participants that have an average activity level of 100 mg or more and the 887
who have less than 72 h of valid wear are removed from our sample, leaving 91,533 profiles
useable for analysis (88% of the original 103,687 supplied to us by UK Biobank). Figure 1
provides examples of two profiles where the average activity levels are (a) consistently
high and (b) contain high spikes, with Supplementary Charts S1 to S15 showing the pattern
for all 15.
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Younger, 40 to 54 39.6% 39.1% 38.8%
White/British 96.6% 96.4% 94.1%
In paid employment or self-employed 61.8% 62.3% 57.4%
Non-Car/motor vehicle commute 39.9% 40.0% 63.0%
College/University 42.9% 43.1% 32.1%
School qualifications 37.5% 37.4% 37.3%
Income of more than £31,000 54.8% 55.1% 43.9%
Least 20% deprived 44.5% 44.2% 39.9%
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Excellent/good health 81.5% 81.3% 73.8%
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Definitely/more a ‘morning’ person 56.5% 56.2% 55.3%
Spring/summer accelerometer wear 48.8% 49.2% NA
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Figure 1. Two profiles with large average activity profiles, with the green line being the hourly profile, the grey line the 5 min
profiles and the red notches indicating the presence of imputed values for that time period. (a) Participant whose activity
levels remain high for the entire 7 days. (b) Participant whose activity levels spike to high values on several occasions.

In Table 1 the composition of the full UK biobank sample, the sample of those who
wore an accelerometer, and those whose data were useable for clustering are presented
to illustrate if there are any bias introduced as a result of this selection process. There are
clear differences between the full UK Biobank sample and those who volunteered to wear
an accelerometer. Those in the accelerometer sample are more likely to be female, white
British, in employment, car users, with higher levels of education and be wealthy. They
also have better health, but their circadian rhythms are not that dissimilar. The composition
of the sample useable for clustering is broadly similar to those that wore an accelerometer
across each of the characteristics. This provides reassurance that the process of identifying
and cleaning the 103,332 available activity profiles into a useable sample has not biased the
resultant sample when measured on these metrics.

Table 1. Comparison of the composition of the full UK Biobank sample, those contributing accelerometer data, and those
available for clustering.

Characteristic Clustering Sample Accelerometer Sample UK Biobank

Female 56.5% 56.2% 54.4%
Younger, 40 to 54 39.6% 39.1% 38.8%
White/British 96.6% 96.4% 94.1%

In paid employment or self-employed 61.8% 62.3% 57.4%
Non-Car/motor vehicle commute 39.9% 40.0% 63.0%
College/University 42.9% 43.1% 32.1%
School qualifications 37.5% 37.4% 37.3%
Income of more than £31,000 54.8% 55.1% 43.9%
Least 20% deprived 44.5% 44.2% 39.9%

Healthy BMI 38.7% 38.6% 32.3%
Excellent/good health 81.5% 81.3% 73.8%
No Long standing illness 70.1% 70.1% 65.6%

Very/Fairly easy to get up 82.2% 82.1% 81.0%
Definitely/more a ‘morning’ person 56.5% 56.2% 55.3%

Spring/summer accelerometer wear 48.8% 49.2% NA

N 91,533 103,332 500,028

3.2. Comparison of Distance Metrics

Here, we present a comparison of the distance (or dis-similarity) calculated using:
(a) Euclidean metric or (b) DTW metric. For 40 randomly selected participants, the full
distance matrix was calculated and the values from these calculations are illustrated in
Figure 2.
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An initial inspection shows that whilst the actual distance values are different (the
DTW values are generally higher), the general patterns in both matrices are very similar.
Pairs of participants that are far apart on one metric (large blue circles) are also far apart
on the other, and pairs that are close on one metric (small red circle) are also close on
the other. This provides the reassurance that the computationally simpler and quicker
Euclidean distance is an acceptable substitute for the more computationally expensive
DTW calculation.

