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Abstract

Goal: To evaluate state-of-the-art signal processing methods for epicardial potential-based 

noninvasive electrocardiographic imaging reconstructions of single-site pacing data.

Methods: Experimental data were obtained from two torso-tank setups in which Langendorff-

perfused hearts (n = 4) were suspended and potentials recorded simultaneously from torso and 

epicardial surfaces. 49 different signal processing methods were applied to torso potentials, 

grouped as i) high-frequency noise removal (HFR) methods ii) baseline drift removal (BDR) 

methods and iii) combined HFR+BDR. The inverse problem was solved and reconstructed 

electrograms and activation maps compared to those directly recorded.

Results: HFR showed no difference compared to not filtering in terms of absolute differences in 

reconstructed electrogram amplitudes nor median correlation in QRS waveforms (p > 0.05). 

However, correlation and mean absolute error of activation times and pacing site localization were 

improved with all methods except a notch filter. HFR applied post-reconstruction produced no 

differences compared to pre-reconstruction. BDR and BDR+HFR significantly improved absolute 

and relative difference, and correlation in electrograms (p < 0.05). While BDR+HFR combined 
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improved activation time and pacing site detection, BDR alone produced significantly lower 

correlation and higher localization errors (p < 0.05).

Conclusion: BDR improves reconstructed electrogram morphologies and amplitudes due to a 

reduction in lambda value selected for the inverse problem. The simplest method (resetting the 

isoelectric point) is sufficient to see these improvements. HFR does not impact electrogram 

accuracy, but does impact post-processing to extract features such as activation times. Removal of 

line noise is insufficient to see these changes. HFR should be applied post-reconstruction to ensure 

over-filtering does not occur.
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I. INTRODUCTION

NONINVASIVE electrocardiographic imaging (ECGI) has been developed to provide high-

resolution images of cardiac electrical activity. ECGI is increasingly being used to guide 

ablation therapy, such as in the identification of the origin of premature ventricular 

contractions (PVCs) or epicardial exit sites of ventricular arrhythmias [1]–[4].

Despite the increase in clinical adoption, previous validation studies of epicardial potential-

based methods have shown varying results with respect to accuracy. Mean localization errors 

for known pacing sites in studies with in-vivo animal and human subjects have ranged from 

6–50 mm [5]–[8]. Recent clinical validation studies have also shown large variability in 

activation map reconstruction accuracy (correlation from −0.68 to 0.82 in one study [9], 0.29 

to 0.80 in another [10]). The variability in accuracy seen between different centers may be 

linked to the different inverse or post-processing methods used by each group. However, 

given that large variability exists even in single center studies using the same inverse method 

pipeline, it is unlikely the inverse or post-processing methods are the sole source of this 

variability.

ECGI is an ill-posed problem meaning any error in the model can have a drastic influence on 

the solution. This error can come from the presence of noise in the body surface potentials 

not related to the underlying cardiac electrical activity (i.e. power line interference, channel 

noise etc.), or the definition of the forward model itself. Signal processing can be used to 

minimize the impact of noise in the ECG including filtering, baseline drift removal and/or 

signal averaging. However, over-processing of signals may introduce further error by 

removing or distorting potentially important information relating to the cardiac electrical 

activity that would impact the ECGI reconstruction.

While guidelines exist for the processing of the standard 12-lead ECG signals to ensure 

appropriate interpretation [11], there is currently no consensus on the best signal processing 

methods for use with ECGI. Indeed, nearly every group implementing ECGI uses different 

signal processing methods. This is partially also due to the non-standardized acquisition 

environments, with differing hardware, electrode configurations and noise levels potentially 

requiring different processing methods.
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The effect of noise on ECGI has previously been assessed by adding noise (typically 

Gaussian and high frequency) to forward simulated ECGs, then solving the inverse problem 

to determine their effects. These computational studies have been used to demonstrate that 

there is an increase in error in inverse reconstructions with increasing noise levels, as would 

be expected [12], [13]. Furthermore, the increase in inverse reconstruction error seen with 

signal noise is greater in more complex forward models incorporating inhomogeneous 

structures, meaning their accuracy becomes as good as a more simply defined homogeneous 

model [14], [15]. The effect of removing noise using different filtering methods on inverse 

reconstructions in an experimental setting has yet to be assessed.

The objective of this study was to collect the signal processing methods used by different 

ECGI centers and test their effects on a standard ECGI approach in the reconstruction of 

single-site pacing data, mimicking PVC’s seen in clinics. We have used data from two 

independent experimental setups to ensure the results are not biased to a single acquisition 

environment.

II. EXPERIMENTAL DATA SETS

In this study, experimental data came from two different torso tank experimental setups (Fig. 

1A and B), from IHU-Liryc (Bordeaux, France) and the CRVTI/SCI Institutes (Salt Lake 

City, Utah), available at http://edgar.sci.utah.edu/. Four data sets were selected, three with 

comparable levels of noise that were relatively “clean” with little to no high frequency noise 

or baseline wander (example in Fig. 1C right), and one “Noisy” data set being highly 

contaminated by high frequency noise and base line drift (Fig. 1C left). This higher level of 

noise was likely due to environmental factors (i.e. a moving reference cable or additional 

noise from other nearby apparatus) and was included as this is a common problem seen in 

clinical recordings.

A. Bordeaux Data

The experimental protocol used to obtain two of the four data sets has previously been 

described in [16] and is summarized below. All experimental procedures were approved by 

the Directive 2010/63/EU of the European Parliament on the protection of animals used for 

scientific purposes and the local ethical committee.