3.3. K-Medoids Clustering

K-medoid models were fitted to the 91,533 activity profiles for various values of k,
ranging from k = 1 to k = 18. The dis-similarity scree plot and the reductions in dis-similarity,
as k increases, are shown in Figure 3.
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The identification of an elbow in Figure 3a is difficult to discern, however the first
difference plot in Figure 3b provides some guidance on a suitable value for k. There are
substantial reductions in the dis-similarity moving from k = 1 to k = 4. The reduction from
moving from k = 4 to k = 5 is much smaller, and for the next movement, from k = 5 to
k = 6 this reduction stays constant. Further drops in this reduction occur moving from
k = 6 to k = 7 and from k = 8 to k = 9. Thereafter the reductions are similar and generally
level. Recalling that this first difference is akin to a gradient, Figure 3b suggests that after
k = 9 the gradient becomes linear, and the reductions in dis-similarity are constant and
not a function of k. We see that the last time that a sizeable reduction in dis-similarity
occurred was moving from k = 8 to k = 9. This then suggests that there are potentially nine
meaningful clusters in our activity patterns.

3.4. Nine Cluster Solution Verification

Having arrived at a solution with nine clusters, the plausibility and differentiation
of the resultant overall patterns of activity associated with each cluster helps to validate
the choice of the number of clusters. For the nine-cluster solution, the average activity
patterns within each cluster is shown in Figure 4, with descriptive labels below each chart.
Additionally, the medoids and average profiles for all cluster solutions k = 1 to k = 16
are provided in the Supplementary Material. Here we introduce the nine clusters and
provide a short descriptive label for each cluster. These labels are for convenience to aid
interpretation and commonly used in clustering work [60,61]. Care has been taken to
minimise subjectivity and potential stigma.
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The first group has 8313 participants who have a pattern with bursts of activity in the
mid-morning and late afternoon during the weekdays, with a plateau in between. They are
also active on a weekend, particularly in the morning. These have been termed our “Active
9 to 5” participants because of their high levels of activity and their regular weekday
patterns, suggestive of activity on the way to—and on the way home from—work. The
second group are our straight-forward “Active”, who have similar levels of activity to the
“Active 9 to 5”, maintaining an active day, but the 9 to 5 pattern is not present, missing the
late-afternoon spike. Our third group is termed “Morning Movers” because they exhibit a
burst of activity in the morning, but this is not maintained and quickly diminishes through
the day. The “Get up and Active” group also have a spike of activity in the morning, as
seen in all our other patterns so far, but they plateau a level of moderate activity during the
day, unlike the “Morning Movers” whose activity levels do not plateau.

The fourth group is those who appear to “Live for the Weekend” and are the first
to not show a morning spike, instead maintaining a plateau of activity through each
weekday. However, at the weekend their activity levels do spike, particularly on a Sunday
morning. Our “Moderates” group is perhaps the most average of the patterns. There are
no discernible spikes in the pattern, but the activity levels through the day are maintained
and moderate. The “Leisurely 9 to 5” group looks to be similar to our first “Active 9 to 5”
group, but with some important differences, firstly the activity levels are much lower for
these participants, being nearly half as active, and there does not appear to be a spike of
activity at the weekends. The eighth group is our “Sedate” group who have lower levels
of activity that quickly diminish through the day. The final group is our “Inactive” group
who have a pattern with the lowest levels of activity and no discernible spikes.

These patterns associated with each group appear to be plausible and no group is
particular large or small, with the largest group, “Get up and Active” making up 17% of
the participants and the smallest, “Inactive”, being 7%.

3.5. Nine Cluster Solution Validation

Whilst the previous section demonstrates that the clusters can be differentiated using
the activity profiles that were used to drive the clustering, further insight and reassurance
can be gained by seeing how participants in each of these activity pattern groups can
be characterised against other information. Fortunately, the UK Biobank contains a rich
variety of information on each participant that is suitable for this purpose.