Excised pig hearts were perfused in Langendorff mode with 100% oxygenated Tyrode’s 

solution (pH 7.4, 37 °C). An epicardial electrode sock (108 electrodes with inter-electrode 

spacing 9.9 ± 2.2 mm) was attached to the ventricles and bipolar pacing leads to the RV 

apex. The hearts were transferred to a human-shaped torso tank with 128 electrodes (inter-

electrode spacing 66 ± 24 mm) embedded in the surface (Fig. 1A). Tank and sock signals 

were referenced to an electrode at the bottom of the tank and recorded simultaneously 

(BioSemi, the Netherlands) at 2048 Hz for approximately 30 s during RV pacing. 

Afterwards, a 3D fluoroscopy (Artis, Siemens) was used to obtain the position of the 

epicardium and electrodes with respect to the tank.
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B. Utah Data

The experimental protocol used to obtain the other two data sets has previously been 

described in [17], and is summarized below. The experiment described was performed under 

deep anesthesia using procedures approved by the Institutional Animal Care and Use 

Committee of the University of Utah and conformed to the Guide for the Care and Use of 

Laboratory Animals. An excised canine heart was Langendorff-perfused using a mixture of 

whole blood and Tyrode’s solution. Arterial blood was supplied from a second canine under 

deep anesthesia. A right ventricular cannula extracted venous blood from the isolated heart 

and returned it to the support dog via a blood pump and a cannula in the jugular vein. The 

isolated, perfused heart was suspended in a human torso shaped tank with 192 electrodes 

(with inter-electrode spacing 40.2 ± 16.8mm) and filled with an electrolytic solution (500 Ω-

cm). The heart was instrumented with 33 intramural plunge electrode needles. In addition, 

ventricular signals were sampled using a 247-electrode epicardial sock (inter-electrode 

spacing 6.5 ± 1.3 mm). Intramural needles were used to stimulate the heart using bipolar 

stimulation from the RV. The epicardial, intramural, and torso tank electrodes were 

referenced to a Wilson’s Central Terminal and were sampled at 1000 Hz simultaneously for 

five seconds during RV pacing. At the end of the experiment, a three-dimensional 

mechanical digitizer (Microscribe from Immersion Corp.) was used to locate landmarks 

marked on the tank and electrode array, which then provided the reference points for proper 

orientation of the sock geometry within the torso tank.

III. ECG SIGNAL PROCESSING METHODS

Torso signal processing methods and their associated parameters were collected from 

different international research centers working with ECGI. These were divided into three 

distinct categories (Fig. 2). The first were methods for high-frequency noise removal (HFR) 

including the 50 or 60 Hz power line interference. The second were methods for low 

frequency baseline drift removal (BDR) alone. The final was for methods that combined 

HFR and BDR. For this final category, all HFR and BDR methods were combined. 

Furthermore, a signal averaging method was included in the study. The different filtering 

categories resulted in a total of 49 different processed signals including the original raw 

potentials. BDR1 was applied to directly recorded signals for all data sets. The different 

filters used are outlined below.

A. High Frequency Noise Removal (HFR)

Seven different HFR methods were applied:

1) Moving Average Filter (HFR1):

A simple moving average filter computed over the 20 or 17 ms time window, corresponding 

to one cycle of the line noise present in each dataset (50 Hz for Bordeaux, 60 Hz for Utah). 

The weight function is constant normalized by the number of samples in window.

2) Pipberger’s Filter (HFR2): Also a moving average filter, suggested in [18], where 

the averaging window corresponds with the length of two cycles of 50 or 60 Hz (40 or 33 

ms), and the summed samples are weighted by a cosine function.
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3) Notch Filter (HFR3): Signals were transformed into the Fourier space, and a notch 

filter was applied around the line frequency and its harmonics before applying the inverse 

Fourier transform.

4) Savitzky-Golay Filter (HFR4): A Savitzky-Golay FIR smoothing filter was applied 

to the data using the ‘sgolayfilt’ function in MATLAB R2018a with an order of 3 and a 

frame length of 20 or 17 ms.

5) Rational Transfer Function (HFR5): A rational transfer function (RTF) 

implemented using MATLAB, the default filter implemented in the open-source PFEIFER 

toolbox [19]. This filter serves as a weighted running average with an 11-element kernel 

size.

6) Butterworth Low Pass Filters (HFR6 and HFR7): Two different IIR low pass 

filters with filter order 7 at cut-off frequencies, 30 Hz (HFR6) and 60 Hz (HFR7) to be 

below or at/above the line frequency noise present in each dataset [20].

B. Baseline Drift Removal (BDR)

Five methods for BDR were applied on the original signal:

1) Simple (BDR1): A naive baseline removal approach in which the mean over a 20 or 

17 ms time window during the isoelectric period prior to the QRS was subtracted from each 

signal.

2) Wavelet-Based (BDR2): A wavelet bandpass filter (0.5–150 Hz) was applied with 20 

levels of decomposition performed using Coiflet wavelets with four vanishing moments.

3) Savitzy-Golay (BDR3): A Savitzky-Golay FIR smoothing filter was applied to the 

data using the ‘sgolayfilt’ function in MATLAB with a polynomial order of 3 and a frame 

length of 3000 ms.