Here, we use information from a number of domains (as shown in Table 1) to
characterise the participants in each group. Table 2 shows the percentage of partic-
ipants within each group that fall into each category, with rows highlighted so that
the largest value is in red whilst the lowest is in blue (the full tables are provided as
Supplementary Tables S1–S15). So for example, 61.1% of the ‘Active 9 to 5’ group of partic-
ipants are female, whilst only 45.3% of the ‘Inactive’ group are female.

Table 2. Composition of each activity pattern, with a heatmap showing higher values in red and lower values in blue.

Characteristic Active 9 to 5 Active Morning
Movers

Get Up and
Active

Live for the
Weekend Moderates Leisurely 9

to 5 Sedate Inactive Clustering
Sample

Female 61.1% 60.2% 59.5% 61.2% 56.0% 58.2% 49.5% 52.8% 45.3% 56.5%

Younger, 40 to 54 67.8% 46.4% 32.6% 31.6% 49.6% 35.8% 66.1% 18.0% 26.2% 39.6%

White/British 95.4% 97.2% 97.5% 97.2% 96.3% 95.9% 94.1% 98.0% 96.5% 96.6%

In paid
employment or
self-employed

81.6% 65.3% 55.8% 56.3% 71.1% 59.2% 85.8% 44.7% 47.8% 61.8%

Non-car/motor
vehicle commute

46.6% 40.6% 36.5% 41.3% 39.2% 39.3% 41.9% 34.4% 36.3% 39.9%

Attended
college/university

46.9% 41.9% 39.2% 44.3% 46.1% 44.8% 46.5% 37.4% 39.6% 42.9%

School
qualifications

39.3% 40.6% 38.8% 36.2% 37.6% 36.7% 38.0% 36.8% 35.2% 37.5%

Income of more
than GBP

31,000/year
66.0% 56.3% 52.3% 52.9% 62.4% 51.7% 67.2% 44.7% 43.6% 54.8%
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Table 2. Cont.

Characteristic Active 9 to 5 Active Morning
Movers

Get Up and
Active

Live for the
Weekend Moderates Leisurely 9

to 5 Sedate Inactive Clustering
Sample

Lives in east 20%
deprived

neighbourhood
43.4% 46.5% 47.7% 47.3% 45.2% 41.6% 39.1% 46.8% 38.1% 44.5%

Healthy BMI 55.8% 54.1% 43.5% 42.5% 41.1% 33.6% 33.7% 27.2% 20.1% 38.7%

Excellent/good
health

89.8% 88.7% 86.5% 84.9% 85.0% 77.4% 80.4% 76.6% 60.9% 81.5%

No long standing
illness

81.5% 77.7% 74.6% 71.4% 74.9% 66.3% 72.7% 62.5% 48.1% 70.1%

Very/fairly easy to
get up

84.9% 81.1% 85.4% 85.1% 84.6% 72.5% 82.7% 84.4% 75.1% 82.2%

Definitely/more a
morning person

65.7% 52.5% 60.2% 60.5% 61.7% 38.8% 63.1% 56.6% 44.6% 56.5%

Spring/summer
accelerometer wear

54.4% 52.3% 49.5% 48.4% 51.0% 47.0% 49.7% 44.4% 44.9% 48.8%

N (%) 8313 (9.1%) 5975
(6.5%)

10,758
(11.8%)

15,154
(16.6%)

12,395
(13.5%)

11,037
(12.1%) 8064 (8.8%) 13,050

(14.3%)
6787

(7.4%)
91,533
(100%)

Table 1 identifies clear differential patterns, summarised below.
Active 9 to 5. These participants are predominately female, younger, and from a White

British background. They have high levels of employment, qualification, and income. They
are very healthy, with a healthy BMI, and few other reported health issues. Their circadian
rhythms suggest that they are mostly able to get up in the morning. They also tended to
wear the devices during the spring/summer seasons.

Active. Participants in this group are similar to the “Active 9 to 5” participants, but
have a slightly different circadian rhythm; they have difficulty getting up in the morning
and definitely do not see themselves as morning people.