4) Cubic-Spline (BDR4): Predefined expected isoelectric points of the measured signal 

were used for computation of the zero line by fitting the isoelectric line with a cubic 

function.

5) Butterworth High Pass Filter (BDR5): IIR high pass filters with filter order 5 at 

cut-off frequency of 0.5 Hz.

C. High Frequency Noise and Baseline Drift Removal

The methods for HFR and BDR were combined, by first performing each of the seven HFR 

on the raw signal, then applying the five BDR to each of these seven signals. This resulted in 

a total of 35 different HFR + BDR combinations.
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D. Signal Averaging (SA)

In addition to simple HFR and BDR methods, a signal averaging method was implemented 

[21]. Briefly, baseline wander was first removed using the wavelet BDR method (BDR2). 

The time window containing one heart beat was defined by hand as the QRST interval. The 

tank signals were then decomposed using a principal component analysis (PCA). The first 

principal component was defined as the virtual lead and the pre-defined heart beat in this 

virtual lead as the virtual template. The virtual template was compared with each beat of the 

virtual lead, by cross correlation. The position for the alignment was determined as the 

position where the cross correlation was maximal. Finally beat averaging was performed 

over all recorded and aligned beats for each lead.

IV. INVERSE MAPPING METHODS

Tank signals which were absent or of poor quality were excluded from the computations (3 

± 2 channels removed). The ECGI approach assessed in this study was chosen to reflect the 

most common approach used by the different research centers.

A. Problem Definition

The electrograms on the epicardial nodes are linearly related to torso measurements:

y(t) = Ax(t) + n(t) (1)

where x(t) ∈ ℝN × T  and y(t) ∈ ℝM × T  are the epicardial potential and the torso measurement 

vectors at time t, respectively, A ∈ ℝM × N is the forward matrix, and n(t) ∈ ℝM × T  is the 

vector representing noise in the measurements.

B. Forward Problem Solution

The boundary element method (BEM) was used to define the forward matrix, employing a 

homogeneous conductivity between a refined epicardial mesh (internode spacing 5.1±2.1 

mm for Bordeaux and 7.4 ± 2.0 mm for Utah data) and a refined tank mesh (internode 

spacing of 14.4 ± 5.9 mm for Bordeaux and 24.2 ± 5.1 mm for Utah data). After the forward 

matrix is obtained for these refined meshes, the rows corresponding to torso measurement 

electrodes were sampled to form a reduced forward matrix, which we denote as A in (1), 

relating the electrograms (in the refined epicardial meshes) to torso measurements.

C. Inverse Problem Solution

Inverse solutions were found by applying the Tikhonov regularization method [22] to the 

problem in (1) at each time instant separately. Thus, time index was removed from the 

following description of the method. This method aims to achieve a trade-off between a 

good fit to the measured data and an a priori constraint on the solution, thus minimizing the 

cost function:

J(x) = ∥ Ax − y ∥2 + λ2 ∥ Rx ∥2 (2)
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with respect to x at each time instant, where∥ ⋅ ∥ is the L2-norm, R is a regularization 

matrix representing the constraint on the solution and λ is a regularization parameter 

controlling the trade-off between the two components of the cost function. In this study, R 
was chosen as the identity matrix (zero-order regularization). Per C. Hansen’s L-curve 

method [23] was applied λ(t) at each time instant. The median over time was computed and 

defined as the final λ value that was used to solve the inverse problem at each time instant.

V. EVALUATION METHODS

First, the lambda value used for each inverse solution and the processed torso signals were 

evaluated using two metrics:

1. Signal-to-Noise Ratio for High Frequencies (SNR-HF): The RMS voltage 

(RMSV) was computed across all leads after a simple baseline correction 

(BDR1). The SNR-HF was then taken as the mean ratio between the QRS and 

noise amplitudes during an isoelectric period 40 or 34 ms prior to the QRS for 

Bordeaux and Utah data respectively.

2. Baseline Shift: was defined as the deviation of the isoelectric point prior to the 

QRS. To account for noise, the average was taken over 20 or 17 ms. The mean 

absolute deviation over all leads was used.

The inverse solution was found for each beat in the signal (14–31 beats) and compared to the 

same beat measured by the sock. As SA produced a single beat, reconstructed electrograms 

were compared to all un-averaged sock beats. The inverse solutions were obtained for 

refined epicardial meshes and comparisons were carried out at a subset of the nodes 

corresponding to sock measurement locations (108 and 247 leads for Bordeaux and Utah 

data respectively).

The following features of the recorded and ECGI reconstructed electrograms were quantified 

and compared:

1. Electrogram Amplitude: Electrogram amplitude was measured as the mean of the 

peak-to-peak amplitudes from each lead. Comparison of ECGI to recorded 

electrogram amplitudes were made using the absolute difference and the relative 

difference using the maximum recorded amplitude for normalization.

2. Electrogram Morphology: The morphology of ECGI reconstructed electrograms 

were compared to those recorded over the QRS using a Pearson’s correlation).

Finally, activation times markers were defined from sock electrograms as the time of 

minimum derivative (dV/dt). A spatio-temporal algorithm was used to define activation 

times from ECGI electrograms [24]. Activation maps were compared using the following 

metrics

1. Activation Wavefront: was compared using the Pearson’s correlation and the 

mean absolute error (MAE).

2. Pacing site Localization Error (LE) - The definition of the pacing site was 

automated and defined as the site with the earliest activation time where the 
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median of all neighboring points activated within 30 ms (to prevent selecting a 

site within a misplaced activation marker). If multiple points demonstrated the 

same activation time, the mean of these points was taken as the earliest 

activation. The LE was then computed as the Euclidian distance between the 

ECGI and recorded pacing sites.

Statistical analysis was conducted using GraphPad Prism 7.04. For each metric the 

significance of differences was tested using 1-way ANOVA with p < 0.05 defined as 

significant. A repeated measures method was used for comparisons within a data set and 

unpaired for comparisons between the two data sets. Data are expressed as mean ± SD 

unless otherwise stated. Figures contain representative data, with Tables containing the 

complete results available as an online supplement.

VI. RESULTS

A. Torso Surface Potentials and Lambda Values

SNR-HF, Baseline Shift and lambda values for selected processing methods for all data sets 

are presented in Fig. 3. As expected, the SNR-HF of the raw potentials for the three clean 

data sets were significantly larger than for the noisy data (Bordeaux 1; red), but also had 

significantly less baseline shift and 5x smaller lambda values.

All HFR methods except the notch filter (HFR3) significantly improved the SNR-HF 

compared to no filtering for all data sets (p < 0.0001) with the moving average (HFR1), 

Pipberger (HFR2) and the 30 Hz Lowpass filter (HFR6) producing the best results. The 

improvements seen with the RTF (HFR5) and a low-pass filter above the line noise (HFR7) 

were small. The Notch filter significantly improved SNR-HF for Bordeaux 1 where lines 

noise was prominent. HFR did not significantly change the baseline shift for any data sets. 

While there was a significant difference in lambda values between HFR methods, the 

absolute differences were minimal.

For all data sets, no BDR methods significantly improved the SNR-HF of the torso signals 

except the wavelet method (BDR2) as this includes a high frequency cut-off of 150 Hz. 

Though significant, the improvement was small. Most BDR methods demonstrated a marked 

improvement in the baseline shift. However, for the Utah 1 data set (blue), the wavelet 

(BDR2) and the high pass filter (BDR5) did not significantly change the baseline offset. 

Furthermore, the spline method (BDR4) significantly increased the baseline shift. Here, 

while the spline fit was accurate, it created a constant offset across the entire signal due to 

the automated method for finding the isoelectric points defining a point at the start of the 

QRS. For all data sets, there was a significant reduction in lambda with BDR, with no 

difference between the BDR methods.

For all data sets, there was no significant improvement or reduction in SNR-HF in most 

cases with the addition of BDR to HFR compared to using HFR methods alone (Hence only 

HFR1+BDR1 is represented). The exceptions to this are with the Notch filter which in 

combination with the Wavelet BDR (HFR3+BDR2) improved SNR-HF by 3–10 dB for the 

different data sets due to the added high-pass filtering effects of the wavelet filter (p < 
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0.001). There was also no further substantial reduction in baseline shift with the addition of 

HFR to BDR compared to BDR alone. The lambda value was significantly reduced in the 

majority of cases. However, as with the Baseline shift and SNR-HF the relative change was 

minimal with a mean difference ranging from 0.00001 to 0.0008.

SA improved the SNR-HF and baseline shift compared to no filtering for all data, as well as 

reducing lambda values (p < 0.05). Globally, SA showed similar SNR-HF and baseline shift 

values to many HFR + BDR combinations, though the SNR-HF was greater than any 

method for Bordeaux 1 data.

B. Electrogram Reconstruction

Fig. 4 presents the absolute amplitude difference and correlation between ECGI and 

recorded electrogram over the QRS interval for selected ECG processing techniques.

With no filtering of the ECG, ECGI electrogram amplitudes were smaller than recorded for 

all data sets. With no filtering, the Noisy data set showed significantly worse median 

correlation in electrograms QRS waveform between reconstructed and recorded potentials 

than any Clean data set (52 ± 3% vs. 67± 4 to 76 ± 1%).

HFR did not significantly improve electrogram amplitudes compared to no filtering for the 

Noisy data. For the Clean data sets all methods significantly decreased amplitudes except the 

notch filter (HFR3). The moving average (HFR1) showed the largest difference. This can be 

seen in Fig. 5, which presents representative recorded (black) and ECGI electrograms for the 

Bordeaux 1 (top) and Utah 1 (bottom) data sets at two electrode locations marked on 

recorded activation maps (left). Here, the ECGI electrograms using the moving average 

(HFR1) alone (yellow) are slightly smaller than those without filtering (blue) or using a 

notch filter (HFR3; orange) in the clean data.

While certain HFR methods did significantly improve the correlation for both Bordeaux 1 

and Utah 1 data compared to no filtering, the improvements were minimal (0.2–2.3% 

maximum). Visual inspection demonstrated no obvious changes in QRS morphology when 

correlation was improved other than a reduction in high frequency noise content (Fig. 5 - 

HFR). For the Utah 2 data set, the moving average filter (HFR1) and the 30 Hz low pass 

filter (HFR6) significantly reduced the correlation values. For this data set, visual inspection 

demonstrated that these filters have resulted in an over-smoothed reconstruction on a small 

area of the heart. This is demonstrated in Fig. 6A and B with a recorded electrogram (black) 

and the equivalent inverse reconstruction without filtering (dark blue) and with a 30 Hz low 

pass filter (HFR6; green dashed). As can be seen, HFR6 has over-smoothed the inverse 

reconstruction, removing the second downstroke that corresponds to the intrinsic reflection. 