Morning Movers. These participants are again largely female, but not so young. They
are less likely to be in employment and have lower levels of education, whilst living in
deprived neighbourhoods. Their health is generally better than the clustering sample as a
whole. They find it very easy to get up in the morning, but they do not necessarily consider
themselves morning people.

Get up and Active. This group is similar to those who are “Morning Movers”, but are
slightly more likely to be Female and are better educated.

Live for the Weekend. The sex split for this group is not dissimilar to the entire
clustering sample, but they are slightly younger and less White British. They are more
likely to be in paid employment and have reasonably good levels of education, wealth, and
health. Their circadian rhythm is also fairly typical of the clustering sample.

Moderates. These participants are generally in line with the entire clustering sample,
but distinctively different when it comes to reporting having problems getting up in the
morning and do not generally identify as morning people.

Leisurely 9 to 5. Here, we see a greater proportion of males. This is a relatively young
group, with high levels of employment, education, and wealth. Their health is not so good
however, with a low percentage having a healthy BMI.

Sedate. Participants in this group are predominately male, older, and White British.
They have lower employment and levels of education, but they live in less deprived
neighbourhoods. They were more often asked to wear the device in autumn or winter.

Inactive. This group has the largest percentage that is male. Whilst older, they are
not that much older than participants in some of the other patterns. They also report low
percentages for the socioeconomic characteristics, such as employment, education, and
wealth. Their health is poor.

One of the strongest trends in Table 1 is that showing the composition of each group
by sex. Whilst females do generally have a higher representation in the clustering sample,
they are very much more represented in the more active patterns. Otherwise the groupings
accord with prior expectations in that the more active patterns are younger, have better
socioeconomic characteristics, are in better health.
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3.6. Obesity Outcomes

As noted in the Introduction, levels of physical activity can have an important influ-
ence on measures of health and wellbeing. One such measure is the BMI. Table 3 shows
how the BMI status of participants in each group distributes amongst the activity patterns.
Looking at this table, we see that those who are a healthy weight or who are overweight
are most likely to have a “Get up and Active” pattern, whilst those who are living with
obesity are most likely to be “Sedate”.

Table 3. Composition of weight status summarised by percentage in each activity profile pattern, and in comparison to the
total cohort.

Active 9
to 5 Active Morning

Movers
Get Up and

Active
Live for the
Weekend Moderates Leisurely

9 to 5 Sedate Inactive

Healthy 13.1%
(+4.0%)

9.1%
(+2.6%)

13.2%
(+1.5%)

18.2%
(+1.6%)

14.4%
(+0.8%)

10.5%
(−1.6%)

7.7%
(−1.1%)

10.0%
(−4.2%)

3.8%
(−3.6%)

Overweight 7.6%
(−1.5%)

5.8%
(−0.7%)

12.0%
(+0.3%)

16.8%
(+0.3%)

13.8%
(+0.2%)

12.6%
(+0.6%)

8.8%
(0.0%)

15.6%
(+1.4%)

7.0%
(−0.4%)

Obese 4.0%
(−5.0%)

2.8%
(−3.7%)

8.4%
(−3.4%)

12.9%
(−3.7%)

11.4%
(−2.1%)

14.1%
(+2.1%)

11.1%
(+2.3%)

19.9%
(+5.7%)

15.3%
(+7.9%)

All 9.1% 6.5% 11.8% 16.6% 13.5% 12.1% 8.8% 14.3% 7.4%

To better understand these trends relative to the group sizes, Table 3 also provides the
difference in these percentages-so of those participants who have a healthy BMI, 13.1% are
in the “Active 9 to 5” group, which is +4.0% more than the equivalent percentage across all
obesity outcomes, here 9.1%. Here we now see that whilst 19.9% of those who are living
with obesity are in the “Sedate” group, this is only 5.7% more than the percentage across all
obesity outcomes, whilst the 15.3% who are “Inactive” are 7.9 percentage points more than
the expected 7.4%. Looking at these differences, we see that the healthier patterns are more
likely to be over represented with healthy BMI outcomes (positive differences) whilst the
less healthy patterns are more likely to be over represented in the outcome of those living
with obesity. The differences for those who are overweight are much less pronounced.