By using a higher 60 Hz cut-off for the low-pass filter (Fig. 6C magenta dashed); the second 

down stroke is preserved. Interestingly, by performing HFR post-reconstruction (Fig. 6B red 

and C yellow lines), we produce the same signal as when filtering was performed pre-

reconstruction. This was also seen for reconstructions after BDR (Fig. 6D and E), where 

HFR7 and 8 performed pre-reconstruction (green and magenta dotted respectively) match 

the electrograms with HFR7 and 9 performed post-reconstruction (red and yellow dotted 

respectively).
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BDR improved potential amplitudes for all data compared to no filtering with a significant 

reduction in absolute differences (Fig. 4). The spline method (BDR4) provided the greatest 

improvement, and simple/wavelet methods (BDR1/BDR2) the least. While amplitudes were 

improved, the noise level in the electrograms was also dramatically increased reducing the 

SNR, as seen in Fig. 5 BDR electrograms for both data sets, with no filtering in blue, 

wavelet (BDR2) in orange and simple (BDR1) in yellow. The wavelet method provided 

some filtering of high frequency noise as expected from body surface signals. BDR 

significantly improved the median correlation between ECGI and recorded potentials 

compared to no filtering for both Bordeaux and the Utah 1 data. However, for the Utah 2 

data the correlation was overall reduced. There were no significant differences between the 

BDR methods for all data sets (p > 0.99).

In all data sets, when improvements in QRS morphology occurred, these were substantial. 

As seen in Fig. 5 BDR plots key electrogram features were better reproduced in ECGI 

electrograms using the wavelet (orange) and simple (yellow) BDR compared to no filtering 

(blue); including the initial R-wave in electrode 1 and 3, and the S-wave in electrode 4. This 

is also seen in Fig. 6 for the Utah 2, where the R-wave is not present in reconstructions 

without BDR (Fig. 6B and C), but is present in all reconstructions with BDR (Fig. 6D and 

E). In a few electrograms, detrimental changes were found after BDR, most prominently in 

the Utah 2, e.g., in Fig. 5 electrode 2 an initial downstroke is reconstructed after BDR that 

does not exist in the recording nor in unfiltered or HFR-alone reconstructions.

Unlike with HFR, changes in electrogram morphology with BDR were only produced when 

filtering was applied prior to inverse reconstruction, and could not be reproduced through 

filtering post-reconstruction. The combination of HFR and BDR on ECG signals provided a 

significant improvement in the signal amplitudes for all datasets by reducing the absolute 

amplitude difference when compared to HFR alone (p < 0.05), but were increased slightly 

compared to BDR alone. For both Bordeaux and Utah 1 data sets, most combinations of 

HFR methods with BDR also significantly improved the correlation of QRS EGMs 

compared to BDR alone though these absolute changes were minimal (<0.04 change in the 

median correlation). Only in combination with the RTF filter (HFR5) were correlation 

values reduced compared to BDR alone (p < 0.05). Representative reconstructed 

electrograms in Fig. 5 HFR+BDR demonstrate that these changes are limited to a reduction 

in high frequency noise content, with reconstruction using a low pass filter (HFR6) (blue) 

and the RTF filter (HFR5) (orange) combined with spline BDR (BDR4) presented alongside 

the signal averaged reconstruction (yellow).

Signal averaging, like BDR and BDR + HFR, improved signal amplitudes compared to no 

filtering. While for the Utah 1 and Bordeaux 2 data sets, correlation of QRS EGMs were 

significantly better than for any other method, for the noisy Bordeaux 1 data set and the 

Utah 2 data set they were significantly worse. This can be seen in Fig. 5 electrode 2, where 

the signal averaged reconstruction (yellow plot HFR + BDR) has inverted the electrograms 

completely now showing no similarity to the recorded plot. For all data sets, signal averaged 

reconstructions still contain high frequency noise likely because not enough beats are used 

in the averaging (14 to 31 beats used).
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C. Activation Maps

Figs. 7 and 8 present representative recorded (A) and ECGI activation maps for the 

Bordeaux 1 and Utah 1 data sets, respectively with (B) no filtering, (C and D) HFR alone, (E 

and F) BDR alone, (G) BDR+HFR and (H) signal averaging. Fig. 9 presents the correlation 

and mean absolute error (MAE) between ECGI and recorded activation times as well as the 

localization error (LE) for selected processing methods.

Activation maps without filtering were well correlated with those recorded and had a low 

MAE for all data, though results were best for the clean data sets. Pacing site LE was also 

significantly higher for the noisy Bordeaux 1 data set (p < 0.05). Variation between the 

activation maps on a beat-to-beat basis was also greater for the noisy Bordeaux 1 data as 

demonstrated by the larger standard deviation in correlation and MAE compared to the other 

data. These beat-to-beat changes in the ECGI activation maps are presented in Fig. 10 for the 

Bordeaux 1 data. Beat-to-beat variability in the recorded sock data was minimal, with each 

activation maps showing no discernible difference, illustrating this variability arises when 

significant noise is present in the ECG signals.