3.7. COVID-19 Test Outcomes

In Table 4, we report the number of participants in each pattern that were alive
on 23 March 2021, the percentage of these participants who had a test, the proportion
that tested positive and the percentage of tests that were positive. This table shows that
mortality is highest with the least active patterns, which is unsurprising given their age
and health profile as shown in Table 2. Even given that we are looking at physical activity
behaviour at some time before the pandemic, we still observe a relationship between
COVID-19 outcomes and historical physical activity levels. The participants in inactive
groups are more likely to be tested than participants with other activity patterns, but their
test outcomes are more likely to be negative than for participants with most other activity
patterns, with only a small percentage of tests returning positive results. The groups with
the highest positive test results are the two 9 to 5 patterns, whose positivity rates are high,
at nearly a quarter of tests coming back positive.

Table 4. Composition of each activity pattern by COVID-19 outcomes, with a heatmap showing higher values in red and
lower values in blue.

COVID-19
Outcomes

Active 9
to 5 Active Morning

Movers
Get Up and

Active
Live for the
Weekend Moderates Leisurely

9 to 5 Sedate Inactive Clustering
Sample

Wearable
Sample

UK
Biobank

Alive on 23
March 2021 8215 5891 10,534 14,801 12,153 10,696 7897 12,455 6205 88,847 100,292 465,472

%
Participants

alive
98.8% 98.6% 97.9% 97.7% 98.0% 96.9% 97.9% 95.4% 91.4% 97.1% 97.1% 93.1%
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Table 4. Cont.

COVID-19
Outcomes

Active 9
to 5 Active Morning

Movers
Get Up and

Active
Live for the
Weekend Moderates Leisurely

9 to 5 Sedate Inactive Clustering
Sample

Wearable
Sample

UK
Biobank

%
Participants

alive and
tested

16.1% 14.4% 16.1% 16.6% 17.3% 17.9% 17.1% 18.0% 20.8% 17.1% 17.2% 18.6%

%
Participants

alive and
tested

positive

3.7% 2.9% 2.8% 2.4% 3.1% 2.8% 4.0% 2.3% 3.0% 2.9% 3.0% 3.7%

Positive rate 23.20% 20.4% 17.2% 14.6% 17.8% 15.7% 23.19% 12.8% 14.4% 17.0% 17.2% 20.1%

4. Discussion

In this study, a clustering of the whole activity profile of UK Biobank participants has
been carried out to produce nine distinct patterns of activity: “Active 9 to 5”, “Active”,
“Morning Movers”, “Get up and Active”, “Live for the Weekend”, “Moderates”, “Leisurely
9 to 5”, “Sedate” and “Inactive”.

When we look at the characteristics of participants in each pattern, we observe an
over-representation of females in the more active patterns. In their systematic review
of studies with a focus on the 50 and older age range, Notthoff, Reisch [62] found the
evidence for differing activity patterns between the sexes to be somewhat inconclusive
and varied by type of activity, with van Uffelen, Khan [63] highlighting different sex-
specific motivating factors to undertake types of physical activity. Previously however,
O’Donoghue, Perchoux [64] found women to have a higher mean vector magnitude, a
proxy for total physical activity, than men in all but the age group (aged 45–54). Moreover,
recent work by Pontin, Lomax [65] looking at trends in habitual physical activity behaviour
identified that, despite females moving more throughout the day, it was at a lower intensity
and, thus, did not routinely contribute to meeting physical activity guidelines framed
around moderate to vigorous activity.

Otherwise, the other characteristics accord with prior expectations, with the active
patterns being younger, wealthier, better educated, having good health status, and with
circadian rhythms more attuned to the mornings. For the more inactive patterns, these
characteristics reverse.