For the Bordeaux 1 data, HFR significantly improved correlation of activation maps with 

those recorded, except with the Notch filter. For the other data sets, no methods changed the 

correlation except the moving average (HFR1) and 30 Hz low pass (HFR6), which reduced 

it. Closer inspection of reconstructed maps from the Bordeaux 1 data set revealed that 

filtering removed isolated activation marker errors (HFR3; Figs. 7 right wall and 8 posterior 

wall). For the majority of the beats, the Notch filter showed similar but smoother activation 

maps than no filtering. However, in approximately a ¼ of the beats the activation map was 

changed drastically in the Noisy data, as seen in Fig. 10 beat 7. Inspection of the 

electrograms in altered regions showed the global QRS morphology was unchanged (as was 

noted in the previous section), but large amplitude high frequency noise was still present 

after the notch filter that has likely altered activation marker placements. Other HFR 

methods also altered the activation sequences compared to no filtering (example Fig. 7 with 

the moving average filter) but unlike with the notch they showed little beat-to-beat 

variability. On the other hand, for the other data sets there were no substantial visual 

differences between the HFR filtered and the unfiltered reconstructed activation maps other 

than shifts in the early activated region (Fig. 8B, C and D). Like with the Bordeaux 1 data, 

this was not reflected in the electrograms which had very similar morphologies in the early 

activated region. The already minimal beat-to-beat variability also did not change with 

filtering. For both Bordeaux and Utah 1 data sets, while there were HFR methods that 

improved the mean LE, or reduced the standard deviation, none were significant. For Utah 2, 

LEs were larger but not significantly. Interestingly there were methods that improved LE for 

one data set but deteriorated results for another. The only consistent change was for the 

moving average filter (HFR1) that produced larger LE than using no filter (p < 0.05).

After BDR, the increased noise amplitude, seen in Fig. 5, negatively impacted activation 

marker placement, as seen in Figs. 7 and 8 where activation maps became patchy after BDR. 

Overall there was a decrease in activation accuracy with BDR despite the improvements 

seen in electrogram accuracy. The wavelet method (BDR2) was an exception to this, 

improving activation map accuracy in terms of correlation and MAE as it provided some 
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HFR to electrograms. However, for the Bordeaux 1 data set, an artefactual second region of 

early activation appeared on the posterior wall impacting LE for all activation maps after 

BDR (Fig. 7E). Inspecting the electrograms in this region revealed an artefactual early 

downslope that is reconstructed only after BDR (as demonstrated in Fig. 5 electrogram 2). 

For all except the Bordeaux 2 data, all of the BDR methods except the wavelet method 

increased the mean and standard deviation of the LE for the earliest site of activation. For 

the Utah 1 data set this increase was significant (p < 0.05).

The combination of HFR and BDR provided no substantial further improvement in 

correlation or MAE over HFR alone. Furthermore, the pattern of activation was not 

substantially changed. Inspection of the maps themselves demonstrated that the artefactual 

region of early activation was present in all HFR+BDR reconstructions for the Bordeaux 1 

data set (example Fig. 7G). No such artefacts were seen in the other data sets. Though not 

significant, the mean and SD in LE improved substantially for most combinations, 

particularly for cases that had increased with only HFR (HFR1, 6).

SA produced activation maps with similar correlation and MAE values to no filtering for the 

Utah and Bordeaux 2 data but lower correlation and higher MAE for the Bordeaux 1 data. 

While activation maps for the Utah data looked very similar to those without filtering, for 

the Bordeaux 1 data there were several artefacts including a second site of activation on the 

right surface (like with all BDR or BDR+HFR filters). For both all data, the SA found the 

earliest site of activation <15 mm, in the closer range compared to any other processing 

method.

VII. DISCUSSION

This study has demonstrated the impact of different signal processing methods on an 

epicardial potential based inverse method using four data sets from two distinct experimental 

setups. As there was no one optimal processing method for all data, we recommend signal 

processing be applied on a case-by-case basis. Several trends were applicable to all data sets 

that can help guide the choice of processing method used and ensure the best inverse 

solution is found:

1. HFR does not impact electrogram reconstruction accuracy, but does impact post-

processing to extract features such as activation times. HFR should be applied 

post-reconstruction to ensure over-filtering does not occur. The HFR methods 

and parameters will depend on the features one wishes to extract.

2. BDR improves reconstructed electrogram due to a reduction in lambda value 

selected. We recommend using the simple method (BDR1) as this is sufficient to 

see these improvements.

3. Signal averaging may be a useful processing tool but care should be taken in 

aligning the beats.
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A. High Frequency and Baseline Drift Removal

Torso signals with baseline drift present (i.e. no filtering or HFR) resulted in a higher 

regularization parameter choice using the L-curve method (Fig. 3). The more baseline drift 

present, the more regularization the signals received. With Tikhonov zero-order 

regularization, the presence of baseline drift resulted in very low amplitude and smooth 

reconstructed signals. Conversely, reconstructions after BDR improved electrogram 

morphology and amplitudes.

Improvement in electrograms after BDR included the appearance of key features like the 

initial R-wave (Fig. 5 and 6). Though less common, detrimental changes could also be 

found, such as the development of a double intrinsic deflection (Fig. 5). Both positive and 

negative changes were present with all BDR methods including the simple method (BDR1), 

meaning these changes are likely due to the selected lambda value rather than distortion in 

the torso surface QRS from filtering. To verify this, reconstructions were compared before 

and after BDR using a fixed lambda value and demonstrated no perceivable difference in 

QRS morphology. We conclude the changes in electrogram morphology after BDR are due 

to the large reduction in lambda value selected. This conclusion is further supported by 

HFR-only reconstructions where electrogram morphologies and lambda values are not 

significantly different from those with no filtering. As positive changes are also seen with 

the simple method, we would advise this approach as there appears to be no benefit from 

using more complex BDR approaches. In order to limit detrimental changes, the method for 

computing the lambda value needs to be optimized.