To assess if the season in which a participant wore a sensor might impact cluster
membership, we looked at self-reported health outcomes for each group, disaggregated by
the season in which members wore an accelerometer. We found no substantial difference,
suggesting that season does not disproportionately drive activity pattern membership,
and should be interpreted in the same way as the other variables reported in Table 2. A
previously study using a similar k-means clustering method identified that weekly activity
behaviour patterns contributed to seasonal physical activity; however, the different weekly
behaviour patterns were not mutually exclusive to one pattern of seasonal behaviour [66].

With the BMI outcome, there are clear differences in outcomes by our activity patterns,
individuals with a healthy BMI are more likely to be in the more active groups whilst
individuals who are obese are more likely to be in the ‘Inactive’ and ‘Sedate’ groups. This
is unsurprising given that physical activity is one side of the energy balance equation [67].
Additionally, these active UK biobank participants are more likely to have other good
lifestyle behaviours and other characteristics previously related to lower BMI than their
“Inactive” and “Sedate” counterparts, which accords with a whole systems mapping
approach to understanding BMI [68].

Following on from this understanding of BMI, there is a link to our second outcome,
testing and test results for COVID-19 either through obesity [69,70] or through ethnicity
and other factors [71]. In their study, Chadeau-Hyam, Bodinier [72] found that having a
high BMI increased the chances of being tested and testing positive. These earlier studies
mainly used test outcomes when the vast majority of testing took place in a hospital
setting, with very little community testing taking place, meaning that most test subjects
would already have adverse health conditions. In our extended analysis of COVID-19 test
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outcomes, covering a period with enhanced community testing, we find that those with the
historically least active patterns, and therefore having poorer BMI outcomes, are also more
likely to be tested, as others have reported. However, conversely we find that these tests
are less likely to be positive for these inactive patterns, counter to one of our hypothesis
that the inactive would be more likely to test positive. This outcome could, in reality, be a
result of those participants with these patterns following government guidelines in regards
to shielding [73], or being cautious in who they interact with, reducing their exposure to
COVID-19. In fact, the groups with the highest positivity rate are the “Active 9 to 5” and
the “Leisurely 9 to 5” patterns. The period for which we have the COVID-19 testing data
(up to March 2021) saw periods between lockdowns where more people returned to work
and therefore had greater exposure to possible infections. Their activity pattern is certainly
suggestive of activities around commute journeys to a place of work, and such activities
may expose people to more contacts in environments that they have little control over [74].
In support of this, Rowlands, Dempsey [75] also found that there was a positive association
between total physical activity and higher odds of a non-severe infection, with an odds
estimate of 1.10.

Our identification of activity behaviour helps provide a novel tool for the research
community to compare observed patterns of physical activity behaviour in different con-
texts and from a wide range of smartphone and wearable sources [76]. A number of studies
have performed similar exercises. In a study by Willetts, Hollowell [51], 132 non-UK
Biobank adult volunteers were asked to wear both wrist accelerometers and cameras, and
these ‘ground truth’ data were used to train a random forest algorithm to identify periods
in the day that the volunteer was undertaking certain classes of activity. These activities
were sleep, sit/stand, vehicle, mixed-activity, and bicycling. This model was then applied
to the equivalent accelerometer data from UK Biobank to identify periods of such activities
within the cohort. Their study was able to predict certain activities within the day, in
contrast to the approach here, which is to look at the entire week of activity.

Using the approach of classifying time periods within the week, Lam, Catt [77] created
a matrix of bouts of high-level activities, where the percentage split, amount of time and
number of bouts undertaken in five activity classes during four time periods in the day,
were collated for each participant. These high-level summary measures were then used to
classify participants using k-means and hierarchical clustering. They identified just three
classes, which, like here, they went on to characterise, with the ultimate aim to predict
presence of type-2 diabetes using a variety of supervised machine learning algorithms.
They found that their study supports the hypothesis that individuals with diagnosed type-2
diabetes exhibit physical activity patterns that are significantly different from those of the
control participants.