While BDR significantly improved specific morphological features, the presence of high 

frequency noise had the biggest impact on activation maps, and therefore HFR methods 

were required to improve their accuracy. If the reconstructed signals had little high 

frequency noise, HFR had little impact (i.e. the three clean data sets after only HFR). Of the 

HFR methods evaluated in this study, the notch filter was the only method deemed 

insufficient to improve activation time mapping given the high frequency noise was still 

present in the signal. Even a low pass filter above the line noise improved activation 

reconstruction accuracy, indicating the line noise does not impact activation marker 

placement.

The moving average (HFR2) and 30 Hz low pass (HFR6) filter methods were detrimental to 

defining activation times for the Utah 2 data set by over-smoothing the reconstructed 

electrogram (Fig. 6). Interestingly, while the global activation pattern was improved with the 

moving average filter for the other data sets, the LE of the pacing site was larger than 

without filtering. We suspect this is due to over-smoothing the early QRS at the body 

surface, that resulted in an increase in the presence of isoelectric-line clustering or apparent 

line of conduction slowing and shifted the early activation site to these borders, as seen in 

Figs. 7 and 8 (earliest activation denoted with yellow lightning bolt). By using a smaller time 

window for averaging this defect may not occur.

Further investigation into filtering artefacts at the body surface demonstrated that if these are 

present they will remain in reconstructions. For example, the low pass filter of 30 Hz created 

an obvious ringing on either side of QRS in the Clean data set. Whilst this does not affect 
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the correlation values or timing of the intrinsic deflection, the ringing was still present in the 

reconstructed electrograms and could be mistaken as late potentials after the QRS.

For a purely spatial (static) inverse approach, as used in this study, the regularized pseudo-

inverse matrix is a purely spatial operator, treating every timestep of the torso signals 

individually. A linear temporal filter can be expressed as a matrix M, likewise treating every 

timestep of the torso signals individually

y(t)filtered = My(t)

Therefore, the order of temporal filtering and purely spatial (static) reconstruction can be 

also formally be exchanged, as long as the same lambda is used. We therefore recommend 

applying HFR after reconstruction when using a purely spatial (static) inverse approach to 

ensure there are no deformations in morphology and accuracy in activation map 

computation. However, it should be kept in mind that for spatio-temporal inverse approaches 

the order does make a difference.

B. Signal Averaging

The application of averaging on an ECG makes three assumptions, i) the ECG pattern 

repeats cyclically, ii) the high frequency noise superimposed on the signal is a random noise 

with zero mean value, and iii) ECG can be correctly aligned to perform averaging. If all 

three assumptions are correct, then signal averaging will prevent any distortion of the ECG 

and yield a considerable decrease of the noise dispersion. Here we have found signal 

averaging to be beneficial for the clean data and detrimental for the noisier Bordeaux 1 data 

set. This is despite the SNR-HF being improved and QRS waveforms at the tank surface 

appearing normal. We assume the difference in results comes down to the alignment of the 

beats; good for the clean data sets with no QRS deformation at the body surface and bad for 

the noisy data set resulting in an unperceivable QRS deformation in the ECG. It is clear that 

if alignment is not good, signal averaging can be more detrimental than any other filtering 

approach to the inverse solution. This is confirmed with the large deformations seen in the 

reconstructed electrograms for the Bordeaux 1 data with signal averaging that are not 

present for the other data sets. We hypothesize that if the optimal alignment approach can be 

determined, it would provide the best filtering tool to use for stable rhythms as there would 

be no QRS deformation. As such we have commenced an investigation into different signal 

averaging methods in relation to the inverse problem.

C. Limitations

The results presented should be considered in light of limitations. First, while a large variety 

of signal processing methods have been used, the study has only investigated one inverse 

problem “pipeline”. That is, one forward model (BEM), one regularization technique (zero-

order Tikhonov), one method to define lambda (L-curve), and one method to compute 

activation times. Previous computational studies have demonstrated that the relationship 

between signal noise and error in inverse reconstructions is dependent on the regularization 

and parameter selection methods used [12], [13]. We have demonstrated that signal 

processing (and therefore noise) does not dramatically change the inverse reconstruction, but 
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rather has a major impact on the lambda value chosen (using an L-curve method) and 

therefore the accuracy of the inverse reconstruction. Different regularization parameter 

selection methods may be more or less sensitive to noise. Furthermore, the impact of 

different lambda values would change with different regularization methods, e.g. a higher 

lambda from the presence of baseline drift with first-order Tikhonov regularization would 

result in smoother reconstructions, while with BDR they would be more fractionated due to 

the smaller lambda values used. To test these hypotheses, we are currently running a variety 

of different methods on these data sets, which are also available for those who wish to test 

their own methods. The method to define activation times was based on a specific spatio-

temporal approach combining the estimated time delays between neighboring electrograms 

and the standard maximum negative derivative approach [24]. Analysis using the standard 

derivative method to define activation produced the same trends as the spatio-temporal 

method, but the overall accuracy was worse due to the increase in activation time artefacts 

from high frequency noise. While we suspect the same trends would also be seen with other 

activation methods, these have not been assessed.