In a study of the impact of shift work patterns on life expectancy, Pocuca, Farrell [31]
identified 5507 UK Biobank participants who undertook shift work and wore an accelerom-
eter, which yielded 5029 activities patterns amenable to analysis. They performed a
clustering using a finite mixture model, which predicted three clusters in this specialist
study. The conclusion was that there were protective effects from undertaking physical
activity, which could offset the additional risk associated with shift work. Whilst this is a
more specialist study than the one we report, it does demonstrate the utility of summary
clusters in explaining health related outcomes.

Whilst not using UK Biobank data, Jones, Mirkes [78] used equivalent data to train
and validate supervised machine learning algorithms to develop a portable model to
discriminate activity clusters. They used k-means to identify 10 clusters in their data that
were further grouped using information on time spent undertaking nine types of physical
activities into ‘super-clusters’ of sedentary (5 clusters), mixed (1 cluster), slow (2 cluster),
brisk (1 cluster) and running (1 cluster). The primary aim of this study was to test the
portability of its models to other similar datasets, but UK Biobank was not one of these
other datasets. There were similarities with our clusters here, in that they identified diverse
sedentary groups. The medoids that have been identified here to define each cluster can
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be used to cluster other similar accelerometer datasets, by identifying which of the nine
medoids each activity is closest to.

Looking beyond personal characteristics, there are issues around the built environ-
ment that may affect the form of physical activity patterns that people undertake [75].
Using smartphone data, Althoff, Sosic [79] illustrate that the walkability of the city was
associated with patterns of average activity, with inhabitants of walkable cities having
increase physical activity during both work and leisure time. Whilst our study has con-
centrated on the characteristics of the participants that exhibit each of our patterns there
are some neighbourhood attributes that could be investigated, such as traffic volume and
intensity, and access to greenspace [80].

In this study, we chose to keep each weekday as a separate day, which tends to give
greater weight to weekdays in the formation of clusters, but does allow differences between
weekdays to be accounted for. This differentiation would be important for participants
who did not work a regular Monday to Friday shift pattern or did not undertake similar
tasks on a daily basis. Investigating differences by weekdays, and using data on activity
around mobile phone cell towers in Rome, Italy, Sevtsuk and Ratti [81] modelled and
identified differences in the amount of activity by separate weekdays. In many studies,
Fridays are often reported as atypical weekdays. Jiang, Ferreira [82] used extensive survey
data from Chicago, finding that Friday activities usually differ from those during the other
the weekdays, additionally Zhao, Koutsopoulos [83] used smart card derived travel data
from London to report longer duration of out of home activities on Fridays. Future research
could explore using a more aggregate profile, consisting of an average week day, plus
Saturdays and Sundays. In this case, the weekend activity pattern would assume a greater
influence on cluster formation.

The rich accelerometer, lifestyle, sociodemographic, and health outcomes informa-
tion available within cohorts, such as the UK Biobank, present exciting opportunities to
identify holistic lifestyle behaviour patterns, and how they can be associated with positive
health outcomes. On a population scale, these can then in turn be used to personalise
policy recommendations.

5. Conclusions

Our study has shown that it is possible to apply machine learning algorithms to
processed accelerometer data to identify distinct temporal and intensity patterns of physical
activity, which have a utility in differentiating across a range of outcomes, including: all-
cause mortality, weight status, and COVID-19 test outcomes. These data will be deposited
back to the UK Biobank study and be made available to other researchers for future use.
As much as we have done with COVID-19 and BMI outcomes, these patterns can then be
used by others to help understand a range of outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21248220/s1, Charts S1–S16: the acceleration profiles with average mg greater than or
equal to 1000 mg. Tables S1–S15: the tables on how the activity patterns are characterised against
participant’s features. Supplementaryk_Medoids.pdf: the medoids for cluster solutions k = 1 to
k = 16. Supplementaryk_Medoids_average.pdf: the average activity profile for cluster solutions
k = 1 to k = 16. Supplementaryk_Medoids_average_all.pdf: the average activity profile for cluster
solutions k = 1 to k = 16 all on one chart.
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