The signals on the heart and torso were recorded simultaneously for all data sets to avoid 

alignment issues and beat-to-beat variability. This means the noise present on the torso is 

also present in the epicardial signals and may bias the results. However, because the 

amplitude of the epicardial signals is much greater than on the torso, this bias does not 

impact the results of this study. To test this, we have compared reconstructions without 

filtering using only the 1st and 18th epicardial beats as the ground truth. The was nearly no 

difference in any metrics, e.g. the difference in absolute error was 0.03–0.07 mV higher than 

doing a beat-to-beat comparison, a change of less than 1.5%, and the correlation change was 

0.2–1.4% reduced. There was no change for activation maps.

The study was conducted in an experimental setting, and it cannot fully represent the 

recording environment of a clinical setting. Here, only high-frequency noise from powerline 

interference and the baseline drift were considered. In a clinical environment, patient/

electrode movement, breathing, and noise from muscles would also affect the signals. 

Despite this, we expect our results are directly transferable to the clinic. The channel white 

Gaussian noise present in the tank data sets are of a similar frequency to electromyogram 

noise. Likewise, the level of baseline drift present in the noisy tank data are of a similar level 

to that seen during breathing or patient movement, although morphologically different.

The sites of initial activation were determined automatically from activation maps. It is 

possible that an expert observer may have been able to identify sites of initial activation 

more precisely and that LE are over-estimated as a result. On the other hand, with our 

approach it was possible to analyze this large dataset efficiently and investigator bias was 

removed.

Finally, these methods were only evaluated in the presence of single-site pacing data. Given 

the low impact of signal processing on the inverse reconstruction, we expect the results of 

this study are applicable not only to stable “single” beat rhythms of clinical interest such as 

premature ventricular contractions or sinus rhythm, but also to the reconstruction of non-

stable or multi-beat rhythms such as fibrillation or tachycardia, and for the reconstruction of 
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repolarization. The question with these later cases is how to define the isoelectric point to 

ensure that the optimal lambda value is chosen.

VIII. CONCLUSION

ECG signal processing has a fairly low impact on ECGI reconstruction accuracy. Removal 

of baseline drift improves electrogram reconstruction due to an improvement in the lambda 

selected for regularization, with a simple method of resetting the isoelectric point sufficient 

to see these improvements. High frequency noise removal does not impact electrogram 

reconstruction accuracy, but can improve post-reconstruction feature extraction. High 

frequency removal should be applied post-reconstruction with care to ensure over-filtering 

does not occur.
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Fig. 1. 
Torso Tank experimental setups used to obtain (A) two Bordeaux and (B) two Utah data sets. 

(C) The four sets were selected: one including “Noisy” torso signals being highly 

contaminated by high frequency noise and base line drift (left) and three with “Clean” torso 

signals with minimal high frequency noise or baseline wander (right).
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Fig. 2. 
Filters applied to each signal included those for high frequency removal (HFR), baseline 

drift removal (BDR) and all combinations of the two types of filters. In addition, signal 

averaging was used as a special HFR + BDR filter.
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Fig. 3. 
Body Surface ECG noise properties and Lambda values for each data set. Results presented 

for selected high frequency removal (HFR), baseline drift removal (BDR) and combinations 

of the two methods. In addition, signal averaging (SA) was used as a special HFR +BDR 

filter.
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Fig. 4. 
Comparison between recorded and ECGI electrograms using absolute difference and 

correlation. Results presented for selected HFR, BDR and their combination. In addition, SA 

was used as a special HFR + BDR filter.
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Fig. 5. 
Representative recorded and reconstructed electrograms using selected signal processing 

methods. Representative recorded EGMs for both data sets at two electrode locations are 

marked on recorded activation maps (left). HFR, BDR and HFR+BDR depict the selected 

reconstructed EGMs for HFR only, BDR and the combination of HFR+BDR respectively. 

Within the HFR plots, the blue line represents reconstructions with no filtering, the yellow 

line with a moving average filter (HFR1) and the orange line with a notch filter (HFR3). 

Within the BDR plots, the blue line represents reconstructions with no filtering, the orange 

line with a wavelet filter (BDR2) and the yellow line with a simple BDR (BDR1). Within the 

HFR+BDR plots, reconstructions after a low pass filter (HFR6; blue) and the RTF filter 

(HFR5; orange) combined with the spline filter (BDR4) are presented alongside the signal 

averaged reconstruction (yellow).
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Fig. 6. 
Example (A) recorded and (B,C,D,E) reconstructed electrograms with (right) and without 

(left) simple BDR (BDR1), and either no HFR, a 30 Hz (HFR6) or a 60 Hz (HFR7) low pass 

filter used either pre-or post- reconstruction.
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Fig. 7. 
Representative recorded and reconstructed activation maps using selected signal processing 

methods for the Bordeaux 1 data set. Activation maps show right (left) and left (right) 

ventricular views of the heart. Lightning bolt represents sites of earliest activation as defined 

by each map.
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Fig. 8. 
Representative recorded and reconstructed activation maps using selected signal processing 

methods for the Utah 1 data set. Activations show and anterior (right) and posterior (left) 

view of the heart. Lightning bolt represents sites of earliest activation as defined by each 

map.
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Fig. 9. 
Comparison between recorded and reconstructed activation maps using correlation, mean 

absolute error (MAE) and localization error (LE). Results presented for selected HFR, BDR 

and combinations of the two methods. In addition, SA was used.
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Fig. 10. 
ECGI activation maps for Bordeaux 1 data demonstrating the beat-to-beat variability (left-

right) using selected processing methods (top-bottom).
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